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Learning

Big Model

Timescale: minutes to days
Systems: offline and batch optimized
Heavily studied ... major focus of the AMPLab
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Inference

Big Model m
Application

Timescale: ~10 milliseconds
Systems: online and latency optimized
Less studied ...
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Learning Inference

Timescale: hours to weeks
Systems: combination of systems
Less studied ... Application

Feedback




Learning Inference

Responsive

Adaptive (~10ms)

(~1 seconds)




s VELOX Model Serving System cors

Daniel Crankshaw, Peter Bailis, Haoyuan Li, Zhao Zhang,
Joseph Gonzalez, Michael J. Franklin, Ali Ghodsi, and Michael I.
Jordan
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Key Insight:
Decompose models into fast and slow changing components
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Hybrid Offline + Orélline Learning

Update feature functions offline uising batch solvers
* Leverage high-throughput systems (Tensor Flow)
* Exploit slow change in population statistics

Wy

Update the user weights onlinfe:
* Simple to train + more robust model
* Address rapidly changing us%ar statistics




Common modeling structure

Matrix Deep Ensemble
Factorization Learning Methods
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Velox Online Learning for Recommendations
(Simulated News Rec.)

Error

0.6
0.5
0.4
0.3
0.2
0.1

0

10 20
Examples

30

Partial Updates: 0.4 ms
Retraining: 7.1 seconds

>4 orders-of-magnitude
faster adaptation
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., VELOX: the Missing Piece of BDAS
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<, VELOX Architecture
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<, VELOX Architecture
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2, VELOX as a Middle Layer Arch?

Fraud Content Personal Robotic Machine
Detection Rec. Asst. Control Translation
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Clipper Generalizes Velox Across ML Frameworks

Fraud Content Personal Robotic Machine
Detection Rec. Asst. Control Translation
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Clipper

Key Insight:
The challenges of prediction serving can be addressed between
end-user applications and machine learning frameworks

As a result, Clipper is able to:

» hide complexity

» by providinga common prediction interface

» bound latency and maximize throughput
» through approximate caching and adaptive batching

» enable robust online learning and personalization
» through generalized split-model correction policies

without modifying machine learning frameworks or end-user applications



Clipper Design Goals

Low and bounded latency predictions
» interactive applications need reliable latency objectives

Up-to-date and personalized predictions across models and

frameworks
» generalize the split model decomposition

Optimize throughput for performance under heavy load
» single query can trigger many predictions

Simplify deployment
» serve models using the original code and systems



Clipper Architecture

Fraud Content Personal Robotic Machine
Detection Rec. Asst. Control Translation
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IObserve

PredictI RPC/REST Interface

Clipper
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Clipper Architecture

PredictI RPC/REST Interface IObserve

Improve accuracy through ensembles,
online learning and personalization

Correction Layer

Provide a common interface to models

while bounding latency and Model Abstraction Layer

maximizing throughput.




PredictI RPC/REST Interface IObserve

Correction Policy Correction Layer

Approximate Caching :
_ _ Model Abstraction Layer
Adaptive Batching
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Model Abstraction Layer

RPCI RPCI RPCI RPCI

KeystoneML Caffe ~F‘ .Wn o0

Provides a unified generic prediction APl across frameworks

» Reduce Latency = Approximate Caching
» Increase Throughput - Adaptive Batching
» Simplify Deployment = RPC + Model Wrapper



Approximate Caching

_ _ Model Abstraction Layer
Adaptive Batching
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RPC]

Model Wrapper (MW)
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Common Interface = Simplifies Deployment:

» Evaluate models using original code & systems
» Models run in separate processes

> Resource isolation
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» Evaluate models using original code & systems

Common Interface = Simplifies Deployment:

» Models run in separate processes
> Resource isolation
> Scale-out

Problem: frameworks optimized for batch processing not latency



Adaptive Batching to Improve Throughput

» Why batching helps:

A single

page load
may generate
many queries

Hardware
Acceleration

I

Helps amortize
"GRPC" system overhead

» Optimal batch depends on:
» hardware configuration
» model and framework
» system load

Clipper Solution:

be as slow as allowed...

» Application specifies latency objective

» Clipper uses TCP-like tuning algorithm to
increase latency up to the objective



Tensor Flow Conv. Net (GPU)
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Comparison to TensorFlow Serving
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Takeaway: Clipper is able to match the average latency of
TensorFlow Serving while reducing tail latency (2x) and

Improving throughput (2x)



Approximate Caching to Reduce Latency

» Opportunity for caching

i} Cards
i Against

e Popular items may
Sl be evaluated
frequently

1

» Need for approximation
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High Dimensional and continuous valued
qgueries have low cache hit rate.

Clipper Solution: Approximate Caching

apply locality sensitive hash functions




PredictI RPC/REST Interface IObserve

Correction Policy Correction Layer

Approximate Caching :
_ _ Model Abstraction Layer
Adaptive Batching
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Correction Policy Correction Layer

Goal:

Maximize accuracy through ensembles, online learning, and
personalization

Generalize the split-model insight from Velox to achieve:

» robust predictions by combining multiple models &
frameworks

» online learning and personalization by correcting and
personalizing predictions in response to feedback
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Correction Policy

Slow Changing
Improves prediction accuaray by: Model

Clipper

ﬁ £
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» Incorporating real-time feedback

it

» Managing personalization

TensorFlow

» Combine models & frameworks
» enables frameworks to compete

Caffe




Improved Prediction Accuracy (ImageNet)

Caffe 13.05% 6525
Caffe LeNet 11.52% 5760
Caffe ResNet 9.02% 4512
TensorFlow Inception v3 6.18% 3088

sequence of pre-trained state-of-the-art models



Improved Prediction Accuracy

Caffe 5.2% relative improvement

Caffe In prediction accuracy! 5760
Caffe 4512
TensorFlow Inception v3 6.18% 3088

Clipper Ensemble 5.86% 2930



Cost of Ensembles

Increased Load

Slow Changing

» Solutions:
» Caching and Batching

» Load-shedding correction policy can
prioritize frameworks

Stragglers
» e.g., framework fails to meet SLO

» Solution: Anytime predictions

» Correction policy must render
predictions with missing inputs

» e.g., built-in correction policies
substitute expected value




Anytime Predictions
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Evaluation of Throughput Under Heavy Load
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Takeaway: Clipper is able to gracefully degrade accuracy to
maintain availability under heavy load.



Coarsening + Anytime Predictions
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Conclusion
Clipper sits between applications and ML frameworks to

Clipper

» to simplifying deployment

» bound latency and increase throughput
» and enable real-time learning and personalization
across machine learning frameworks
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Ongoing & Future Research Directions

» Serving and updating RL models

» Bandit techniques in correction policies
» Collaboration with MSR

» Splitting inference across the cloud and the client to reduce latency
and bandwidth requirements

» Secure model evaluation on the client (model DRM)



