
Joseph E. Gonzalez

Asst. Professor, UC Berkeley

jegonzal@cs.berkeley.edu

Co-founder, GraphLab (now Turi Inc.)

joseph@dato.com

what happens after learning?

Prediction Serving

Prediction Serving

Learning Systems

Graph Systems
Graph

Frames

Time Series
Frequency Domain
Analytics Systems

Cluster Management
Multi Task Learning
for Job Scheduling

Cross-Cloud
Perf. Estimation

Outline

Daniel
Crankshaw

Xin
Wang

Michael
Franklin

Ion
Stoica

Active
Collaborators

Big

Data

Big Model

Training

Learning

Timescale: minutes to days

Systems: offline and batch optimized

Heavily studied ... major focus of the AMPLab

Big

Data

Big Model

Training

Application

Decision

Query

?

Learning Inference

Big

Data

Trainin

g

Learning
Inference

Big Model
Application

Decision

Query

Timescale: ~10 milliseconds

Systems: online and latency optimized

Less studied …

Big

Data

Big Model

Training

Application

Decision

Query

Learning Inference

Feedback

Big

Data

Training

Application

Decision

Learning Inference

Feedback

Timescale: hours to weeks

Systems: combination of systems

Less studied …

Big

Data

Big Model

Training

Application

Decision

Query

Learning Inference

Feedback

Responsive

(~10ms)
Adaptive

(~1 seconds)

Responsive

(~10ms)
Adaptive

(~1 seconds)

VELOX Model Serving System [CIDR’15]
Daniel Crankshaw, Peter Bailis, Haoyuan Li, Zhao Zhang,
Joseph Gonzalez, Michael J. Franklin, Ali Ghodsi, and Michael I.
Jordan

Key Insight:

Decompose models into fast and slow changing components

Big

Data
Training

Application

Decision

Query

Learning Inference

Feedback

Big

Data
Training

Application

Decision

Query

Learning Inference

Feedback
Slow

Slow Changing

Model

Fast Changing

Model

Hybrid Offline + Online Learning

Update the user weights online:
• Simple to train + more robust model
• Address rapidly changing user statistics

Update feature functions offline using batch solvers
• Leverage high-throughput systems (Tensor Flow)
• Exploit slow change in population statistics

Common modeling structure

Items

U
s
e

rs

Matrix

Factorization

Input

Deep

Learning

Ensemble

Methods

Velox Online Learning for Recommendations
(Simulated News Rec.)

0

0.1

0.2

0.3

0.4

0.5

0.6

0 10 20 30

E
rr

o
r

Examples

Partial Updates: 0.4 ms

Retraining: 7.1 seconds

>4 orders-of-magnitude

faster adaptation

Big

Data
Training

Application

Decision

Query

Learning Inference

Feedback
Slow

Slow Changing

Model

Fast Changing

Model per user

Big

Data Training

Application

Decision

Query

Learning Inference

Feedback
Slow

Slow Changing

Model

Fast Changing

Model per user

Velox

B

D

A
STachyon

Mesos

Spark

HDFS, S3, …

Spark

Streaming
Spark

SQL

BlinkDB

GraphX

Graph

Frames

MLLib

Keystone

ML

Learning

erke ley

ata

na ly t i cs

tack

VELOX: the Missing Piece of BDAS

B

D

A
S

erke ley

ata

na ly t i cs

tackTachyon

Mesos

Spark

HDFS, S3, …

Spark

Streaming
Spark

SQL

BlinkDB

GraphX

Graph

Frames

MLLib

Keystone

ML

Learning
Management

and Serving

VELOX: the Missing Piece of BDAS

Velox

B

D

A
S

erke ley

ata

na ly t i cs

tack
Mesos

HDFS, S3, …

Spark

Streaming
Spark

SQL

BlinkDB

GraphX

Graph

Frames

Learning
Management

and Serving

VELOX: the Missing Piece of BDAS

Velox

Tachyon

Spark

MLLib

Keystone

ML

VELOX Architecture

Spark

MLLib

Single JVM Instance

Velox

Keystone ML

Content

Rec.

Fraud

Detection

VELOX Architecture

Spark

MLLib

Single JVM Instance

Velox

Keystone ML

Content

Rec.

Fraud

Detection

Personal

Asst.

Robotic

Control

Machine

Translation

Create

VW

Caffe

VELOX as a Middle Layer Arch?

SparkMLLib

Velox

Keystone ML

Content

Rec.

Fraud

Detection

Personal

Asst.

Robotic

Control

Machine

Translation

Create VW
Caffe

Generalize ?

Clipper Generalizes Velox Across ML Frameworks

Clipper

Content

Rec.

Fraud

Detection

Personal

Asst.

Robotic

Control

Machine

Translation

Create VW
Caffe

Clipper

Create VWCaffeKey Insight:

The challenges of prediction serving can be addressed between

end-user applications and machine learning frameworks

As a result, Clipper is able to:

 hide complexity
 by providing a common prediction interface

 bound latency and maximize throughput
 through approximate caching and adaptive batching

 enable robust online learning and personalization
 through generalized split-model correction policies

without modifying machine learning frameworks or end-user applications

Clipper Design Goals

Low and bounded latency predictions
 interactive applications need reliable latency objectives

Up-to-date and personalized predictions across models and
frameworks

 generalize the split model decomposition

Optimize throughput for performance under heavy load
 single query can trigger many predictions

Simplify deployment
 serve models using the original code and systems

Clipper Architecture

Clipper

Content

Rec.

Fraud

Detection

Personal

Asst.

Robotic

Control

Machine

Translation

VW
Caffe

Create

Clipper Architecture

Clipper

Applications

Predict ObserveRPC/REST Interface

VW
Caffe

Create

Clipper Architecture

Clipper

Caffe

Applications

ust

Predict ObserveRPC/REST Interface

Model Wrapper (MW) MW MW MW

RPC RPC RPC RPC

Clipper Architecture

Clipper

Caffe

Applications

Predict ObserveRPC/REST Interface

Model Wrapper (MW) MW MW MW

RPC RPC RPC RPC

Model Abstraction Layer
Provide a common interface to models
while bounding latency and
maximizing throughput.

Correction Layer
Improve accuracy through ensembles,
online learning and personalization

Clipper Architecture

Clipper

Caffe

Applications

Predict ObserveRPC/REST Interface

Model Wrapper (MW) MW MW MW

RPC RPC RPC RPC

Correction LayerCorrection Policy

Model Abstraction Layer
Approximate Caching

Adaptive Batching

Caffe

Correction LayerCorrection Policy

Provides a unified generic prediction API across frameworks

 Reduce Latency  Approximate Caching

 Increase Throughput Adaptive Batching

 Simplify Deployment RPC + Model Wrapper

Model Wrapper (MW) MW MW MW

RPC RPC RPC RPC

Model Abstraction Layer
Approximate Caching

Adaptive Batching

Approximate Caching

Adaptive Batching

Model Wrapper (MW) MW MW MW

Caffe

Correction LayerCorrection Policy

Model Wrapper (MW) MW MW MW

RPC RPC RPC RPC

Model Abstraction Layer
Approximate Caching

Adaptive Batching

Provide a common interface to models while bounding

Correction LayerCorrection Policy

Model Wrapper (MW)

RPC

Caffe

MW

RPC

MW

RPC

MW

RPC

Model Abstraction Layer
Approximate Caching

Adaptive Batching

Common Interface  Simplifies Deployment:

 Evaluate models using original code & systems

 Models run in separate processes
 Resource isolation

Correction LayerCorrection Policy

Model Abstraction Layer
Approximate Caching

Adaptive Batching

Model Wrapper (MW)

RPC

Caffe

MW

RPC

MW

RPC

MW

RPC

MW

RPC

MW

RPC

Common Interface  Simplifies Deployment:

 Evaluate models using original code & systems

 Models run in separate processes
 Resource isolation

 Scale-out

Problem: frameworks optimized for batch processing not latency

A single
page load
may generate
many queries

Adaptive Batching to Improve Throughput

 Optimal batch depends on:
 hardware configuration

 model and framework

 system load

Clipper Solution:

be as slow as allowed…

 Application specifies latency objective

 Clipper uses TCP-like tuning algorithm to
increase latency up to the objective

 Why batching helps:

Hardware
Acceleration

Helps amortize
system overhead

T
h
ro

u
g

h
p

u
t

(Q
u
e
rie

s
 P

e
r S

e
c
o
n
d
)

L
a
te

n
c
y
 (

m
s
)

Batch Sizes (Queries)

Tensor Flow Conv. Net (GPU)

Latency

Deadline

Optimal Batch Size

Comparison to TensorFlow Serving

Takeaway: Clipper is able to match the average latency of

TensorFlow Serving while reducing tail latency (2x) and

improving throughput (2x)

Approximate Caching to Reduce Latency

Clipper Solution: Approximate Caching

apply locality sensitive hash functions

 Opportunity for caching

 Need for approximation

Popular items may
be evaluated
frequently

High Dimensional and continuous valued
queries have low cache hit rate.

Bag-of-Words

Model
Images

?

?

Cache Hit

Cache Miss

?
Cache Hit

Error

Clipper Architecture

Clipper

Caffe

Applications

Predict ObserveRPC/REST Interface

Model Wrapper (MW) MW MW MW

RPC RPC RPC RPC

Correction LayerCorrection Policy

Model Abstraction Layer
Approximate Caching

Adaptive Batching

Goal:

Maximize accuracy through ensembles, online learning, and
personalization

Generalize the split-model insight from Velox to achieve:

 robust predictions by combining multiple models &
frameworks

 online learning and personalization by correcting and
personalizing predictions in response to feedback

Clipper

Correction LayerCorrection Policy

Big

Data

Application

Learning Inference

Feedback
Slow

Slow Changing

Model

Fast Changing

User Model

Velox

C
a

ff
e

Big

Data

Application

Learning Inference

Feedback
Slow

Slow Changing

Model

Fast Changing

User Model

Clipper

C
a

ff
e

Slow Changing

Model

Fast Changing

User Model

Clipper

Correction Policy

Improves prediction accuaray by:

 Incorporating real-time feedback

 Managing personalization

 Combine models & frameworks
 enables frameworks to compete

Improved Prediction Accuracy (ImageNet)

System Model Error Rate #Errors

Caffe VGG 13.05% 6525

Caffe LeNet 11.52% 5760

Caffe ResNet 9.02% 4512

TensorFlow Inception v3 6.18% 3088

sequence of pre-trained state-of-the-art models

Improved Prediction Accuracy

System Model Error Rate #Errors

Caffe VGG 13.05% 6525

Caffe LeNet 11.52% 5760

Caffe ResNet 9.02% 4512

TensorFlow Inception v3 6.18% 3088

Clipper Ensemble 5.86% 2930

5.2% relative improvement

in prediction accuracy!

Increased Load

 Solutions:
 Caching and Batching

 Load-shedding correction policy can
prioritize frameworks

Stragglers
 e.g., framework fails to meet SLO

 Solution: Anytime predictions
 Correction policy must render

predictions with missing inputs

 e.g., built-in correction policies
substitute expected value

C
a

ff
e

Slow Changing

Model

Fast Changing

User Model

Clipper

Cost of Ensembles

?

C
a

ff
e

Slow Changing

Model

Fast Changing

User Model

Clipper

Anytime Predictions

Application

20ms ✓

✓

C
a

ff
e

Slow Changing

Model

Fast Changing

User Model

Anytime Predictions

+ +

✓ ✓

Evaluation of Throughput Under Heavy Load
A

cc
u

ra
cy

Throughput (queries per second)

Takeaway: Clipper is able to gracefully degrade accuracy to

maintain availability under heavy load.

N
o

 C
o

arsen
in

g

Coarsening + Anytime Predictions

O
ve

rl
y

C
o

ar
se

n
ed

More Features
Approx. Expectation

B
e

tter

Best

Coarser Hash

Conclusion

Clipper

Create VWCaffe

Clipper sits between applications and ML frameworks to

 to simplifying deployment

 bound latency and increase throughput

 and enable real-time learning and personalization

across machine learning frameworks

Big

Data

Model

Training

Application

Decision

Query

Feedback

VELOX

Clipper

Create
VWCaffe

Ongoing & Future Research Directions

 Serving and updating RL models

 Bandit techniques in correction policies
 Collaboration with MSR

 Splitting inference across the cloud and the client to reduce latency
and bandwidth requirements

 Secure model evaluation on the client (model DRM)

