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what happens after learning?

Prediction Serving
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Timescale: minutes to days

Systems: offline and batch optimized

Heavily studied ... major focus of the AMPLab
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Systems: combination of systems

Less studied …
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Responsive

(~10ms)
Adaptive

(~1 seconds)

VELOX Model Serving System [CIDR’15]
Daniel Crankshaw, Peter Bailis, Haoyuan Li, Zhao Zhang,  
Joseph Gonzalez, Michael J. Franklin,  Ali Ghodsi, and Michael I. 
Jordan

Key Insight:

Decompose models into fast and slow changing components
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Hybrid Offline + Online Learning

Update the user weights online:
• Simple to train + more robust model
• Address rapidly changing user statistics

Update feature functions offline using batch solvers
• Leverage high-throughput systems (Tensor Flow)
• Exploit slow change in population statistics
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Velox Online Learning for Recommendations
(Simulated News Rec.)
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>4 orders-of-magnitude 

faster adaptation
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VELOX Architecture
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VELOX as a Middle Layer Arch?
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Clipper Generalizes Velox Across ML Frameworks
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Clipper

Create VWCaffeKey Insight:

The challenges of prediction serving can be addressed between 

end-user applications and machine learning frameworks

As a result, Clipper is able to:

 hide complexity
 by providing a common prediction interface 

 bound latency and maximize throughput
 through approximate caching and adaptive batching

 enable robust online learning and personalization
 through generalized split-model correction policies

without modifying machine learning frameworks or end-user applications



Clipper Design Goals

Low and bounded latency predictions
 interactive applications need reliable latency objectives

Up-to-date and personalized predictions across models and 
frameworks

 generalize the split model decomposition

Optimize throughput for performance under heavy load
 single query can trigger many predictions

Simplify deployment 
 serve models using the original code and systems
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Clipper Architecture
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Clipper Architecture

Clipper

Caffe

Applications

Predict ObserveRPC/REST Interface

Model Wrapper (MW) MW MW MW

RPC RPC RPC RPC

Model Abstraction Layer
Provide a common interface to models
while bounding latency and 
maximizing throughput.

Correction Layer
Improve accuracy through ensembles,
online learning and personalization
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Caffe

Correction LayerCorrection Policy

Provides a unified generic prediction API across frameworks

 Reduce Latency  Approximate Caching

 Increase Throughput Adaptive Batching

 Simplify Deployment RPC + Model Wrapper

Model Wrapper (MW) MW MW MW

RPC RPC RPC RPC

Model Abstraction Layer
Approximate Caching

Adaptive Batching
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Caffe

Correction LayerCorrection Policy

Model Wrapper (MW) MW MW MW

RPC RPC RPC RPC

Model Abstraction Layer
Approximate Caching

Adaptive Batching

Provide a common interface to models while bounding 
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Common Interface  Simplifies Deployment: 

 Evaluate models using original code & systems

 Models run in separate processes
 Resource isolation



Correction LayerCorrection Policy

Model Abstraction Layer
Approximate Caching

Adaptive Batching
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Common Interface  Simplifies Deployment: 

 Evaluate models using original code & systems

 Models run in separate processes
 Resource isolation

 Scale-out

Problem: frameworks optimized for batch processing not latency



A single 
page load 
may generate
many queries

Adaptive Batching to Improve Throughput

 Optimal batch depends on:
 hardware configuration

 model and framework

 system load

Clipper Solution:

be as slow as allowed…

 Application specifies latency objective

 Clipper uses TCP-like tuning algorithm to 
increase latency up to the objective

 Why batching helps:

Hardware
Acceleration

Helps amortize
system overhead
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Comparison to TensorFlow Serving

Takeaway: Clipper is able to match the average latency of 

TensorFlow Serving while reducing tail latency (2x) and 

improving throughput (2x)



Approximate Caching to Reduce Latency

Clipper Solution: Approximate Caching

apply locality sensitive hash functions

 Opportunity for caching

 Need for approximation

Popular items may 
be evaluated
frequently

High Dimensional and continuous valued 
queries have low cache hit rate.

Bag-of-Words 

Model
Images

?

?

Cache Hit

Cache Miss

?
Cache Hit

Error
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Goal:

Maximize accuracy through ensembles, online learning, and 
personalization

Generalize the split-model insight from Velox to achieve:

 robust predictions by combining multiple models & 
frameworks

 online learning and personalization by correcting and 
personalizing predictions in response to feedback

Clipper

Correction LayerCorrection Policy
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Correction Policy

Improves prediction accuaray by:

 Incorporating real-time feedback

 Managing personalization

 Combine models & frameworks
 enables frameworks to compete



Improved Prediction Accuracy (ImageNet)

System Model Error Rate #Errors

Caffe VGG 13.05% 6525

Caffe LeNet 11.52% 5760

Caffe ResNet 9.02% 4512

TensorFlow Inception v3 6.18% 3088

sequence of pre-trained state-of-the-art models 



Improved Prediction Accuracy

System Model Error Rate #Errors

Caffe VGG 13.05% 6525

Caffe LeNet 11.52% 5760

Caffe ResNet 9.02% 4512

TensorFlow Inception v3 6.18% 3088

Clipper Ensemble 5.86% 2930

5.2% relative improvement 

in prediction accuracy!



Increased Load

 Solutions: 
 Caching and Batching

 Load-shedding correction policy can 
prioritize frameworks

Stragglers
 e.g., framework fails to meet SLO

 Solution: Anytime predictions
 Correction policy must render 

predictions with missing inputs

 e.g., built-in correction policies 
substitute expected value
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Evaluation of Throughput Under Heavy Load
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Takeaway: Clipper is able to gracefully degrade accuracy to 

maintain availability under heavy load.
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Conclusion

Clipper

Create VWCaffe

Clipper sits between applications and ML frameworks to

 to simplifying deployment

 bound latency and increase throughput

 and enable real-time learning and personalization

across machine learning frameworks
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Ongoing & Future Research Directions

 Serving and updating RL models

 Bandit techniques in correction policies
 Collaboration with MSR 

 Splitting inference across the cloud and the client to reduce latency 
and bandwidth requirements

 Secure model evaluation on the client (model DRM)


