

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Nordic nrf51-sdk

ARM mbed

micro:bit runtime

Block
Editor

Microsoft

Touch
Develop

Microsoft

PXT

Microsoft

Java
Script

Code

Kingdoms

C /
C++

ARM

mbed

Python

PSF

+friends

runtime

Nordic nrf51-sdk

ARM mbed

micro:bit runtime

Bluetooth Profile

Applications

Device DriversScheduler

Message Bus Managed Types

Nordic nrf51-sdk

ARM mbed

micro:bit runtime

Bluetooth Profile

Applications

Device DriversScheduler

Message Bus Managed Types

Managed Types

 C is a great language for building software that works with hardware…
 as it gives a lot of power to its users.

 Higher level languages are great for building applications
 as they make it easy, robust and simple for the user.

Memory Management is a key distinction. e.g. take some classic C code:

void

doSomething(char *text)

{

…

}

char *s = malloc(10);

strcpy(s, “hello”);

doSomething(s);

who is responsible for

freeing the data?

Managed Types

 Modern high level languages assume this is handled by their runtime - so we do!

 Commonly used data types (strings, images, packets) all have their own data type

 Uses reference counting to track when the data is used (simpler, but similar principle to JVM, CLR)

 Transparent to users and high level languages. Feels like a higher level language…

void

doSomething(ManagedString text)

{

…

}

ManagedString s = “hello”;

doSomething(s);

Managed Types

 Higher level languages can then more easily map onto the runtime.

 It also provides a clean, easy to use API for C/C++ users:

ManagedString s, t, message, answer;

s = “hello”;

t = “world”;

message = s + “ “ + t;

answer = “The answer is:” + 42;

if (message == answer)

…

Nordic nrf51-sdk

ARM mbed

micro:bit runtime

Bluetooth Profile

Applications

Device DriversScheduler

Message Bus Managed Types

Eventing and the Message Bus

 Many languages support the concept of events.

 This is also something that kids find familiar from visual languages such as Scratch.

 And something that lends itself to embedded systems too… e.g.

Eventing and the Message Bus

 The micro:bit runtime contains a simple yet powerful extensible eventing model

 Events are themselves a very simple managed type.

 Contain two numeric values: a source and a value.

 Every component in the runtime has a unique ID – the source of an event.

 Each component can then create ANY value with that ID as a source at any time:

MicroBitEvent e(MICROBIT_ID_GESTURE, MICROBIT_ACCELEROMETER_EVT_SHAKE);

#define MICROBIT_ID_GESTURE 27

#define MICROBIT_ACCELEROMETER_EVT_SHAKE 11

Eventing and the Message Bus

 The MessageBus then delivers events to any code that registers an interest.

 Functions can be either plain C functions, or C++ methods.

 Wildcard values can also be used to capture lots of events at once.

 There’s also a matching ignore function in case you want to stop receiving events.

void onShake(MicroBitEvent e)

{

// do something cool here!

}

int main()

{

uBit.messageBus.listen(MICROBIT_ID_GESTURE, MICROBIT_ACCELEROMETER_EVT_SHAKE, onShake);

}

Eventing and the Message Bus

 The MessageBus then delivers events to any code that registers an interest.

 Functions can be either plain C functions, or C++ methods.

 Wildcard values can also be used to capture lots of events at once.

 There’s also a matching ignore function in case you want to stop receiving events.

void onGesture(MicroBitEvent e)

{

if (e.value == MICROBIT_ACCELEROMETER_EVT_SHAKE) …

}

int main()

{

uBit.messageBus.listen(MICROBIT_ID_GESTURE, MICROBIT_EVT_ANY, onGesture);

}

Eventing and the Message Bus

 The MessageBus then delivers events to any code that registers an interest.

 Functions can be either plain C functions, or C++ methods.

 Wildcard values can also be used to capture lots of events at once.

 There’s also a matching ignore function in case you want to stop receiving events…

void onEvent(MicroBitEvent e)

{

if (e.source == MICROBIT_ID_GESTURE) …

}

int main()

{

uBit.messageBus.listen(MICROBIT_ID_ANY, MICROBIT_EVT_ANY, onEvent);

}

Eventing and the Message Bus

 The runtime generates a range of events application can build on.
 Users can also define their own events easily… just numbers!

#define MICROBIT_ACCELEROMETER_EVT_TILT_UP 1

#define MICROBIT_ACCELEROMETER_EVT_TILT_DOWN 2

#define MICROBIT_ACCELEROMETER_EVT_TILT_LEFT 3

#define MICROBIT_ACCELEROMETER_EVT_TILT_RIGHT 4

#define MICROBIT_ACCELEROMETER_EVT_FACE_UP 5

#define MICROBIT_ACCELEROMETER_EVT_FACE_DOWN 6

#define MICROBIT_ACCELEROMETER_EVT_FREEFALL 7

#define MICROBIT_ACCELEROMETER_EVT_SHAKE 11

#define MICROBIT_BUTTON_EVT_DOWN 1

#define MICROBIT_BUTTON_EVT_UP 2

#define MICROBIT_BUTTON_EVT_CLICK 3

#define MICROBIT_BUTTON_EVT_LONG_CLICK 4

#define MICROBIT_BUTTON_EVT_HOLD 5

#define MICROBIT_BUTTON_EVT_DOUBLE_CLICK 6

#define MICROBIT_RADIO_EVT_DATAGRAM 1

Nordic nrf51-sdk

ARM mbed

micro:bit runtime

Bluetooth Profile

Applications

Device DriversScheduler

Message Bus Managed Types

Fiber Scheduler: Providing Concurrent behaviour…

…or at least apparently concurrent behaviour!

 Take this simple example again. What behaviour would you expect?

 Given that show string will scroll the given text on the 5x5 matrix display…

Fiber Scheduler: Providing Concurrent behaviour…

 Fibers can be created at any time, and execute independently

 By design, a non pre-emptive scheduler to reduce potential race conditions.

 Fibers can sleep, or block on events on the MessageBus

 Anytime there’s nothing to do… processor enters a power efficient sleep

void doSomething()

{

while(1)

{

uBit.display.print(‘A’);

uBit.sleep(100);

}

}

void doSomethingElse()

{

while(1)

{

uBit.display.print(‘B’);

uBit.sleep(100);

}

}

Fiber Scheduler: Providing Concurrent behaviour…

 A RAM optimised thread scheduler for Cortex processors.

 We adopt a stack duplication approach

 Keeps RAM cost of fibers low, at the expense of CPU time

 Each fiber typically costs ~200 bytes.

 Event handlers (by default) run in their own fiber*

 Effectively decoupling kids’ code from nasty interrupt context code.

 Functions (e.g. scroll text) can block the calling fiber until the task completes…

 …and event handlers can safely execute users code without risk of locking out the CPU…

 …so our blocks program can simply and efficiently translate to this:

* Act ually, t his is a f ib. We use a novel technique called f ork-on-block to only cr eat e fiber sif the code inside an event handler at tempt s t o blocks t he fiber … but that’s for anot her day!

Fiber Scheduler: Providing Concurrent behaviour…
void onButtonA()

{

uBit.display.scroll(“hello”);

}

void onButtonB()

{

uBit.display.scroll(“goodbye”);

}

// Then in your main program...

uBit.messageBus.listen(MICROBIT_ID_BUTTON_A, MICROBIT_BUTTON_EVT_CLICK, onButtonA);

uBit.messageBus.listen(MICROBIT_ID_BUTTON_B, MICROBIT_BUTTON_EVT_CLICK, onButtonB);

Nordic nrf51-sdk

ARM mbed

micro:bit runtime

Bluetooth Profile

Applications

Device DriversScheduler

Message Bus Managed Types

Device Drivers
 Each hardware component is supported by a corresponding C++ software

component:

 MicroBitAccelerometer

 MicroBitButton

 MicroBitMultiButton

 MicroBitCompass

 MicroBitDisplay

 MicroBitIO

 MicroBitLightSensor

 MicroBitRadio

 MicroBitSerial

 MicroBitStorage

 MicroBitThermometer

Device Drivers
 Complexity of fine grained initialization too great for most high level languages…

 So we wrap the common set of components together:

MicroBit uBit;

int main()

{

// initialise runtime

uBit.init();

// code!

uBit.display.scroll(“Hello World!”);

}

Memory Footprint
 micro:bit has 16Mhz Nordic nrf51822 CPU (32 bit Cortex M0)

 256 KB FLASH memory, 16KB SRAM…

micro:bit runtime

Nordic

Soft Device

BLE Bootloader 16 KB

98 KB

FLASH MEMORY SRAM MEMORY

Nordic

Soft Device

stack 2 KB

8 KB

ARMmbed/Nordic-sdk 2 KB

1.5 KB

User data 2.5 KB

micro:bit runtime

ARMmbed/Nordic-sdk 20 KB

~50 KB

User data ~72 KB

Power Efficiency

http://www.reuk.co.uk/wordpress/microbit-battery-capacity/

Nordic nrf51-sdk

ARM mbed

micro:bit runtime

Bluetooth Profile

Applications

Device DriversScheduler

Message Bus Managed Types

Bluetooth Profile
 Each driver component also mapped as RESTful Bluetooth API…

 MicroBitAccelerometerService

 MicroBitButtonService

 MicroBitMagnetometerService

 MicroBitLEDService

 MicroBitIOPinService

 MicroBitTemperatureService

 MicroBitEventService

 UARTService

 DeviceFirmwareUpdate

 Keyboard HID (coming soon)

 iBeacon/Eddystone (coming soon)

Bluetooth Profile

© Martin Woolley Bluetooth SIG

http://bluetooth-mdw.blogspot.co.uk/p/bbc-microbit.html
https://play.google.com/store/apps/details?id=com.bluetooth.mwoolley.microbitbledemo

MicroBitRadio
Simple, raw packet communications…

MicroBitRadio

http://lancaster-university.github.io/microbit-docs/

https://developer.mbed.org/platforms/Microbit/

https://codethemicrobit.com/

https://www.microbit.co.uk/

@microbitruntime lancaster-university/microbit-dal

Wanna go

play?

