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Abstract—Key-exchange protocols such as TLS, SSH, IPsec,
and ZRTP are highly configurable, with typical deployments
supporting multiple protocol versions, cryptographic algorithms
and parameters. In the first messages of the protocol, the peers
negotiate one specific combination: the protocol mode, based on
their local configurations. With few notable exceptions, most
cryptographic analyses of configurable protocols consider a single
mode at a time. In contrast, downgrade attacks, where a network
adversary forces peers to use a mode weaker than the one they
would normally negotiate, are a recurrent problem in practice.

How to support configurability while at the same time guar-
anteeing the preferred mode is negotiated? We set to answer this
question by designing a formal framework to study downgrade
resilience and its relation to other security properties of key-
exchange protocols. First, we study the causes of downgrade
attacks by dissecting and classifying known and novel attacks
against widely used protocols. Second, we survey what is known
about the downgrade resilience of existing standards. Third, we
combine these findings to define downgrade security, and analyze
the conditions under which several protocols achieve it. Finally,
we discuss patterns that guarantee downgrade security by design,
and explain how to use them to strengthen the security of existing
protocols, including a newly proposed draft of TLS 1.3.

I. INTRODUCTION

Popular protocols such as TLS, SSH and IPSec as used

in practice do not fit a simple textbook definition of a key-

exchange protocol, where the state machine, cryptographic

algorithms, parameters and message formats are all fixed in

advance. Rather, these modern protocols feature cryptographic

agility, which provides for configurable selection of multiple

protocol and cipher modes, so that the key exchange actually

executed between two peers depends on a negotiation phase

embedded in the exchange.

Agility has proven important in securing real-world protocol

implementations. For example, in the wake of recent vulnera-

bility disclosures in TLS [2, 3, 4, 10, 23], network operators

reacted by updating client and server configurations to disable

weak algorithms and protocol versions. Moreover, experience

shows that when sufficient agility is not present within a

single protocol, application developers construct their own

ad hoc negotiation mechanisms, for example, by sequentially

attempting connections with different versions of a protocol

and “falling back” to the best one supported [39].

Unfortunately, support for algorithm agility opens up op-

portunities for downgrade attacks, where an active network

adversary interferes with the negotiation, causing honest peers

to complete a key exchange, albeit using a mode that is weaker
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Fig. 1: SIGMA-N: Basic SIGMA [30] with group negotiation

than the one they would have used on their own. Such attacks

have been identified in a number of protocols, most famously

in the early versions of the SSL protocol [43] and even in

recent versions of TLS [2, 39].

Surprisingly, there has been relatively little formal work

around the security of negotiation in modern cryptographic

protocols. Several recent works formally prove the security of

different aspects of TLS and SSH. Some [25, 31] only model

a single mode at a time. Some [12, 13] do model negotiation

of weak algorithms, but do not guarantee negotiation of the

preferred mode. Some others [9, 21] consider only interactions

where both parties have secure configurations. For this reasons,

all of these works overlook certain downgrade attacks that

occur when one party supports an insecure mode.

This is concerning because negotiation has proven to be

fertile ground for attacks, e.g. [2, 10, 43], and because recent

Internet-wide scans have revealed the prevalence of hosts

supporting insecure protocol modes [2, 5, 42].

In this work we aim to address this situation by system-

atically investigating the problem of downgrade resilience in

cryptographic protocols.

A. Motivating example

We begin with a simple motivating example: we adapt

the SIGMA protocol of Krawczyk [30] by adding a naı̈ve

extension intended to negotiate Diffie-Hellman groups: In the

first message, A proposes a list of groups it supports; in the

second message, B indicates which of these groups should be
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Fig. 2: Man-in-the-Middle downgrade attack on SIGMA-N

used in the exchange. The modified protocol appears in Fig. 1.

The goal of the protocol is to compute session keys (km, ks).

Under normal circumstances, the protocol succeeds in cor-

rectly selecting a group. However, consider a scenario where

both participants support both strong and weak groups. B’s

signature authenticates the chosen group, but not A’s proposal.

This leads to a downgrade attack (see Fig. 2) similar to the

Logjam attack on TLS [2], where an attacker can break the

session keys at leisure and compromise the connection.

Protocol designers have adopted a number of techniques

to prevent such downgrade attacks. Based on a review of

deployed protocols, we identify three common patterns. In

the first, exemplified by SSH, protocol designers assume the

existence of strong signing keys shared between the two

parties, and use these keys to authenticate all negotiation

messages, either at the time they are transmitted, or after

the fact. In a second pattern, exemplified by TLS, designers

transmit unauthenticated protocol messages, perform a key

exchange, and then subsequently use the resulting shared

secrets to retroactively authenticate the negotiation messages.

The final approach relies on whitelisting certain modes, and is

best exemplified by Google’s TLS False Start proposal [32],

which is being codified as part of TLS 1.3 [40].

Each approach has various advantages and disadvantages.

The devil is often in the details: each protocol is sensitive

to the precise nature of the implementation, e.g. the inputs of

authentication functions, or the specifics of what a valid mode

is for whitelisting. As a concrete example, modern versions of

TLS-DHE fail to sign the identity of the ciphersuite chosen by

a server, leading to cross-protocol attacks [2, 35]. Similarly,

TLS False Start relies solely on ciphersuite identifier (rather

than more detailed information such as key strength) in its

selection of which modes to whitelist, which converts the

online attack of Adrian et al. [2] into an offline one.

B. Overview of our approach

We give a definition and a theorem for downgrade resilience

that model the following intuitive and desirable property for

deployed key-exchange protocols:

To prevent an attack on a particular protocol mode,
it is sufficient to deactivate the configurations that
lead to its negotiation.

Our work builds on the definitions of Bhargavan et al. [13],

used to model security in MITLS, a reference implementation

of the TLS standard. A fundamental difference between these

definitions and previous work is that they attempt to model

entire deployed protocols. This requires a definition of security

cognizant of the fact that some aspects (modes) of the protocol

may be insecure. To deal with this, the definitions of [13]

incorporate predicates determining modes that are expected

to provide security guarantees, e.g., key indistinguishability.

This approach allows to define security when secure modes

are chosen, yet tolerates the existence of insecure modes.
One limitation of these definitions is that they do not take

into account how modes are chosen. In a protocol secure in

the MITLS framework, two parties under adversarial influence

may arrive at an insecure mode even when otherwise they

would use a secure mode. In theory each party can detect

and react to the negotiation of an insecure mode, e.g., by

terminating the protocol execution. Nonetheless, this does

not guarantee that the preferred common mode is selected.

Our solution is to incorporate downgrade resilience in our

security definitions, to ensure that an adversary cannot force

the selection of another mode than the preferred one.
We consider protocols between an Initiator and a Responder.

These two parties each have their own local static configura-
tions, expressing their preferences and their intent to negoti-

ate a shared protocol mode. To define downgrade resilience

formally, we introduce a downgrade protection predicate DP
that operates on pairs of configurations (analogous to MITLS

predicates on modes), and that identifies pairs of configurations

from which we expect downgrade resilience. We also introduce

a function Nego that maps two opposite-role configurations to

the protocol mode that should be negotiated in the absence

of active adversaries. Intuitively, our definition says that a

protocol is downgrade secure if two peers starting from config-

urations satisfying DP can only negotiate the mode determined

by Nego, even in the presence of an active adversary.
By way of example, a specific instantiation of Nego for the

TLS protocol might determine that two peer configurations

should result in the negotiation of TLS 1.2 in combination with

a ciphersuite such as DHE-RSA-AES256-GCM-SHA384
with a 2048-bit Diffie-Hellman modulus. However, if a server

supports an insecure mode, such as a DHE-EXPORT cipher-

suite, an adversary might force the pair to downgrade to this

mode [2]. This shows that without additional countermeasures,

TLS 1.2 does not meet our definition. On the other hand,

protocols with just one possible mode are trivially secure. The

challenge we address in this paper is to consider agile proto-

cols that support multiple modes (e.g., ciphersuites, versions).
To apply our definition to real-world protocols, we adopt

the following approach. Rather than analyzing a protocol in

its entirety, we first extract a core negotiation sub-protocol,

which captures the main downgrade-protection mechanisms

of the larger protocol. We next prove that this sub-protocol
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is complete for downgrade security, in the sense that an

adversary that succeeds in downgrading the full protocol will

also succeed in downgrading the sub-protocol.

This technique of lifting security from the sub-protocol to

the main protocol was previously employed by Bergsma et al.

[9] to prove multi-ciphersuite security.

In our analysis we manually extract sub-protocols that cover

specific families of modes, e.g., signature-based modes or pre-

shared key modes, while some of our attacks are cross-family

attacks. Proving the absence of cross-family attacks requires

either to consider more complex sub-protocols that encompass

several families, or to study families independently and prove

a composition theorem similar to that of Bergsma et al. [9].

Our work is a stepping stone in this direction, and our results

are readily applicable in situations where peer configurations

are from the same family.

C. Summary of our results

Our primary contribution is a novel downgrade security def-

inition for key-exchange protocols. We devise a methodology

to analyze the downgrade security of a complex protocol by

abstracting away irrelevant details and studying only the core

negotiation sub-protocol.

We demonstrate the relevance of our definition and the

applicability of our methodology by analyzing the downgrade

security of several exemplary real-world protocols, namely

TLS, SSH, IPSec and ZRTP. We do so by taking in their

standard specifications and extracting appropriate core ne-

gotiation sub-protocols. Our analysis identifies known and

novel attacks on certain configurations, as well as sufficient

conditions under which these protocols achieve downgrade

security. These conditions inform practitioners as to how to

restrict host configurations to best avoid downgrade attacks.

The following are concrete novel contributions:

• We describe new downgrade vulnerabilities on IKEv2

and ZRTP. These vulnerabilities are present in the protocol

standards, but can be avoided by carefully configured imple-

mentations.

• We confirm the conclusion evidenced by recent attacks:

TLS versions up to 1.2 are not generally downgrade secure.

• We prove a downgrade security theorem for SSHv2

with publickey client authentication that is stronger than

previous results. This stems from both peers signing all the

messages that determine the protocol mode.

• We show that although TLS 1.3 Draft 10 [40] includes

a mandatory server-side message for signing the handshake

transcript, this does not prevent downgrades to earlier versions

of TLS or non-preferred groups. Informed by this analysis, we

define and prove two new downgrade protection mechanisms.

The concrete countermeasures, designed jointly with the core

TLS 1.3 working group, have been included in Draft 11.

D. Outline of the paper

In §II we introduce the terminology used throughout and

we provide a primer on security definitions for key exchange

protocols. We formally define downgrade resilience in §III.

In §IV through §VII we apply these definitions to analyze the

security of SSH, IPSec IKE, ZRTP and TLS. We survey related

work in §VIII and conclude in §IX. The full version [14]

includes additional discussions and proofs.

II. MODELING MULTI-MODE KEY-EXCHANGES

Popular key-exchange models [9, 13, 22] focus mainly

on entity authentication and key-indistinguishability [8]. Our

focus lies on considering multi-mode protocols and incorpo-

rating the negotiation of the mode into the security model.

A key exchange protocol Π is a two-party protocol with an

initiator role I and a responder role R (sometimes called client

and server). The adversary interacts with multiple sessions of

the protocol. Each session π maintains variables in a local

state and makes assignments to them before sending or after

receiving a message. We write π.x for the value of variable x
in session π. We will consider the following variables:

π.cfg initial configuration (including the role);

π.uid unique identifier of the session;

π.mode negotiated mode (including long-term identities);

π.key session key;

π.complete flag set when the session completes successfully.

Variables are initialized to ⊥ and each session assigns a

value to each variable only once, typically in the order given

above. The configuration variable π.cfg is assigned when a

session is created and contains other variables, including one

for the session role. We use π.role as shorthand for π.cfg.role
and let I = R, R = I .

An adversary interacts with sessions via queries to oracles.

A query π ← Init(cfg) initializes a session. Recall that cfg
determines role and furthermore, in the setting where we have

symmetric or public keys, cfg will contain handles to those

keys. A query mout ← Send(π,min) sends a message min

to session π, which processes it to update its local state and

output an ongoing message mout. A query k ← Reveal(π)
reveals the session key of π, i.e., returns the value of π.key.

There are several variants of this setting for handling long-term

keys and other authentication mechanisms as well as corrup-

tion settings, and each variant requires different variables and

oracles. As these settings are mostly standard and orthogonal

to our definition, we leave those details unspecified for now

and get back to them in Section IV. Note that our definitions

only become complete once we add the specifics of long-term

keys or other authentication mechanisms.

A. Unique identifiers and partnering

The goal of a key exchange protocol is to establish sessions

between two different parties so that they compute the same

key and agree on the algorithms and authentication setting. We

say that two sessions match when they derive the same session

key [29]. For defining downgrade resilience, we rely on the

weaker notion of partnering, based on unique identifiers—at
most two sessions may assign the same value to uid.

Definition 1 (Partnering): Sessions π and π′ are partnered if

π′.role = π.role (they have opposite roles) and π′.uid = π.uid.

A session π is unpartnered when there is no such π′.
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For example, in TLS, a suitable value for uid is the pair of

nonces sent by the client and server in their hello messages. To

guarantee partnering upon completion, a protocol needs to pro-

tect the messages that influence uid against man-in-the-middle

attacks. As some configurations—in particular those where

entity authentication is optional—do not protect against man-

in-the-middle attacks, our definition depends on a predicate PS
that indicates configurations that provide Partnering Security.

Typically, these configurations demand peer authentication.

Definition 2 (Partnering security): The advantage of adver-

sary A against the partnering security of Π, Adv
partnering
Π, PS (A),

is the probability that, when A interacts with protocol Π, there

is an unpartnered session π such that π.complete = true and

PS(π.cfg) holds.

That is, partnering security requires that sessions that com-

plete with a protected configuration have at least one partner

session that assigns the same value to uid.

B. Multi-mode authentication

We now define authentication for protocols in which long-

term identifiers (e.g. public keys or pre-shared key identifiers)

of peers are themselves negotiated. This is also known as

the post-specified peer setting [18] and the type of authen-

tication (e.g. mutual or bilateral) is determined as part of

the negotiation [22]. We incorporate entity identifiers eidr
for r ∈ {I, R} and authentication type, together with the

negotiated cryptographic algorithms in the mode variable. We

write eidr as shorthand for mode.eidr. As algorithms can

be weak, keys can be compromised, and authentication can

be unilateral, whether participants get guarantees depends

crucially on the outcome of negotiation.

While the predicate PS for partnering is defined over con-

figurations fixed upon creation of a session, our authentication

definition depends on a predicate Auth(mode, r), which holds

when mode is expected to authenticate role r. Authentication

as defined by Lowe [33] guarantees agreement on the variables

of authenticated peers.

Definition 3 (Agreement): A session π agrees with π′ on x
when π.x = π′.x. For agreement on a set X we require that

π agrees with π′ on all x ∈ X .

When defining downgrade resilience, we consider a weaker

notion that guarantees equality once both peers have assigned

a value to x.

Definition 4 (Pre-agreement): A session π pre-agrees with

π′ on x when π.x = π′.x or π′.x = ⊥.

We consider authentication with agreement. Authentication

with pre-agreement can be defined analogously.

Definition 5 (Multi-mode authentication): A session π com-

pletes maliciously for X when π.complete = true but there is

no partnered session π′ matching π that agrees with π on X .

The advantage Advmm-auth
Π, Auth, X(A) of an adversary A against

the multi-mode authentication security with agreement on X
of protocol Π is the probability that, when A interacts with

protocol Π, a session π completes maliciously for X and

Auth(π.mode, π.role) holds.

Let r = π.role. Note that Auth(π.mode, r) typically includes

the requirement that the long term key π.eidr of the peer is

honest. If, as in SIGMA-N, the mode is secure against key-
compromise impersonation attacks [26] then π.eidr need not

be honest. In addition, the predicate Auth models concurrent

mixed-mode authentication. A protocol mode provides mutual-

authentication if Auth(π.mode, r) holds regardless of r. It

provides server-only authentication if only Auth(π.mode, I)
holds, i.e., only clients get guarantees.

Observe that the authentication mode is itself negotiated.

The same long-term keys eidr routinely appear in different

modes and protocols may assign the same key in different

modes. Agreement on mode and other variables may be

critical for higher-level protocols; mode may include record

algorithms and using the same keys with different algorithms

may lead to agile security problems. In any case it contains the

entity identifiers that should be in agreement to avoid identity

confusion attacks [20]. As we will see, protocols need to have

sufficient downgrade resilience to guarantee that the preferred

authentication mode is negotiated.

C. Key-indistinguishability and user privacy

Classical definitions of key indistinguishability are param-

eterized by a freshness predicate Fresh that determines the

sessions with uncompromised keys. Key indistinguishability

requires that for fresh sessions, an adversary cannot tell apart

the real session key from a random one.

For SIGMA-N, a suitable Fresh predicate holds for π when

the group in π.mode is strong, A neither queried Reveal(π)
nor Reveal(π′) for a matching session π′, and π.eidr̄ is honest.

Identity protection and deniability are other orthogonal

security requirements of key-exchange protocols. Although we

do not formally present them here, we note that many design

decisions in real-world key-exchange protocols are motivated

by user privacy in addition to the more common security goals

of key indistinguishability and entity authentication.

D. Instantiating our model for SIGMA-N

Consider the SIGMA-N protocol of Fig. 1. The config-

urations should include sufficient detail to determine the

negotiated mode. We thus include the acceptable groups and

a function PK from identities to peer public keys. The latter

would normally be implemented by looking up the public key

of the peer in a certificate store. We thus have variables

cfg �
=

{
(I, A, pkA,PK, groups) for initiator I

(R,B, pkB ,PK, groups) for responder R

uid �
= (gx, gy)

mode �
= (Gi, pkA, pkB) .

III. DEFINING DOWNGRADE RESILIENCE

Downgrade resilience is motivated by protocols such as

SIGMA-N that despite satisfying the definitions above remain

vulnerable to practical attacks. We model the desired outcome

of negotiation using a function Nego that maps two configu-

rations with opposite roles to the protocol mode negotiated (if
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any) in the absence of active adversaries. Formally, if a session

π with role r talking to a session π′ completes, it must be the

case that π.mode = Negor(π.cfg, π′.cfg), where Negor is an

abbreviation defined by case:

Negor(cfgr, cfgr̄)
�
=

{
Nego(cfgr, cfgr̄) when r = I

Nego(cfgr̄, cfgr) when r = R .

Definition 6 (Negotiation correctness): The protocol nego-

tiation is correct if, whenever a session π with role r and

configuration cfgr completes, there exists a peer configuration

cfgr̄ such that π.mode = Negor(cfgr, cfgr̄).
This property captures that, if a protocol mode is disabled

by a configuration, then it cannot be negotiated. Although we

expect this basic property to hold unconditionally, implemen-

tation errors may break it. For instance, the FREAK attack

stems from TLS clients that do not offer export ciphersuites

but still accept export-grade RSA keys. An implementation

of SIGMA-N in which an initiator accepts groups it did not

propose would also fail to satisfy negotiation correctness.

Downgrade security complements negotiation correctness.

Informally, a protocol is downgrade secure when two sessions

of opposite roles with the same unique identifier uid always

negotiate the mode prescribed by their configurations. Hence,

downgrade security concerns situations in which one partic-
ipant can save the other, even if the latter supports broken

cryptography. However, we have to assume that at least some

of the mechanisms of the protocol (e.g., its signature modes)

are strong enough. Conversely, if both participants enable

(among others) a mode that is entirely insecure, then there

is no cryptographically sound way to prevent an attacker from

downgrading their connection.

Our definition is parameterized by a Downgrade Protection

predicate DP on pairs of configurations.

DP(cfgr, cfgr̄) indicates the pairs of configurations from

which we expect downgrade protection; it is not necessarily

symmetric. By convention, cfgr is the local configuration,

cfgr̄ is the peer configuration, and when DP(cfgr, cfgr̄)
holds, we expect that the local session is protected.

Definition 7 (Downgrade security): A session π is down-

graded when π.complete = true and there is a partnered

session π′ such that DP(π.cfg, π′.cfg) holds, but π.mode �=
Negoπ.role(π.cfg, π′.cfg).

The advantage Advdowngrade
Π, DP, X (A) of A against downgrade

security with pre-agreement on X is the probability that, when

A terminates after interacting with Π, there is a session π that

either is downgraded or does not pre-agree with a partnered

session π′ on X . We write Adv
downgrade
Π, DP (A) when X = {}.

Note that only partnered sessions get downgrade protection

guarantees, so our definition is meaningful only for protocols

for which partnering security holds. Thus, for role r, if

DP(cfgr, cfgr̄) holds for any peer configuration cfgr̄, we need

that PS(cfgr) holds; we write this concisely as DP ⊆r PS, and

observe that this property holds in our case studies.

Agreement on mode (or some of its parts) is desirable but

not essential for downgrade protection. A downgrade attack

means that one or both partnered sessions π and π′ assign

a mode weaker than the prescribed one. In particular, if the

session π′ does not assign a mode, then it has not been

downgraded. Pre-agreement ensures that if the partner session

π′ of π assigns some mode, then this mode coincides with

the mode of π. Conversely, for configurations cfgr and cfgr̄
for which both DP(cfgr, cfgr̄) and DP(cfgr̄, cfgr) hold, we do

have downgrade protection with pre-agreement on mode.

The DP predicate for downgrade protection plays a role

similar to Auth for authentication, except it depends only

on static configurations and on the honesty of long-term

credentials. This reflects that downgrade protection should

depend only on the inputs to the negotiation, and not the

negotiation itself, which may be influenced by an adversary.

Our formal configurations are session-specific, and do not

necessarily coincide with concrete configurations in real-

world protocol deployments. In particular, each configuration

contains credentials only for the intended peer (e.g. cached

certificates, key fingerprints). As an example, our configura-

tions for TLS include the authentication settings of the session:

the client’s configuration expresses its intent to communicate

with a particular server, who may support multiple negotiable

certificates with different long-term keys, for instance, using

the server name indication extension [15].

Ideally, DP(π.cfg, ·) would hold regardless of the second

configuration. Anticipating on our results, this is the case for

SSH, where DP is defined as follows: the configuration of π
must require authentication of its peer, all peer keys accepted

by π must be honest, and all signature algorithms must be

(agile) strong. In this case the only influence π′.cfg has on the

downgrade protection of π is in the level of agility, i.e. will π′

use its long-term keys also in other protocol and cipher modes?

However, this is not the case e.g. for TLS 1.2 clients, which do

not get downgrade protection with servers that support weak

Diffie-Hellman groups.

A. Downgrade resilience of SIGMA-N

Recall that SIGMA-N configurations are tuples of the form

(r, ID, pkID,PK, groups) where PK is a function mapping

identities to public keys. The negotiation function describes

the correct mode upon completion. Given a function nego
that selects the preferred common group, Nego(cfgI , cfgR) is

defined as

(nego(cfgI .groups, cfgR.groups), cfgI .pkA, cfgR.pkB)

when cfgI .pkA = cfgR.PK(A), and ⊥ otherwise.

For such a Nego function, DP can hold only for pairs of

configurations with at most one group in common, as shown

by the attack in Fig. 2.

B. Downgrade resilience and multi-mode security

Protocol analysts often consider protocols restricted to spe-

cific modes and configurations. For instance it is common

practice to analyze individual protocol modes in isolation.

Similarly we can restrict the universe of configurations of a

protocol to those that provide downgrade protection. Consider
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sets of configurations CI and CR picked by initiators and

responders respectively. We consider restricted protocols in

which sessions abort whenever they are initialized with a

configuration outside of the set CI ∪ CR.

Definition 8 (Protected configurations): Let DP be a down-

grade protection predicate. A pair of sets of configurations

(Cr,Cr̄) gives downgrade protection to role r if Cr×Cr̄ ⊆ DP.

The following theorem expresses that when downgrade se-

curity holds, only the security of modes that can be negotiated

in the absence of an adversary matters. That is, if peers support

insecure modes, but with such a low priority that they never

negotiate them on their own, then these modes do not affect

security in the presence of an adversary.

Theorem 1 (Downgrade resilience and multi-mode security):
Let Π be a protocol, (Cr,Cr̄) sets of configurations, DP a

downgrade protection predicate, andN = {Negor(cfgr, cfgr̄) |
cfgr, cfgr̄ ∈ Cr×Cr̄} the modes negotiable without adversary

influence. If DP ⊆r PS and

• (Cr,Cr̄) gives downgrade protection to r,

• Π is multi-mode authentication secure for Auth, X ,

• Π is partnering secure for PS, and

• Π is downgrade secure for DP,

then the protocol Π restricted to configurations in Cr ∪ Cr̄

is multi-mode authentication secure for a more lax Auth′

predicate that deems all modes outside of N as “good”,

i.e. Auth′(m, role) �
= Auth(m, role)∨(m /∈ N ∧ role = r).

Concretely, given an adversary A against authentication for

Auth′, X , we have

Advauth
Π′, Auth′, X(A) ≤ Adv

partnering
Π, PS (A) +Adv

downgrade
Π, DP (A)

+Advauth
Π, Auth, X(A) ,

where Π′ is Π restricted to configurations Cr ∪ Cr̄.

Proof sketch: Consider the multi-mode authentication

experiment G0 for Π′. Let S hold when at some point a session

π completes maliciously on X and Auth(π.mode, π.role) holds

(i.e., A succeeds in breaking authentication iff S holds at the

end of the experiment).

Game G1 behaves as G0 except it aborts just before a session

π of role r would complete without being partnered. Because

of the restriction in Π′ and the hypothesis that DP ⊆r PS, it

must be the case that PS(π.cfg). Thus, any time G1 aborts, A
succeeds in breaking the partnering security of Π′, and thus

that of Π. Hence, the difference in the probability of S between

G0 and G1 is at most Adv
partnering
Π, PS (A).

Game G2 behaves as G1 except it aborts just before a

session π of role r would complete and there is a partnered

session π′ such that π.mode �= Negor(π.cfg, π′.cfg). The

difference in the probability of S between G1 and G2 is at

most Advdowngrade
Π, DP (A) since any time G2 aborts but G1 does

not, A succeeds in breaking the downgrade security of Π′, and

thus that of Π.

By definition of N , G2 never completes with a session

of role r assigning a mode outside of N . Consequently, the

probability of S in this game is at most Advauth
Π, Auth, X(A) .

Interestingly, partnering security is similar to the alive-

ness requirement in some (single-mode) security definitions

which Krawczyk [30] does not consider as fundamental for

key-exchange security. Our second game transformation how-

ever only works if a partnered session π′ with the same uid
exists. Otherwise an abort in G2 cannot be translated into a

downgrade security attack.

We sketch a similar theorem for key-indistinguishability in

the full version [14].

C. Downgrade secure sub-protocols

We are interested in minimal core sub-protocols that guar-

antee downgrade security. We justify our use of sub-protocols

as a sound abstraction of a full protocol using simulation. A

sub-protocol can take additional input as part of Init and Send
queries to allow for an accurate simulation of the execution of

the full protocol. This is akin to the sub-protocols of Bergsma

et al. [9] which allow for additional signing oracles (restricted

to not breaking security of the sub-protocol).

For simplicity, the following definition leaves out details

about handling of long-term keys and corruption models.

When filling in the details for a particular setting, we require

the simulation to be accurate with respect to e.g. corruption, so

that it issues exactly the same corruption queries as in the full

protocol. We model access to session variables using oracles

that just return the value of the corresponding variable.

Definition 9 (Sub-protocol): A protocol Π̃ is a sub-protocol

of Π for X if we have an efficient simulator S with access to

the oracles of Π̃ such that:

1) S transparently relays queries to oracles for reading

variables in X to the same oracles in Π̃.

2) S ◦ Π̃ is information-theoretic indistinguishable from Π.

Formally, we model a protocol (and a simulator) as a

collection of oracles sharing state, each oracle being a proba-

bilistic algorithm. The composition S ◦ Π̃ of a simulator S
and a sub-protocol Π̃ is well-defined when Π̃ includes all

algorithms called by the oracles of S. The composition itself

is a new collection of algorithms, one for each oracle of S .

Operationally, the oracles of S ◦ Π̃ behave as the algorithmic

composition of the oracles of S and Π̃. That is, S may use

oracles of Π̃ as subroutines. Similarly, we model an adversary

A as a single probabilistic algorithm with access to oracles,

and the composition A ◦ S (resp. A ◦ Π) behaves as the

algorithmic composition of this algorithm with the oracles of

S (resp. Π).

As the next theorem shows, simulation allows to lift security

properties satisfied by a sub-protocol to the full protocol.

Theorem 2 (Downgrade security lifting): Let Π̃ be

a sub-protocol of a protocol Π for session variables

{cfg, uid,mode, key, complete}∪X , and DP a downgrade pro-

tection predicate. Let S be a simulator for Π̃ as in Definition 9.

Then, for any adversary A against the downgrade security of

Π with pre-agreement on X , A◦S is an adversary against the

downgrade security of Π̃ with pre-agreement on X , and

Adv
downgrade
˜Π, DP, X

(A ◦ S) = Adv
downgrade
Π, DP, X (A) .
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Proof sketch: If A is successful when interacting with

Π through the protocol oracles, then during the downgrade

security experiment there must be a session π partnered with

a session π′ such that DP(π.cfg, π′.cfg) holds and either

π.mode �= Negoπ.role(π.cfg, π′.cfg) or π and π′ disagree on

X . Let E denote this event. Note that the probability of E in

the experiment A ◦Π is exactly Advdowngrade
Π, DP, X (A).

Now, since the simulation S ◦ Π̃ is accurate with respect

to all variables this event depends on, and S ◦ Π̃ is indistin-

guishable from Π for A, the probability of E occurring in the

experiment A◦(S ◦Π̃) is the same as in the experiment A◦Π.

Because the composition operator ◦ is such that A ◦ (S ◦
Π̃) = (A◦S)◦ Π̃, we conclude by construing the composition

of A and S as an adversary against the downgrade security of

Π̃ with pre-agreement on X .

An analogous theorem holds for partnering security.

D. Downgrade security by whitelisting

Consider a protocol that is negotiation correct and guar-

antees multi-mode authentication with pre-agreement on all

variables that influence the computation of mode, then we get

downgrade protection for

DP(cfg, .) �
= ∀cfg′. Auth(Negocfg.role(cfg, cfg′), cfg.role) .

That is, all negotiable modes from downgrade secure configu-

rations must provide authentication security. This generalizes

the Negotiation-authentication theorem of [21].

IV. SECURE SHELL

Figure 3a models a run of the SSHv2 [45] protocol with a

client that authenticates using the publickey method [44].

We analyze the downgrade security of this protocol using

the sub-protocol shown on Figure 3b. The functions H,H ′

in these figures stand for the composition of a fixed in-

jective formatting function and a negotiated hash function.

Note that there are potential downgrade attacks in SSHv2

from publickey authentication to other mechanisms like

password but the protocol we consider does not model the

negotiation of the authentication mechanism. We stress that

our analysis only applies assuming servers are configured to

require publickey.

Client and server configurations include lists algs of key

exchange, server signature, encryption and MAC algorithms

ordered by preference. We let F (cfg) = cfg.algs. Each party

computes the negotiated ciphersuite independently, following

the rules in the protocol specification [45, Sect. 7.1], which we

encode in a nego function. Roughly, these rules dictate that the

first algorithm for each category in cfgI that is also in cfgR be

selected. Each session locally assigns nego(F (cfgI), F (cfgR))
to a. In addition, a client configuration cfgI includes a user

name and a service name u, a function PKI mapping a pair

(a, u) to a public key, and a function PKsR mapping a value

a to a set of acceptable server public keys. Conversely, a

server configuration cfgR includes a function PKR mapping

a value a to a public key, and a function PKsI mapping a pair

(a, u) to a set of acceptable client public keys. For instance, in

OpenSSH the keys cfgI .PKsR of acceptable server public keys

are taken from the clients known_hosts file, whereas the

keys cfgR.PKsI of acceptable client public keys are taken from

the .ssh/authorized_keys file in the home directory of

the user on the server.

In terms of the template in Section II, the sub-protocol uses

the following session variables:

cfg �
=

{
(I, algs, u,PKI ,PKsR) for I

(R, algs,PKR,PKsI) for R

uid �
= (nI , nR)

mode �
= (a, u, pk I , pkR) .

Client and server exchange nonces and their algorithmic

preferences F (cfgI), F (cfgR). The server then selects a com-

patible signature key pair (pkR, skR) and signs a hash log that

includes the first two exchanged messages. When receiving

this message, the client checks that pkR is an acceptable

server key in its local configuration, computes log locally and

verifies the server signature. If the signature verifies, it selects

a key pair (pk I , sk I) in its configuration for authenticating

and sends back to the server a signature over log , u, and

pk I . When receiving this message, the server checks that

pk I is an acceptable client key in cfgR.PKsI(a, u). Each

party completes the session upon successfully verifying the

peer signature, otherwise aborts. Formally, a client aborts if

pkR �∈ cfgI .PKsR(a); otherwise it sets mode to:

(nego(F (cfgI), F (cfgR)), cfgI .u, cfgI .PKI(a, u), pkR)

The server’s behavior is specified analogously.

We augment the Send oracles of each a session in the sub-

protocol with extra parameters that allow to fill in the blank

(−) used to compute log. This allows a simulator to compute

signatures on the same values as the full protocol, as needed to

consistently answer Send queries. Consequently, we allow an

adversary against the downgrade security of the sub-protocol

to fill in − parameters arbitrarily.

We complete our security model with oracles pk← KeyGen
for key generation, sk← Corrupt(pk) for adaptive corruption,

and Coerce(pk) for adversarial key registration. A public key

pk is honest if it was generated by a query to oracle KeyGen
but not corrupted by a Corrupt query.

Theorem 3 (Simulation): SSH-sub (Fig. 3b) is a sub-protocol

of SSH (Fig. 3a) for their common variables.

Proof sketch: The sub-protocol is oblivious of the Diffie-

Hellman exchange in the full protocol, so the simulator gener-

ates fresh Diffie-Hellman shares of his own for each session.

When needed, the simulator S forwards queries to SSH-sub
after applying message parsing and formatting functions. To

simulate signatures of honest sessions S uses the Diffie-

Hellman shares it has computed and the messages it has

received to fill in the value of the extra parameter − of oracles

of the sub-protocol. Note that the adversary knows the secret

exponents of an instance’s Diffie-Hellman shares and so it can

always compute the encryption keys k1, k2 needed to simulate

the last two messages of the full protocol.
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Client I Server R

VI

VR

II = KEXINIT(nI , algsI)
IR = KEXINIT(nR, algsR)

KEXDH_INIT(gx)

KEXDH_REPLY(pkR, g
y, sign(skR, hash(log)))

(k1, k2) = kdf(gxy, log)(k1, k2) = kdf(gxy, log)
NEWKEYS

NEWKEYS

{USERAUTH_REQUEST(u, pk I , sign(sk I , hash(log , u, pk I)))}k1

{USERAUTH_SUCCESS}k2

(a) log = H(VI , VR, II , IR, pkR, g
x, gy, gxy)

Client I Server R

m1 = (nI , F (cfgI))

m2 = (nR, F (cfgR))

uid = (nI , nR)
a = nego(F (cfgI), F (cfgR))

uid = (nI , nR)
a = nego(F (cfgI), F (cfgR))

pkR, sign(skR, hash(log))

u, pk I , sign(sk I , hash(log , u, pk I))

mode = (a, u, pk I , pkR)
complete = true

mode = (a, u, pk I , pkR)
complete = true

(b) log = H ′(m1,m2, pkR,−)
Fig. 3: SSHv2 mutually-authenticated key exchange: (a) full protocol and (b) sub-protocol SSH-sub.

A. SSHv2 is partnering and downgrade secure

A remarkable property of the downgrade protection sub-

protocol of mutually-authenticated SSHv2 is that, because both

client and server sign (a hash of) the inputs to the nego
function, downgrade protection security relies only on the

honesty of the signature keys, the collision resistance of the

hash algorithm, and the strength of the signature algorithms.

Notably, it does not rely on the key exchange algorithm being

strong or contributive, not even on it providing high entropy

inputs to H . This means that we can prove this protocol secure

for a predicate DP that only constrains the signature and hash

algorithms of cfgr, and requires honesty of peer public keys

in cfgr.PKsr̄, but has no requirements on cfgr̄.

We prove partnering and downgrade security of SSHv2

with publickey authentication under the agile security

assumptions on hash functions and signatures that we present

next.

Agile hash functions and signatures
As protocol participants may negotiate different hash func-

tions we need to capture collisions across hash functions.

Definition 10 (Agile collision resistance): Let h� be a hash

function, and H a set of hash functions. Consider the game:

- h, v, v′ ← A()
- Return h�(v) = h(v′) ∧ v �= v′

The collision resistance advantage of A, AdvCR
h�, P (A) is the

probability that the game returns true.

If the ranges of hash functions are disjoint, agile collision

resistance reduces to ordinary collision resistance. Bhargavan

et al. [13] also define existential unforgeability under chosen-

message attacks (EUF-CMA) for agile hash-then-sign signa-

tures. We here consider such signatures as primitives, although

typical constructions can be proved secure in the random

oracle model.

Definition 11 (Agile EUF-CMA security): Consider an agile

signature scheme s = (keygen, sign, verify). Let p� be an

agility parameter, and P a set of parameters. Consider the

forgery game:

- Let pk, sk ← keygen()
- Set M := {} and run m,σ ← ASign(pk)

- Return m /∈M ∧ verify(pk, p�,m, σ)

where Sign(p,m) returns ⊥ if p /∈ P and otherwise sets M :=
M ∪ {m} before returning sign(sk, p,m).

The advantage AdvEUF-CMA
s, p�,P (A) of A in forging a signature

for s is the probability that the forgery game returns true.

Since we proved that SSH-sub soundly abstracts negotiation

in the full protocol, any downgrade attack on the full protocol

can be turned into a downgrade attack on SSH-sub. By virtue

of Theorem 2 it suffices to prove that SSH-sub is downgrade

secure. The same reasoning applies to partnering security.

Partnering security
Define Nego(cfgI , cfgR)

�
=(a, cfgI .u, cfgI .PKI(a, u), pkR) ,

where a = nego(F (cfgI), F (cfgR)) if pkR = cfgR.PKR(a),
and ⊥ otherwise. Let M be the set of all supported modes

and H be the set of all supported hash algorithms. We define

M� �
= {Negocfg.role(cfg, cfg′)|PS(cfg)}

H� �
= {mode.hash | mode ∈M�}

Ps
�
= {p | s, p = mode.sig ∧ mode ∈M}

That is, M� are the modes negotiated by pairs of config-

urations where the first configuration guarantees partnering

security, H are the hash algorithms used in partnering secure

modes, and Ps are the agility parameters for the peer signature

scheme s.

Theorem 4 (Partnering security of SSH-sub): Let PS be

such that PS(cfg) implies that all public keys in the range

of cfg.PKscfg.role are honest. Given an adversary A against

the partnering security of SSH-sub, we construct adversaries

Bs,p and Bh running in about the same time as A such that

Adv
partnering
SSH-sub, PS(A) is at most∑

h∈H�

AdvCR
h,H(Bh) +

∑
(s,p)∈sig(M�)

ns AdvEUF-CMA
s, p,Ps

(Bs,p) ,

where ns is the number of keys generated for scheme s.

Downgrade security
To prove downgrade security, we define Nego, M, Ps, and

H as before, but re-define M�, H� to use DP instead of PS,

i.e. M� �
= {Negocfg.role(cfg, cfg′) | DS(cfg, cfg′)}.
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Theorem 5 (Downgrade security of SSH sub-protocol): Let

DP be such that DP(cfg, ·) implies that all public keys in

the range of cfg.PKcfg.role are honest. Given an adversary

A against the downgrade security of the sub-protocol, we

construct adversaries Bs,p and Bh running in about the same

time as A such that Adv
downgrade
SSH-sub, DP(A) is at most

n2

2|uid|/2+
∑
h∈H�

AdvCR
h,H(Bh) +

∑
(s,p)∈sig(M�)

ns AdvEUF-CMA
s, p,Ps

(Bs,p) ,

where n is the number of sessions, ns the number of keys

generated for scheme s, and |uid| the size of unique identifiers.

V. INTERNET KEY EXCHANGE

The Internet Key Exchange (IKE) protocol is the key

exchange component of the IPsec suite of protocols. Two

versions of the protocol are commonly deployed: IKEv1 [24]

and IKEv2 [27]. Both variants are inspired by the SIGMA

protocol [30] recalled in the introduction, and are believed to

inherit its authentication and key-indistinguishability guaran-

tees. Next, we study their downgrade protection sub-protocols.

A. IKEv1 does not prevent downgrade attacks

We first consider the DHE-PSK modes of IKEv1, whose

first three messages are depicted in Figure 4a. The corre-

sponding downgrade protection sub-protocol is depicted in

Figure 4b.

The protocol presumes that both parties can select the pre-

shared key (psk) to use from the negotiated security association

SAR and identifiers IDI and IDR; it then confirms that the two

parties agree, using a MAC based on psk. The two parties also

exchange Diffie-Hellman shares and use them to derive session

keys and protect application data but, in ‘aggressive’ modes,

their authentication and downgrade-protection relies solely on

the pre-shared key.

The initiator begins by extracting a list of supported security

associations [SA1, . . . ,SAn] from its configuration, presum-

ably ordered by preference, formats them (using the function

F ), and sends them along with a nonce (nI ) to the responder.

Each security association specifies a Diffie-Hellman group (for

the key exchange); an encryption scheme and a hash algorithm

(for protecting messages); and a peer authentication method.

The responder chooses one of these associations (SAR), based

on its own configuration, and responds with its own nonce.

The initiator checks that this choice is compatible with its

proposals, which completes the negotiation. To authenticate

one another, to provide key confirmation, and to prevent down-

grade attacks, the initiator and responder exchange MACs,

optionally signed when using certificates for authentication.

For simplicity, Figures 4a and 4b depict the use of just a pre-

shared key for authentication. The MACs are computed with a

key derived from the pre-shared key and the nonces, over some

important parts of the protocol transcript: the key shares, the

8 byte ISAKMP cookies taken from the headers, the client’s

offered security associations and the sender’s identity.

Surprisingly, the MAC does not cover the negotiated secu-

rity association (SAR), and this omission leads to a downgrade

attack. A man-in-the-middle can simply modify the second

message to replace the server’s chosen SAR with a different

SA′R compatible with the initiator’s proposals. If this new SA′R
uses an encryption algorithm that the attacker can break (e.g.

DES or NULL), then the attacker can break the confidentiality

of the first messages sent by the initiator. (Similarly, the first

MAC includes IDR but not IDI , so an attacker can modify

IDI in the first message, and yet the initiator will complete

the sub-protocol without detecting the modification; this is less

problematic in the full protocol because IKEv1 continues with

a confirmation message from the responder.)

We instantiate our main definitions to IKEv1 to better un-

derstand this downgrade-protection failure and propose fixes.

Clearly, the protocol offers no authentication guarantees unless

the PSKs used by both parties are honest, so we always

make that assumption in the following, which enables us to

omit the choice of PSKs from the negotiation predicates. In

IKEv1, the mac and kdf functions are negotiated as part

of SAR. In practice, they are effectively HMAC-MD5 or

HMAC-SHA1. For simplicity, in the following we assume that

configurations specify fixed kdf and mac algorithms. (See §IV
for an explicit handling of cryptographic agility.) We use the

following notations for the sub-protocol:

• the goal is to agree on a mode (SAR, IDI , IDR);
• cfgI = (IDI , [SA1, . . . ,SAn]).
• cfgR includes IDR and is otherwise unspecified; it would

typically also include a list of SAs.

• F is a formatting function from cfgI to the payload of

the first message that encodes the list of proposals above.

• nego is a partial function, used by the responder to map

F (cfgI) and cfgR to some SAR.

• check is used by the initiator to confirm that the mode is

acceptable, checking for instance that SAR matches one

of the initiator’s proposals [SA1, . . . ,SAn].
• Nego(cfgI , cfgR), our specification for negotiation, is de-

fined as (nego(F (cfgI), cfgR), cfgI .IDI , cfgR.IDR) when

check succeeds, and is otherwise undefined.

Our statements and proofs only rely on the properties of

F , nego, and check as stated above, we hence omit a full

description.

We also assume that the protocol rejects runs in which

IDI = IDR. This is referred to in the literature as the self-
communication scenario, and in such settings there are well

known reflection attacks on IKEv1 [19, 36]. Positive results

in this setting would require an extension of our sub-protocol

and assumptions about the DH groups or the ISAKMP cookies

employed in the protocol.

We first prove partnering security (Definition 2) relying

on the security of both kdf (modeled as a PRF keyed with

psk) and mac (modeled as a MAC, relying e.g. on existential

unforgeability under chosen-message attacks).

Theorem 6 (Partnering security of IKEv1 sub-protocol): Let

PS be such that all PSKs referenced by handles in cfg are

honest. Given an adversary A against the partnering security

of IKEv1-sub, we construct adversaries B and B′ running in
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Init. I Resp. R

HDR1(nI , [SA1, . . . ,SAn], g
x,IDI)

km = kdf(psk , nI | nR)

HDR2(nR,SAR, g
y,IDR,mac(km,m1))

km = kdf(psk , nI | nR)

HDR3(mac(km,m2))

(a)
m1 = gy | gx | CKYR | CKYI | [SA1, . . . ,SAn] | IDR,
m2 = gx | gy | CKYI | CKYR | [SA1, . . . ,SAn] | IDI .

Init. I Resp. R

nI , F (cfgI),IDI

uid = (nI , nR)
SAR = nego(F (cfgI), cfgR)
mode = (SAR,IDI ,IDR)
km = kdf(psk , nI | nR)

nR,SAR,IDR,mac(km,− | F (cfgI) | IDR)

uid = (nI , nR)
mode = (SAR,IDI ,IDR)
check(cfgI ,mode)
km = kdf(psk , nI | nR)

mac(km,− | F (cfgI) | IDI)

complete = true complete = true

(b) F is a formatting function from cfgI to the payload of the first
message that encodes the list of proposals.

Fig. 4: IKEv1 aggressive DHE-PSK protocol (a) first messages (b) downgrade protection sub-protocol.

about the same time as A such that Adv
partnering
IKEv1-sub, PS(A) is at

most

n2

2|uid|/2 + np ·AdvPRF(B) + n ·AdvEUF-CMA(B′) ,

where n is the number of sessions and np is the number

different psks employed by sessions.

While partnering security can be shown to hold for a very

general partnering security predicate, because of the SAR

spoofing attack the protocol offers provable downgrade pro-

tection only for very restrictive configurations. For example,

relying on the unambiguous formatting of IDI and IDR in the

MACed payloads, we have downgrade protection when

1) the client (or the server) uses each PSK only for a fixed

saR, IDI , IDR; or

2) the client proposes only one SA at a time and checks that

the server echoes this proposal in SAR, and moreover SA
determines IDI .

Our analysis of the IKEv1 downgrade-protection sub-

protocol suggests an obvious fix: include the mode

(SAR, IDI , IDR) in both MACs. We then obtain downgrade

protection under the same conditions as for partnering: that

PSKs be honest and both kdf and mac be secure.

We also considered other modes of IKEv1, based on signa-

tures instead of PSKs (much as in our introductory SIGMA

example), and also when the MACs are protected using the

keys derived from the Diffie-Hellman exchange. In those cases,

the downgrade-protection sub-protocol is almost the same:

SAR is similarly left unauthenticated and, even if the messages

are protected, there is still an attack when the client proposes

a weak group, as explained in the introduction.

B. IKEv2 does not prevent downgrade attacks

IKEv2 [27] is a revision of the IKEv1 protocol intended

to simplify the specification and extend it to cover popular

authentication methods such as EAP [1].

IKEv2 with signatures: We first consider the plain,

signature-based protocol and sub-protocol in Figures 5a and

5b.

We ignore signature agility issues, since in IKEv2 the hash

algorithm for signing is not negotiated; it is chosen by the

sender, who almost always picks SHA1.

As in IKEv1, the initiator begins by offering a sequence of

security associations (extracted from cfgI ) and the responder

chooses one of these. In the full protocol, the initiator and

responder also exchange Diffie-Hellman public values and use

them to derive session keys, used (in particular) to encrypt and

MAC all messages after m2.

The client and the server then exchange signatures over

MACs of their own views of the protocol (presumably to pro-

vide some deniability): their full first message, their identity,

and the nonce of their peer. In particular, and in contrast with

IKEv1, the server’s signature covers its chosen SAR but not

the initiator’s offered security associations.

The sub-protocol leaves important payloads unauthenti-

cated: the peers do not sign or MAC each other’s DH public

keys, and not even each other’s identities. It also ignores

the fact that, in the full protocol, all messages after m2 are

encrypted and MACed using a derived key. Thus, some attacks

against the sub-protocol may not occur in the full protocol.

Still, there is a downgrade attack against the full protocol as

soon as the client tolerates a weak group. The attack proceeds

as follows (see Fig. 6). Suppose an initiator offers two security

associations, one using the 1024-bit Diffie-Hellman group 14

and another using the 768-bit group 1. The attacker tampers

with the first message to delete the first association, so that

the responder thinks that the initiator only supports group 1.

The attacker forwards the responder’s messages to the initiator,

who thinks that the responder only supports group 1. If the

attacker has performed enough pre-computation so as to be

able to compute discrete logs in group 1, then he can compute

the session and MAC keys and impersonate the responder.

In practice, executing this attack requires the MitM to send
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Init. I Resp. R

m1 = SA_INIT(nI , [SA1, . . . ,SAn], g
x, infoI)

m2 = SA_INIT(nR,SAR, g
y, infoR)

(km, k′m, ke, k
′
e) = kdf(gxy, nI | nR) (km, k′m, ke, k

′
e) = kdf(gxy, nI | nR)

[AUTH(IDI , sign(sk I , hash(m1 | nR | mac(km,IDI))))]
ke

[AUTH(IDR, sign(skR, hash(m2 | nI | mac(k′m,IDR))))]
k′
e

(a) IKEv2 protocol with mutual signatures.

Init. I Resp. R

m1 = (nI , F (cfgI))

uid = (nI , nR)
SAR = nego′(F (cfgI), cfgR)

m2 = (nR,SAR)

uid = (nI , nR)
Check(cfgI ,SAR)

IDI , sign(sk I , H(m1, nR,IDI ,−))
IDR, sign(skR, H

′(m2, nI ,IDR,−))

mode = (SAR,IDI ,IDR)
complete = true

mode = (SAR,IDI ,IDR)
complete = true

(b) IKEv2 sub-protocol with mutual signatures.

Fig. 5: IKEv2 protocol and sub-protocol for signature-based authentication

Init. I MitM Resp. R

SA_INIT(nI , [SA14,SA1], (G14, g
o), infoI)

INVALID_KE(G1)

m1 = SA_INIT(nI , [SA14,SA1], (G1, g
x), infoI) m′1 = SA_INIT(nI , [SA1], (G1, g

x), infoI)

m2 = SA_INIT(nR,SA1, (G1, g
y), infoR)

(km, k′m, ke, k
′
e) = kdf(gxy, nI | nR) (km, k′m, ke, k

′
e) = kdf(gxy, nI | nR)y = dlog(G1, g

y)
(km, k′m, ke, k

′
e) = kdf(gxy, nI | nR)

[AUTH(IDI , sign(sk I , hash(m1 | nR | mac(km,IDI))))]
ke [AUTH(IDM , sign(skM , hash(m′1 | nR | mac(km,IDM ))))]ke

[AUTH(IDR, sign(skR, hash(m2 | nI | mac(k′m,IDR))))]
k′
e

[Data1]
ke [Data′1]

ke

[Data2]
k′
e[Data′2]

k′
e

Fig. 6: Man-in-the-middle downgrade on IKEv2 with mutual signatures and weak Diffie-Hellman groups

an extra INVALID_KE message to the client. This does not

present any difficulty since this message is unauthenticated.

The attack described above is reminiscent of Logjam [2]

and is arguably feasible with modern computing power, or

will be in the coming years. There are other downgrade attacks

with a similar impact on IKEv2: the man-in-the-middle could

downgrade the security association to use weak encryption or

authentication algorithms.

IKEv2 with EAP client authentication: We now consider

the downgrade protection sub-protocol in case the initiator is

authenticated using some EAP method, whereas the responder

still uses a certificate and a signature (see Figures 7a and 7b).

In this variant, in the third message, the initiator sends

its identity without any signature. Instead, after verifying the

server’s signature, it engages in an application-level ‘embed-

ded’ authentication protocol that generates a shared key. Its

use of EAP is asymmetric, in that EAP authenticates the

initiator (IDI ) but does not re-authenticate the responder. The

resulting shared key is used to MAC the initiator’s view of the

negotiation: the full first message, including the client’s offered

security associations, the responder’s nonce, and a MAC over

the initiator’s identity with the session key.

Enabling EAP actually weakens downgrade protection: the

responder (still) does not sign the initiator’s proposals, and

also does not sign the chosen client AUTH method (signature

or EAP), and this opens the possibility of cross-authentication

attacks between different AUTH methods.

For example, consider the attack in Fig. 8. Suppose the ini-

tiator disables EAP, but the responder supports it. The attacker

can then replace the initiator’s signature message with an EAP

authentication message, forward the responder’s signature, and

thereby downgrade the SA used by the initiator, to use a weak

encryption algorithm, for instance. In comparison with the first

attack on IKEv2 discussed above, this attack does not require

breaking the Diffie-Hellman exchange to gain control of the

key used to MAC the signature payloads.

This would be a powerful downgrade, and it would allow

offline decryption of the initiator’s subsequent messages, but

it is still difficult to implement in practice because the au-

thentication messages are themselves encrypted-and-MACed.

Hence, the attack requires that the attacker should be able to

break the (downgraded) authenticated encryption mechanism

in the SA.

For example, it can be mounted if the encryption and

integrity algorithms are downgraded to NULL, an allowed

(but not recommended) option in IKEv2. In particular, the

specification says: “Though the security of negotiated Child

SAs does not depend on the strength of the encryption and

integrity protection negotiated in the IKE SA, implementations

MUST NOT negotiate NONE as the IKE integrity protection
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Init. I Resp. R

m1 = SA_INIT(nI , [SA1, . . . ,SAn], (G, gx), infoI)

m2 = SA_INIT(nR,SAR, (G, gy), infoR)

(km, k′m, ke, k
′
e) = kdf(gxy, nI | nR) (km, k′m, ke, k

′
e) = kdf(gxy, nI | nR)

[AUTH(IDI)]
ke

[AUTH(IDR, sign(skR, hash(m2 | nI | mac(k′m,IDR))))]
k′
e

[AUTH(eap1(. . .))]
ke

[AUTH(eap2(. . .))]
k′
e

msk = EAP shared key msk = EAP shared key

[AUTH(mac(msk ,m1 | nR | mac(km,IDI)))]
ke

[AUTH(mac(msk ,m2 | nI | mac(k′m,IDR)))]
k′
e

(a) IKEv2 protocol with EAP client authentication.

Init. I Resp. R

m1 = (nI , F (cfgI))

uid = (nI , nR)
SAR = nego(F (cfgI), cfgR)

m2 = (nR,SAR)

uid = (nI , nR)
Check(cfgI ,SAR)

IDI

IDR, sign(skR, H(m2, nI ,IDR,−))
mac(msk , H ′(m1, nR,IDI ,−))
mac(msk , H(m2, nI ,IDR,−))

mode = (SAR,IDI ,IDR)
complete = true

mode = (SAR,IDI ,IDR)
complete = true

(b) IKEv2 sub-protocol with EAP client authentication.

Fig. 7: IKEv2 protocol and sub-protocol for EAP-based authentication

Init. I MitM Resp. R

m1 = SA_INIT(nI , [SAstrong ,SAnull ], (G, gx), infoI) m′1 = SA_INIT(nI , [SAnull ], (G, gx), infoI)

m2 = SA_INIT(nR,SAnull , (G, gy), infoR)

(km, k′m, ke, k
′
e) = kdf(gxy, nI | nR) (km, k′m, ke, k

′
e) = kdf(gxy, nI | nR)Encryption and Integrity set to null

AUTH(IDI , sign(sk I , hash(m1 | nR | mac(km,IDI)))) AUTH(IDI)

AUTH(IDR, sign(skR, hash(m2 | nI | mac(k′m,IDR))))

Data

Fig. 8: Man-in-the-middle cross-protocol downgrade on IKEv2 mixing signatures and EAP authentication

algorithm or ENCR NULL as the IKE encryption algorithm.”

[27, Section 5]. Our attack shows that this assumption is

wrong: the downgrade security of IKEv2 crucially depends

on the strength of the encryption and integrity algorithms,

especially when both signatures and EAP are enabled.

We also note that in case the initiator also supports EAP, any

subsequent initiator authentication makes no difference since

the initiator is now talking to the attacker and does not seek

to re-authenticate the responder.

While these attacks can be mitigated by disabling weak al-

gorithms, or by relying on subsequent key exchanges in Child

SAs, a simple protocol-level fix would be for the responder to

include the client’s first message and authentication mode in

its signature (at the cost of losing deniability). We could then

obtain downgrade protection simply by relying on the strength

of the responder’s signature, irrespective of weak groups and

broken encryption algorithms.

C. Version downgrade attacks from IKEv2 to IKEv1

IKE does not include a version negotiation protocol. Ini-

tiators first try to connect with IKEv2 and if that fails they

fall back to IKEv1. This allows a simple downgrade attack

between this versions, since IKEv1 has no way of authenti-

cating the highest supported version. The IKEv2 specification

acknowledges this version downgrade possibility to IKEv1,

but sets up a flag to prevent future downgrade attacks from

IKEv(n > 2) to IKEv2: “Note that IKEv1 does not follow

these rules, because there is no way in v1 of noting that

you are capable of speaking a higher version number. So an

active attacker can trick two v2-capable nodes into speaking

v1. When a v2-capable node negotiates down to v1, it should

note that fact in its logs” [27, Section 2.5].

VI. Z REAL-TIME PROTOCOL

ZRTP [46] is a specialized protocol used to establish key

material for encrypted voice-over-IP (VoIP) communications.

Unlike TLS, ZRTP does not rely on public-key infrastructure

or certificates for authentication. Instead, participants authen-

ticate each other by comparing a “short authentication string”

derived from the session key, also known as a SAS, via some

trusted channel. For our purposes in this analysis, we assume

in our model that the SAS comparison is conducted via an

ideal, trusted channel that is not susceptible to tampering.

Because the SAS is short, the protocol offers a more limited

form of protection. If the SAS length is � bits, then the

probability of an attacker subverting the authentication is at

least 2−� with each execution of the handshake. In most

implementations � is typically a small value, e.g. 16. The

use of a short authentication string presents challenges for

both key exchange and downgrade security. For example, if
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the SAS employed a full-length collision-resistant hash, it

would suffice for the parties to exchange a hash of the full

protocol transcript. However, even when constructed using

a (truncated) collision-resistant hash function, the SAS is

too short to provide the necessary protection, and additional

measures must be taken.

A. ZRTP does not prevent downgrade attacks

The ZRTP protocol is presented in Figure 9a. The down-

grade protection sub-protocol is presented in Figure 9b.

The ciphersuite negotiation is conducted within the first two

(“Hello”) messages exchanged by the Initiator and the Respon-

der. The chosen ciphersuite ai is determined by selecting a

ciphersuite in the intersection of the available algorithms pre-

sented by each party. Ciphersuites consist of a key exchange

algorithm, a cipher and MAC algorithm for subsequent data

exchange, and a SAS algorithm determining the length and

format of the SAS string. Additionally, the protocol negotiates

options such as a “trusted” PBX flag and an optional signature

on the SAS.

Following the initial negotiation messages, the parties deter-

mine who will play the role of the Initiator, engage in a key

exchange, and derive session keys. Transcript correctness is

enforced by incorporating a hash of most of the transcript into

the key derivation function, which produces both session keys

and a SAS. A final mechanism tries to authenticate each of the

handshake messages by computing a MAC over each message,

using a key that is revealed in the subsequent message. To bind

these messages together, ZRTP uses a hash chain.1

Downgrading protocol versions: ZRTP includes a negotiation

mechanism for protocol versions and options that is not in-

corporated into the calculation of the shared secrets and SAS.

When the parties support multiple versions of the protocol and

protocol options, a MitM can substitute the protocol versions

vI , vR to downgrade both parties to a previous version of

the protocol, as illustrated in Figure 10. Moreover, since the

first (Initiator Hello) message is not authenticated, the attacker

can also change the options flags oI . This second proce-

dure requires the attacker to defeat the hash chain security

mechanism. Unfortunately this may be done by capturing and

delaying subsequent messages until the authentication key for

earlier messages has been revealed, allowing the attacker to

change messages arbitrarily. The fix for this vulnerability is

straightforward: all negotiation messages should be included

in the calculation of the session key and SAS.

Downgrade from DH to PSK: ZRTP supports both Diffie-

Hellman key exchange and a pre-shared key mode. The latter

is analogous to the session resumption handshake in TLS, in

that it provides an inexpensive (symmetric-key only) hand-

shake, which operates under the assumption that the parties

1Specifically, each participant computes an initial nonce H0 and hashes it
to obtain the sequence H3 = hash(H2 = hash(H1 = hash(H0))). At each
message in the handshake, the party reveals Hi and uses Hi−1 as a MAC
key to authenticate the current message. Verification is only possible when
the next message is received. The initial value H0 is revealed only within the
encrypted confirmation message at the conclusion of the protocol.

have previously completed a full Diffie-Hellman handshake

to establish a pre-shared key. The corresponding negotiation

sub-protocol is shown in Fig. 11.

The limitation of this pre-shared mode is that it does not

force the parties to commit to their protocol inputs before

revealing them, which admits an offline attack in which a

MitM may identify protocol inputs that result in a chosen

SAS. The attack begins with the establishment of a shared key

(via Diffie-Hellman) before restarting with the PSK mode. We

describe the attack in detail in the full version [14]. In practice,

most ZRTP implementations do not implement pre-shared

mode, and those that do only allow SAS authentication after

DH exchanges. Nevertheless, this protocol-level attack should

serve as a cautionary tale for future ZRTP implementations

and extensions.

VII. TRANSPORT LAYER SECURITY

The Transport Layer Security protocol (TLS) is used to

provide secure channels for a variety of Internet applications.

It offers a number of key exchange mechanisms, authentication

methods, and encryption schemes, so that users can pick and

choose mechanisms best suited to their needs.

A negative consequence of this agility is the potential

for downgrades. TLS clients and servers commonly support

multiple protocol versions and hundreds of ciphersuites, even

though some of them are known to be obsolete or even broken.

For example, SSL 2.0 is still supported by 10% of web servers

even though it has long been known to be vulnerable to

multiple attacks including, notably, a ciphersuite downgrade

attack [43] and a dangerous backward compatibility attack [5].

Equally, about 25% of web servers were found to still support

export-grade ciphersuites that were deprecated in 2000, en-

abling powerful downgrade and server impersonation attacks

like FREAK [10] and Logjam [2].

Since SSL 3.0, all versions of TLS incorporate various

downgrade protection mechanisms. We will analyze the down-

grade protection provided by TLS 1.2 and the proposed im-

provements in TLS 1.3. In both cases we focus on ephemeral

Diffie-Hellman key exchange (DHE/ECDHE).

A. Negotiation in TLS 1.0–1.2

Figure 12a depicts a mutually authenticated TLS connection

incorporating a Diffie-Hellman key exchange that uses either

a finite-field group (DHE) or an elliptic curve (ECDHE). Most

TLS connections authenticate only the server, but the figure

also depicts the optional client authentication messages.

The client I first sends a hello message (CH) with a nonce

(nI ) and a list of agility parameters [a1, . . . , an] that include

ciphersuites, compression methods, and protocol extensions.

The server responds with a hello message (SH) containing

its chosen parameters (aR). At this point, the client and

server know which key exchange they will execute next. In

an ephemeral Diffie-Hellman key exchange (DHE/ECDHE),

the server sends its public-key certificate (certR) and uses the

private key to sign the nonces, the group (or curve) parameters

(p, g) and its own Diffie-Hellman public value (gy). The
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Initiator I Responder R

m1 = Hello(vI ,IDI , [aI,1, . . . , aI,n])

m2 = Hello(vR,IDR, [aR,1, . . . , aR,n])

m3 = Commit(IDI , hash(m5), ai)

m4 = DHPart1(gy)

m5 = DHPart2(gx)

(kmI , kmR , keI , k
e
R, sas)

= kdf(gxy,IDI ,IDR,
hash(m2,m3,m4,m5))

(kmI , kmR , keI , k
e
R, sas)

= kdf(gxy,IDI ,IDR,
hash(m2,m3,m4,m5))

m6 = Confirm1(mac(kmR , [flags ]k
e
R))

m7 = Confirm2(mac(kmI , [flags ]k
e
I ))

sas

sas

(a)

Initiator I Responder R

m1 = (IDI , F (cfgI)),mac(kI ,m1), hash(kI)

m2 = (IDR, F (cfgR)),mac(kR,m2), hash(kR)

a = nego(cfgI , F (cfgR))

m3 = (IDI , a, hash(nI)), kI

m4 = (nR), kR

m5 = (nI)

uid = h = H(m2,m3,m4,m5,−)
sas = H ′(IDI ,IDR, h,−)

check(cfgR, a)
uid = h = H(m2,m3,m4,m5,−)
sas = H ′(IDI ,IDR, h,−)

sas

sas

mode = (a,IDI ,IDR)
complete = true

mode = (a,IDI ,IDR)
complete = true

(b)

Fig. 9: ZRTP (a) protocol (b) downgrade protection sub-protocol

Initiator I MitM Responder R

m1 = Hello(vI , oI ,IDI , [aI,1, . . . , aI,n], hash(KI)),mac(KI ,m1)

m2 = Hello(vR, oR,IDR, [aR,1, . . . , aR,n], h),m

m′1 = Hello(v′I , oI ,IDR, [aR,1, . . . , aR,n], $), $

m2 = Hello(v′R, oR,IDR, [aR,1, . . . , aR,n]), hash(KR)),mac(KR,m2)

m′′1 = Hello(v′I , oI ,IDI , [aI,1, . . . , aI,n], hash(KI)),mac(KI ,m
′′
1)

m3 = Commit(IDI , hash(m5), ai,KI) m′′′1 = Hello(v′I , o
′
I ,IDI , [aI,1, . . . , aI,n], hash(KI)),mac(KI ,m

′′′
1 )

m3

m4 = DHPart1(gy)

m5 = DHPart2(gx)

(kmI , kmR , keR, k
e
S , sas) =

kdf(gxy,IDI ,IDR, hash(m2,m3,m4,m5))
(kmI , kmR , keR, k

e
S , sas) =

kdf(gxy,IDI ,IDR, hash(m2,m3,m4,m5))

m6 = Confirm1(mac(kmR , [flags ]k
e
R))

m7 = Confirm2(mac(kmI , [flags ]k
e
I ))

sas

sas

Fig. 10: Man-in-the-Middle attack on ZRTP version and option negotiation. We assume that both peers prefer version vI = vR,

but will support an older version v′I = v′R. The attacker additionally modifies the options flags oI transmitted in m1.

server may let the client remain anonymous, or it may require

authentication (specifying the class of acceptable certificates

[cert1, . . . , certm]), in which case the client sends its own

certificate (certI ) and public value (gx), and uses its private

key to sign the full protocol transcript so far (log1). The client

and server then derive a master secret (ms) and session keys

(k1, k2) from the nonces and shared secret (gxy). To complete

the key exchange, both sides compute MACs using the master

secret over the protocol transcript, and exchange them in fin-

ished messages (CFIN,SFIN). These MACs provide key con-

firmation as well as downgrade protection. Once exchanged,

the client and server can start exchanging application data

encrypted under the new session keys ([Data]k).

B. TLS 1.0–1.2 do not prevent downgrades

The downgrade protection sub-protocol for TLS 1.0–1.2 is

depicted in Fig. 12b. The sub-protocols for TLS 1.0, 1.1, and

1.2 have an almost identical protocol flow and primarily differ

in the choice of algorithms. For simplicity, we consider only

server-authenticated (EC)DHE connections, where clients are

anonymous.

The client offers its entire public configuration (F (cfgI))
to the server, which then computes the negotiated parameters

(mode) that consist of the protocol version (v), the chosen

parameters (aR), the group (GR), the server identity (pkR),

and the hash function used in the server signature (hash1). The

protocol version and the ciphersuite in aR together determine

other protocol parameters, such as the key derivation function

(kdf), the authenticated encryption scheme, and the MAC and

hash functions used in the finished messages (mac, hash).

We note that the server may possess several identities and

choose one based on the chosen ciphersuite or other protocol

extensions offered by the client.

Downgrade protection primarily relies on the MACs in the

finished messages, which in turn rely on the strength of the

group GR and the negotiated algorithms kdf, hash, and mac.

If a client and server support a weak group, for example, then

an attacker can downgrade the group and then break the master
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Initiator I Responder R

m1 = (IDI , F (cfgI))

m2 = (IDR, F (cfgR))

a = nego(cfgI , F (cfgR))

m3 = (IDI , a, nI ,mac(psk IR, “Prsh′′))

uid = h = H(m2,m3,−)
(kI , kR, sas) = kdf(psk IR, h)

check(cfgR, a)
uid = h = H(m2,m3,−)
(kI , kR, sas) = kdf(psk IR, h)

m4 = mac(kR,−)
m5 = mac(kI ,−)

sas

sas

mode = (a,IDI ,IDR)
complete = true

mode = (a,IDI ,IDR)
complete = true

Fig. 11: ZRTP with Pre-Shared Keys: negotiation sub-protocol

secret to forge the MACs, as in Logjam.

A second protection mechanism is the server signature,

but we observe that this signature covers only the unique

identifier and the group GR, but none of the other negotiated

parameters. For example, the Logjam attacker tricks the server

into using an export ciphersuite (DHE-EXPORT) that results

in a weak Diffie-Hellman group. The client does not support

DHE-EXPORT and still thinks it is using standard DHE, but

the attacker can forge the MAC to hide this discrepancy.

Importantly, the server signature fails to prevent this attack,

because it does not include the ciphersuite. Before this attack

was disclosed, many implementations of TLS clients still

accepted arbitrary groups.

Furthermore, we note that the negotiated algorithms can be

weak in practice. For example, TLS 1.2 supports MD5-based

signatures; TLS 1.1 derives keys and transcript hashes based

on combinations of MD5 and SHA1. These weak constructions

also lead to downgrade and impersonation attacks [11].

Let minr,maxr be the supported minimum and maximum

protocol versions, let algsr = [a1, . . . , am] = F (cfgI) be the

ciphersuites and extensions, and let groupsr be the groups

supported by role r. In terms of the general definition in

Section II, the downgrade protection sub-protocol uses the

following session variables:

cfg �
=

{
(I,minI ,maxI , algsI , groupsI ,PKsR) for I

(R,minR,maxR, algsR, groupsR,PKR) for R

uid �
= (nI , nR)

mode �
= (v, aR, GR, pkR, hash1)

The negotiation function nego is executed by the server and

is based on the server’s configuration cfgR and the server’s

partial view F (cfgI) of the client configuration. The client

does not get to inspect cfgR, but it does check that the resulting

mode is consistent with its configuration.

The protocol only offers downgrade protection if the peer

is authenticated with an honest key and strong signature and

hash algorithms. So we will consider downgrade security from

the viewpoint of a client, while assuming that all keys in PKsR
are honest and hash1 is collision-resistant. We get partnering

security from the freshness of the uid and the strength of the

server signature (which includes the uid ).

However, downgrade protection for the client cannot rely

on just the signature, and hence requires one of the following

conditions:

• the server uses its pkR only with modes that use strong

groups, key derivation algorithm kdf, hash and mac
algorithms and the client is aware of the servers choice

and aborts whenever it sees an unexpected algorithm

combination;

• the client only accepts modes with strong groups (in

particular not the groups ‘negotiated’ by the Logjam

and the ECDHE-DHE cross-protocol attacks [35]) and

algorithms.

An extreme example of the first condition would be to

require that the server uses a different public key for each

mode; the proofs in [21] rely on this somewhat unrealistic

assumption to avoid ECDHE-DHE cross-protocol attacks and

the need for agile security assumptions. More pragmatically,

if a client and server only support TLS 1.2 (and hence only

strong hash constructions), only support strong groups and

curves for (EC)DHE and all other ciphersuites that use Diffie-

Hellman, then TLS clients can be protected from downgrade.

Of course, we rely on the server using only honest and strong

signing keys (e.g. 2048-bit RSA) with strong signature and

hash algorithms (e.g. RSA-SHA256).

We also get some downgrade protection for the server when

the client is authenticated, relying only on the client signature

and the transcript hash algorithm hash. Pragmatically, TLS

1.2 servers that require client authentication and only accept

strong signature and hash algorithms cannot themselves be

tricked into completing a connection with a weak mode.

As evidenced by the Logjam attack, the TLS protocol does

not satisfy downgrade security unless the DP predicate guar-

antees that the client and server configurations exclusively use

strong algorithms, hence guaranteeing that all the negotiated

algorithms used in the finished MACs are strong.

C. On downgrade protection in Draft 10 of TLS 1.3

Draft 10 of TLS 1.3 proposes a protocol that is quite

different from TLS 1.2 and earlier versions; a typical run of the

1-round-trip mode is depicted in Fig. 13a. The corresponding

downgrade protection sub-protocol is in Fig. 13b.

In contrast to TLS 1.2, the client hello message includes

Diffie-Hellman public values for the client’s preferred groups.

The server may choose one of these groups or ask for a public

value in a different group, as long as it is one supported by

the client. The server sends its own public value in the server

hello message, and all subsequent messages are encrypted and

integrity-protected using the Diffie-Hellman shared key.

For downgrade security from the client’s viewpoint, a key

difference is that server signatures in TLS 1.3 cover the full

transcript, and hence they cover the full client and server hello
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Client I Server R

CH(nI , vmaxI , [a1, . . . , an])
SH(nR, v, aR)

SC(certR)

SKE(sign(skR, hash1(nI | nR | p | g | gy)))
SCR∗([cert1, . . . , certm])

SHD

CC∗(certI)log1 log1

CKE(gx)log2 log2

CCV∗(sign(sk I , hash2(log1)))

(ms , k1, k2) = kdf(gxy, nI | nR) (ms , k1, k2) = kdf(gxy, nI | nR)

log3 log3

[CFIN(mac(ms, hash(log2)))]
k1

[SFIN(mac(ms, hash(log3)))]
k2

[Data]k1

[Data]k2

(a)

Client I Server R

m1 = (nI , F (cfgI))

uid = (nI , nR)
mode = nego(F (cfgI), cfgR)

= (v, aR, GR, pkR, hash1)

m2 = (nR, v, aR, GR, pkR, sign(skR, hash1(nI | nR | GR | gy)))

uid = (nI , nR)
mode = (v, aR, GR, pkR, hash1)
Check(cfgI ,mode)
ms = kdf(gxy, nI | nR)

ms = kdf(gxy, nI | nR)

m3 = (gx,mac(ms , H(m1,m2, g
x,−)))

m4 = (mac(ms , H ′(m1,m2,m3,−)))

complete = true complete = true

(b)

Fig. 12: TLS 1.0–1.2 with (EC)DHE key exchange (a), where messages labeled with * occur only when client authentication

is enabled, and (b) its downgrade protection sub-protocol

Client I Server R

CH(nI ,maxI , [a1, . . . , an], [(G1, g
x1)])

Retry(G2)

CH(nI ,maxI , [a1, . . . , an], [(G1, g
x1), (G2, g

x2)])log1 log1

SH(nR, v, aR, (G2, g
y))

(k1, k2) = kdf(gx2y, log1) (k1, k2) = kdf(gx2y, log1)

log2 log2

[SC(certR)]k2log3 log3

[SCV(sign(skR, hash1(hash(log2))))]
k2

ms = kdf(gx2y, log3) ms = kdf(gx2y, log3)

log4 log4

[SFIN(mac(ms, hash(log3)))]
k2

[CFIN(mac(ms, hash(log4)))]
k1

[Data]k1

[Data]k2

(a)

Client I Server R

m1 = (nI , F (cfgI))

uid = (nI , nR)
mode = nego(F (cfgI), cfgR)

= (v, aR, GR, pkR, hash1)

m2 = (nR, v, aR, GR, pkR)

m′2 = sign(skR, hash1(H(m1,m2,−)))

uid = (nI , nR)
mode = (v, aR, GR, pkR, hash1)
check(cfgI ,mode)
complete = true

complete = true

(b)

Fig. 13: TLS 1.3 1-RTT mode with server-only authentication (a) and its downgrade protection sub-protocol (b)

messages. This foils most of the downgrade attacks on TLS

1.2; as long as the client only accepts strong signature and

hash algorithms and honest public keys from the server, it

cannot be downgraded to a weaker ciphersuite, and moreover,

it yields agreement on the chosen ciphersuite.

Although Draft 10 of TLS 1.3 provides strong downgrade

protection for the ciphersuite, downgrade attacks remain,

in particular, because clients and servers will continue to

support lower protocol versions for backward compatibility.

Considering that TLS 1.2 does not provide strong downgrade

protections, this unfortunately means that all the downgrade

attacks on TLS 1.2 will be inherited by TLS 1.3.

There are three downgrade attacks possible on TLS 1.3 as

described in Draft 10. One, an attacker downgrades the con-

nection to TLS 1.2 or lower and mounts any of the downgrade

attacks mentioned before. This will succeed as long as the

attacker can forge the finished MACs. Second, an attacker uses

the TLS fallback mechanism to stop TLS 1.3 connections and

allows only TLS 1.2 connections to go through. Even if the

endpoints implement the fallback protection mechanism [38],

the attacker can use one of the downgrade attacks in TLS

1.2 to break the connection. Third, in Draft 10 of the TLS 1.3

protocol, the handshake hashes restart upon receiving a Retry
message and hence, the attacker can downgrade the Diffie-

Hellman group for some classes of negotiation functions.

We can prevent all of these attacks by two countermeasures,

both of which have been incorporated into TLS 1.3 Draft 11.

See Fig. 14a. First, we continue the handshake hashes over
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retries. Second, TLS 1.3 servers always include their highest

supported version number in the server nonce, even when they

choose a lower version such as TLS 1.0.
Including the maximum version number into the server

nonce of all versions yields version downgrade protection

for clients. It is a simple patch (For the server, it amounts

to changing how nonces are generated. The client needs to

implement an equality check.) that can be incorporated into

TLS versions without making them incompatible with TLS

versions that do not implement the patch. If a server and

a client both implement the patch, the client gets version

downgrade protection.
We proceed in three steps: We show that when hashes

continue over Retry, clients that interact with servers that

just support TLS 1.3 achieve downgrade security. We then

show that embedding the version number into the server’s

nonce yields version downgrade protection from the client’s

perspective. We then put the two results together and show that

servers supporting TLS 1.0–1.3 with these countermeasures

yield the same client-side downgrade protection as when

servers just support TLS 1.3.
The downgrade protection sub-protocol uses the same ses-

sion variables as TLS 1.0–1.2, but defines Nego using the func-

tion nego from Fig. 14a. LetM be the set of modes supported

by TLS and M� = {Negocfg.role(cfg, cfg′)|PS(cfg)} be the

modes negotiated between any pair of configurations for which

the first guarantees partnering security. Let Ps = {p | s, p =
mode.sig∧mode ∈M} be the signature agility parameters for

peer signature scheme s, H be the set of all hash algorithms

supported by TLS, and H� = {mode.hash | mode ∈ M�}
be the hash algorithms used by partnering secure modes. We

now prove partnering security for TLS 1.0–1.3 and downgrade

security for clients speaking to servers that implement the

fix described in Fig. 14a. We then define version downgrade

security and show that the fixes in Fig. 14a (TLS 1.3) and

Fig. 14b (TLS 1.0–1.2) prevent version downgrade.
In all of our theorems we consider a universe of configu-

rations that support subsets of TLS 1.0, 1.1, 1.2 and 1.3 and

that enable only (EC)DHE. Note that RSA keys are thus used

for signing only.
Theorem 7 (Partnering security of TLS 1.0–1.3): Let PS be

such that PS(cfg) implies that cfg.role = I and that all public

keys in the range of cfg.PKsR are honest. Given an adversary

A against the partnering security of our sub-protocol, we

construct adversaries Bs,p and Bh running in about the same

time as A such that Adv
partnering
TLS1.0-1.3-sub, PS(A) is at most∑

h∈H�

AdvCR
h,H(Bh) +

∑
(s,p)∈sig(M�)

ns AdvEUF-CMA
s, p,Ps

(Bs,p) ,

where ns keys are generated for signing scheme s.
For downgrade security, we define Nego, M, Ps, and H

as before. However, we redefine M�, H� to use DP instead

of PS, i.e., M� = {Negocfg.role(cfg, cfg′) | DS(cfg, cfg′)} and

H� = {mode.hash | mode ∈M�}.
Theorem 8 (Downgrade security of TLS 1.3): Let DP be

such that DP(cfg, cfg′) implies that cfg.role = I , that all public

keys in the range of cfg.PKsR are honest and such that: (a)

cfg supports at least TLS 1.3 and implements the counter-

measure. (b) cfg′ only supports TLS 1.3 and implements the

countermeasure. Given an adversary A against the downgrade

security of TLS 1.3 sub-protocol, we construct adversaries

Bs,p and Bh running in about the same time as A such that

Adv
downgrade
TLS1.3-sub, DP(A) is at most

n2

2|nR|+1
+
∑
h∈H�

AdvCR
h,H(Bh) +

∑
(s,p)∈sig(M�)

nsAdvEUF-CMA
s, p,Ps

(Bs,p) ,

where n is the number of sessions, ns is the number of keys

generated for signing scheme s, and |nR| is the size of the

servers contribution to the unique identifiers. (The current

proposal is 24 bytes.)

We define version downgrade security similarly to down-

grade security via a function Versionr that maps two opposite-

role configurations (which include the version numbers) to the

version number negotiated (if any) in the absence of active

adversaries. Formally, if a session π talking to a session π′

completes, it must be the case that π.v = Versionr(cfgr, cfgr̄).
Akin to downgrade security, our definition of version down-

grade security is parameterized by a version downgrade

protection predicate VDP on pairs of configurations. When

VDP(cfgr, cfgr̄) holds, we expect that the local session r is

protected. For TLS, we will only consider version downgrade

protection from the client’s perspective.

Definition 12 (Version downgrade security): The advan-

tage Advversion
Π, VDP(A) of A against the version downgrade

security of Π is the probability that, when A terminates

after interacting with protocol Π through its oracles, there

exists a session π such that π.complete = true and there

is a partnered session π′ such that VDP(π.cfg, π′.cfg) but

π.v �= Versionπ.role(π.cfg, π′.cfg).
Theorem 9 (Version downgrade security of TLS 1.0–1.3):

Let VDP be such that VDP(cfg, cfg′) implies that cfg.role = I
and that all public keys in the range of cfg.PKsR are honest

and such that both cfg and cfg′ support at least TLS 1.3 and

activate the countermeasure.

Given an adversary A against the version downgrade se-

curity of our sub-protocol, we construct adversaries Bs,p
and Bh running in about the same time as A such that

Advversion
TLS1.0-TLS1.3-sub, VDP(A) is at most

n2

2|nR|+1
+
∑
h∈H�

AdvCR
h,H(Bh) +

∑
(s,p)∈sig(M�)

nsAdvEUF-CMA
s, p,Ps

(Bs,p) ,

where n is the number of sessions, ns is the number of keys

generated for signing scheme s, and |nR| is the size of the

servers contribution to the unique identifiers.

For predicates DP and VDP such that DP ⊆ VDP, let

DP+VDP be the predicate that holds for pairs of configurations

in DP, with server configurations extended to support config-

urations of lower version protocols that by VDP should never

be negotiated. Putting Theorems 8 and 9 together, we get that

when both client and server implement the countermeasures,

then clients supporting multiple versions including TLS 1.3 are
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Client I Server R

m0 = (nI , F0(cfgI))

m′0 = GR

m1 = (nI , F1(cfgI , GR))

uid = (nI , nR)
n′R = maxR | nR

mode = nego(F1(cfgI , GR), cfgR)
= (v, aR, GR, pkR, hash1)

m2 = (n′R, v, aR, GR, pkR)

verifyVersion(n′R, v, cfgI)
uid = (nI , nR)

m′2 = sign(skR, hash1(H(m0,m
′
0,m1,m2,−)))

mode = (v, aR, GR, pkR, hash1)
check(cfgI ,mode)
complete = true

complete = true

(a) A version downgrade fix for TLS 1.3

Client I Server R

m1 = (nI , F (cfgI))

uid = (nI , nR)
n′R = maxR | nR

mode = nego(F (cfgI), cfgR)
= (v, aR, pkR, G, hash1)

m2 = (n′R, v, aR, G, pkR, sign(skR, hash1(nI | n′R | G | gy)))

verifyVersion(n′R, v, cfgI)
uid = (nI , nR)
mode = (v, aR, pkR, G, hash1)
check(cfgI ,mode)
ms = kdf(gxy, nI | n′R)

ms = kdf(gxy, nI | n′R)

m3 = (gx,mac(ms , H(m1,m2, g
x,−)))

m4 = mac(ms, H ′(m1,m2,m3,−))

complete = true complete = true

(b) A version downgrade fix for TLS 1.0–1.2

as good as supporting only TLS 1.3. Version 1.3 needs to be

always present as our version downgrade guarantees concern

downgrades from 1.3 to lower versions.
Corollary 1 (Downgrade security of TLS 1.0–1.3): Assume

DP ⊆ VDP and let VDP be such that VDP(cfg, ·) implies that

cfg.role = I , that all public keys in the range of cfg.PKsR are

honest and that cfg and cfg′ support at least TLS 1.3 and

activate the countermeasure. Given an adversary A against

the downgrade security of our sub-protocol, we construct

adversaries B and C running in about the same time as A
such that

Advdowngrade
TLS1.0-1.3-sub, DP+VDP(A) ≤
Advversion

TLS1.0-1.3-sub, VDP(B) +Adv
downgrade
TLS1.3-sub, DP(C)

VIII. RELATED WORK

Downgrade as an attack vector: The role of downgrade

attacks in practical exploits against key exchange protocols

has been widely recognized [2, 10, 39, 43].
Moeller and Langley [38] propose the use of a Signaling

Cipher Suite Value (SCSV) in TLS that prevents version

downgrade attacks when all versions provide transcript au-

thentication. SSL 2.0 and 3.0 are being deprecated, partly to

prevent version downgrades as these versions do not support

TLS extensions [6, 41] and SSL 2.0 in any case does not pro-

vide transcript authentication. Similarly, ciphersuite hygiene is

frequently discussed in standard documents [32, 34].
Retrofitting countermeasures against downgrade attacks can

inadvertently introduce or amplify attack vectors. For instance,

as a countermeasure against version rollback in TLS-RSA,

clients incorporate the newest protocol version they support

in the PKCS#1-encrypted pre-master secret. Klı́ma et al. [28]

showed that many server implementations revealed whether

the version in a decrypted secret matches the version adver-

tised in the ClientHello message, thus introducing a side-

channel that can be exploited to implement a decryption oracle.

Multi-ciphersuite security of SSH: Bergsma et al. [9] analyzed

SSH in a multi-ciphersuite setting. They split the protocol into

a negotiation phase NP and key-exchange phase SP, one for

each value of π.mode. They show that if each combination

NP‖SP is ACCE secure, then NP‖ # »
SP is multi-ciphersuite ACCE

secure. While they do not prove downgrade security per se,

the result of [21] adapted to SSH corresponds to a proof of

downgrade security for a DP predicate that guarantees that all

negotiable ciphersuites and versions provide ACCE security.

Sharing of public keys is admissible under the condition that

each sub-protocol is still secure in the presence of an auxiliary

oracle with long-term key functionality, e.g., signing, to simu-

late all other sub-protocols. In our terminology, the protocols

NP‖SP of Bergsma et al. [9] are single-mode restrictions of

NP‖ # »
SP. After their extension with auxiliary oracles providing

sufficient access to long-term key functionalities, they are sub-

protocols in our sense. We prove downgrade protection for a

predicate DP that includes a much larger set of configurations.

Combined with the result of Bergsma et al. [9], our result

allows to prove multi-ciphersuite ACCE security when not all

sub-protocols in
# »
SP are ACCE secure, as long as we restrict

the protocol to configurations in DP that do not negotiate them

(cf. Theorem 1).

Previous downgrade security theorems about TLS 1.2: Dowl-

ing and Stebila [21] model ciphersuite and version negotiation

for TLS up to version 1.2 in the multi-ciphersuite setting

introduced by Bergsma et al. [9]. In our model, their result

corresponds to a proof of downgrade security for a DP
predicate that guarantees that all negotiable ciphersuites and

versions are strong enough to provide ACCE security and

that all public keys are honest and used at most by one

negotiable ciphersuite. Their optimality function ω is a more

limited variant of our Nego function and does not include

entity identifiers. Their main theorem, restated in §III-D, states

that under such conditions multi-mode authentication implies

downgrade security. This is a rather weak form of downgrade

security, but as shown by Logjam, TLS 1.2 does not provide

much stronger protection for clients. Servers that authenticate

clients can however obtain stronger guarantees.
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IX. CONCLUSION AND FUTURE WORK

In this paper we put forward a methodology to analyze

the downgrade security of real-world key exchange protocols.

Our approach breaks down the complexity of analyzing a full

protocol by considering only a core sub-protocol that abstracts

away details that are irrelevant for negotiation of a protocol

mode. We showed that proving a simulatability property for

a sub-protocol is sufficient for ensuring the soundness of our

methodology: proving the absence of downgrade attacks on the

sub-protocol is enough to guarantee the downgrade security

of the full protocol. In contrast, our methodology does not

provide completeness: it may very well be the case that a

particular choice of sub-protocol abstracts too much and ends

up allowing attacks that are impossible to turn into attacks

on the full protocol. Indeed, sometimes sieving through false

positives helped us to refine our choice of sub-protocols.

Our analysis of exemplary protocols shows that many de-

signs fail to appropriately address downgrade security. We thus

advocate incorporating downgrade security as an integral part

of security models for key exchange protocols.

We believe that analyzing the downgrade security of typical

sub-protocols is within reach of automated tools. Symbolic

analysis tools like ProVerif [17] and Tamarin [37] seem par-

ticularly well suited to detect attacks on sub-protocols, helping

analysts to find attacks against the full protocol or converge

toward a sub-protocol that rules out false positives. Computa-

tionally sound tools like CryptoVerif [16], on the other hand,

provide a means to prove the downgrade security of sub-

protocols and, provided the sub-protocol is a sound abstraction

of the full protocol, conclude that the corresponding full

protocol also enjoys downgrade security. Finding a simulator

that witnesses the correctness of a sub-protocol appears to be a

more difficult task that may require ingenuity. While this may

be out of reach of fully automated tools, interactive proofs

can be constructed and machine-checked with tools like e.g.

EasyCrypt [7]. Exploring the use of automated tools could

increase the confidence in our proofs of downgrade security,

and perhaps find other simpler or more practical attacks on

protocols for which we only showed negative results.
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