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Abstract. Dependence information between program values is extlgsised
in many program optimization techniques. The ability toniify statements,
calls and loop iterations that do not depend on each othdilenhanany trans-
formations which increase the instruction and threadtpeaeallelism in a pro-
gram. When program variables contain complex data strestacluding arrays,
records, and recursive data structures, the ability toipegcmodel data depen-
dence based on heap structure remains a challenging problem

This paper presents a technique for precisely tracking heapd data depen-
dence in non-trivial Java programs via static analysisnJsin abstract interpre-
tation framework, the approach extends a shape analysiitee based on an
existing graph model of heaps, by integrating read/wrigedny information and
intelligent memoization. The method has been implememedta effectiveness
and utility are demonstrated by computing detailed depecelénformation for
two benchmarks (Em3d and BH from the JOlden suite) and ukiagrtformation
to parallelize the benchmarks.

1 Introduction

The concept of data dependence between program statemarfisidamental tool for
the reordering of program statements and the determinatiimwariant values in basic
blocks, loops, or methods. Knowledge of data dependenoesthe introduction of
instruction—level parallelism and thread—level parahal (both in loops and method
invocations). In past work effective techniques for conmgitiata dependence between
scalar variables have been developed. However, the eateabthis work to tracking
memory—carried data dependence has been much less sutdesisirge part due to
the lack of suitable heap analysis techniques to suppart.the

Previous work focused broadly on two approaches for idgntif possible heap—
carried data dependence, shape or points-to analysis agyafpr data dependence [4,
7,2,14] wherein the identification of various acyclic stures and/or access path in-
formation is used to infer which expressions cannot actessame portion of the heap,
and the explicit tracking of read/written locations [8, Bywhich model the set of loca-
tions that may be read/written at each program point. Thikwaroduced several fun-
damental concepts involved in modeling heap carried dgtaridence. However exper-
imental work with these approaches was limited to small nensbf micro-benchmarks
or used coarse points-to style analysis.
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This paper builds on the basic concepts developed in earigc and makes several
contributions which are critical to analyzing non-trivilograms. The first is a novel
method for tracking read/write locations during the anialyBhe approach presented in
this paper only tracks a two program locations per objedt fiehe read location and
one write location) instead of a set of all possible readtiooa and a set of all possible
write locations per field. This is sufficient to identify theost recent program point
where each memory location may be used/modified while avgittie additional space
usage and computational cost of tracking a set of prograatituts per object field. The
next contribution is a method to efficiently track read/eiitformation through method
boundaries, in particular how to ensure that the additionse-modnformation does
not have a serious impact on the memoization of method bodlysis results, which
is critical to applying the technique to realistic programs

Our analysis technique uses an explicit store model for &aplobjects which al-
lows us to easily track the identity of objects between progstatements. This differs
from some recent work on shape analysis, which uses logicdétas with implicit store
representations [15, 5] that cannot be efficiently exteridddthck the properties of ar-
bitrary heap locations. It also differs from approachesHdam separation logic which
restrict the program to regular recursive structures amitdd sharing of objects on
the heap in order to ensure termination [6, 1]. These feaforeclude the use of these
approaches on many realistic application programs inoytiieem3d andbh bench-
marks, which we analyze as detailed case studies here.

2 Running Examples

We use examples in this paper to illustrate the various aspé&the analysis technique.
The first is a small fragment created solely to illustratelihsics of the analysis. The
second is a routine taken froem3d, one of the JOlden [13, 10] benchmarks.

ml void main() {

m2 Pair p = new Pair(new Data(5), new Data(10));
m3 if( *)

m4 p.firstval = 0;

m5 swap(p);

m6 assert(p.first.val !'= 0);
m7 '}

sl void swap(Pair p) {

s2 Data temp = p.first;
s3 p.first = p.second;

s4 p.second = temp;

s5 }

Fig. 1. Conditional Modify and Swap



cl static void computeNewValue(ENode n) {

c2 for(int i = 0; i < n.fromCount; i++)
c3 n.value -= n.coeffs]i] * n.fromN[i].value;
c4 }

Fig. 2. Compute (Fromem3d)

The first example 1 created¥ata objects, each of which has a single integer field
val , and puts them in ®air object. If the conditional holds thiérst  element of
the pair is modified and then the swap method is called tochtarge thdirst  and
second elements of the pair. This example is simple but relevartesin order to
determine that the asserted property always holds the sinalgeds to be able to track
how pointer stores affect reachability relations in theghéa identify where each heap
location may be written, and do so across method invocations

The second program fragment is a method taken froneth@ benchmark. This
program builds a bipartite heap structure. Each cattdmputeNewValue takes a
ENode object from one side of the bipartite graph and updatesahee field of this
node based on the value fieldsEiflode objects on the opposite side of the bipartite
graph. This example demonstrates the importance of phecesolving the heap struc-
ture so the dependence analysis can determine that the lseqpflocation where the
value field is written is distinct from the locations that are read.

3 Abstract Heap Domain

The underlying abstract heap domain that we extend is a graplinich each node
represents a region of the heap (a set of objects or datastsy or a variable and
each edge represents a set of pointers or a variable taigetnddes and edges are
augmented with additional instrumentation predicates.

Types.Since each node in the graph represents a region of the héagh(may contain
objects of many types) we use a set of type names for each ndlieheap graph which
contains the type of any object that may be in the region ohttep that is abstracted
by the given node.

Linearity. To model the number of objects abstracted by a given nodedjotgrs by
an edge) we uselmearity property which has 2 possible values 1, which indicates that
the node (edge) concretizes to either 0 or 1 objects (pangerd the valueo, which
indicates that the node (edge) concretizes to any numbebjetts (pointers) in the
range(0, «).

Abstract Layout.To track the connectivity and shape of the region a nodeadistrthe
analysis useabstract layoupredicatesSingleton List, Treg MultiPath, or Cycle The
Singletonpredicate states that there are no pointers between any ahbilects repre-
sented by an abstract node. Tlhist predicate states that each object has at most one
pointer to another object in the region. The other predicaterespond to the standard
definitions for Trees, Dags, and Cycles in the literature.

Interference.The heap model uses two properties to track the potentitihtidtiple
pointers or variables can reach the same memory locatidreiregion that a particular



node represents. In this work the examples only require btieese propertiediter-
ferencé so we omit the discussion of the other propexgr{nectivity and refer the
interested reader to [12] for a more detailed description.

Each edge abstracts a set of pointers in the concrete prog@tesimterfereproperty
has three possible values, to track that some of the pointaysalias 4p), that none
of the pointers alias but they may point into the same datetre (thus can interfere,
ip), or that each of the pointers refers to a unique and disgtztd structure in the node
that the edge ends at (they are disjoint and non-interfeniplg

Heap RepresentatioVe represent abstract heaps pictorially as labeled, eédenulti-
graphs. The variable nodes are labeled with the variabtehlg represent. The nodes
representing the regions are represented as a rélgpel |, linearity , layout]

that tracks the instrumentation predicates.

The edges (which represent sets of pointers) in the figueagpresented as records
[offset | linearity , interfere] . The offsetcomponent indicates the offsets
(labels) of the references that are abstracted by the etigselabels may be any of the
field identifiers that are used in the program or the spechal/&, which is the label
given to the summary field representing all the elements oilaation objecVector
List , or an array.

To simplify the figures we omit entries in the labels when they the default do-
main value. The default values for the nodeslay@ut= (S)ingletorandlinearity = 1.
The default edge values direarity = 1 andinterfere= np. The variable edges always
represent single references and the label is always irtiplibie variable name.

3.1 Heap Structure Examples

Pair Example.Figure 3 shows the heap model (without any read/write infdrom) that

is computed as the result of executing the pair construttire first example program.
The variable points to a single object of tydeair (thelinearity is 1 and the shape in
Singleton as described above this default information is omittedftbe figure). The
node representing tHeair object has 2 outgoing edges representing the two pointers
stored in thdirst  andsecond fields. The analysis determines that these edges each
represent a single pointer (and since any edge represensingle pointer cannot have
any interference thimterfereproperty isnp). Again the default properties of linearity

1 and non-interference are omitted from the figure. Findfg, model shows that the
first  andsecond pointers each refer to a singmata object.

Em3d ExampleThe state of the heap at the entry to doenputeNewValue method

in the progranem3d is shown in Figure 4 (again without any read/write inforraaji

The em3d program computes electro-magnetic field values in a 3—dsimeal space

by constructing a list oENode objects, each representing an electric field value and
a second list oENode objects, which represent a magnetic field values. To compute
how the electric/magnetic field value for a givENode object is updated at each step
the computeNewValue method uses an array &Node objects from the opposite
field and performs a convolution of these field values and bngceector, updating the
current field value with the result.
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Fig. 4.computeNewValue , Structure Only

Figure 4 shows the heap structure computed foctraputeNewValue method.
We have placed dashed lines around the structures thasegpthe magnetic field (in
blue if color is available) and the electric field (in greevi@ariableg points to a single
object of typeBiGrph , which is the data structure that encapsulates all the tsbidc
interest. TheBiGrph object has 2 fields, theNodes field pointing to a linked list of
ENode objects that make up the magnetic field and, élNodes field pointing to a
linked list of ENode objects that make up the electric field.

Looking at the structures in the magnetic field we see the kdgged?, w] which
represents all the pointers stored in the linked list. Sthedinearity isw we know the
edge may represent multiple pointers but each of thesegysinmust point to a unique
ENode object (the default interference value of non-interferimgis omitted). The
figure also shows that the magnetic field is represented by fallode objects (the
node labeledENode, w]) each of which has a pointer to a unique arrayloéts
(the edge labeledoeffs ) and an array oENode objects (the edge labeldbmN )
which are used as the set of nodes from the opposite field. ddeethat represents the



pointers stored in this array is labelg] w, ap], which indicates that it represents all
the pointers stored in the array and, that the pointers resemts may aliagf).

4 Data Dependence Extensions

To track the read/write histories of objects on the heap vierekthe model presented
in Section 3 with information to track the identity of the ebjs represented by a given
node, and for each field in the object we track thest recenprogram location (state-
ment or control flow structure) where a read/write of thatffiebyhave occurred.

In order to ensure that the initial shape analysis when aatgdevith the read/write
domain remains efficient it is critical to minimize the ambohadditional information
that is added to the heap model. The key observation is tmanést optimization
applications the shape analysis only needs to provide sgenformation about the
most recenprogram location at which each fietdayhave been read or written. Thus,
the analysis does not need to track every possible progreatidm where a field may
have been read/written, and this significantly reducesdhgpeitational requirements.

4.1 Intermediate Representation

Before we introduce the domain extensions we need to spleeifyprogram locations

are represented. To simplify the analysis the Java progaagtsansformed into a struc-
tured mid-level intermediate language (called MIL). Thetighgrammar below pro-

vides a sample of the language constructs in the intermeerdatesentation.

atom ::=var| literal

expr = atom|atom+ atom|newtypeatom...,atom) | var.f
| varm(atom...,atom) | var instanceofype| ...

stmt ::= var=expr| var.f=atom| break] ...

contol ::= if (atom) blockelseblock| while(atom) block] ...

block ::= (stmt| control)x

The language has method invocations, conditional cortstiiic, switch ), ex-
ception handlingtfy-throw-catch ) and looping statement$of , do, while ).
The state modification and expressions cover the standage if program operations
(load, store and assign along with logical, arithmetic aachparison operators). We
associate with each statement and each control flow steuatprogram locatioA.

4.2 Extended Domain

Read—Write LocationsEach node may represent a number of objects of differenstype
(11...Tm) and each type may have many fieldéI (.. f7). For each of these fields we
keep two program locationg)( the last time the fieldnayhave been read() and the
last time the fieldnayhave been writtent(,).

Node Identity.In order to efficiently analyze method invocations we meradie in-
put and return abstract states and reuse them as possiloleldnto prevent spurious
inequalities between the read/write program locationst (téfer to the locations in the



caller scope) in the memoized models we replace them witmargamodified outside
value. To allow us to match the identities of the objects i itput state with their
position in the output state we add a unique identity tag (@evim N) to each node that
is passed into a method call.

In our extended domain each node in the heap is now represantetupldgtype
linearity ,layout ,scalar-fields ,identity] . The entriesype , layout
andcount are as described in Section 3. Teealar-fields entry is a list of
field-readloc-writeloc entries, one for each scalar field, wheeadloc
andwriteloc  are either a program locatiohor the special entry Onodified out-
sidé). Theidentity entry is asetof identity tags or is omitted entirely if the node
does not have a identity tag associated with it (or for gldfitt is not relevant to the
example).

To track the read write information for the pointer fields wéead each edge label
to[offset , linearity ,interfere  , readloc-writeloc] wherereadloc
andwriteloc  are defined the same as for the scalar fields in the nodes. Again
clarity, we omitreadloc-writeloc information if it is irrelevant to the example.

Figure 5 shows the model that is computed as the result olu¢irgcthe pair con-
structor in the first example program. The pair is marked agngaread and written
the two pointer fields at initialization (th@2-m2 entries on thdirst  andsecond
edges) and the identity tag is omitted (since this object alksated in the current
scope). The twdata objects which had theiral fields initialized at program location
m2have the entryn2-m2in their scalar-fieldsead/write entry.

[first, m2-m2] [second, m2-m2]

[Data, vaI-m2-m2] [Data, vaI-m2-m2]

Fig. 5. Pair with use-mod

4.3 Local Data Dependence

Now that we have extended the model with the required instniation properties
we can define a set of dataflow operations to model the effégrogram operations
on the read/write information. The changes for load andestqrerations are simple,
only requiring an update of the last read/write value fortdrget object to the current
program location, thus we omit a detailed description o$¢éheperations.

Data Flow Domain. If ¢ is the set of all possible heap graphs a#d= [J(var) x
[J(var) (a simple domain to track which variablesustbe true, the first element of

the pair, and whichmustbe false, the second element) then our abstract domain is
2 =0(9 x B).



Given an element in the abstract domaing 2, we assume the abstract semantics
are defined for expressions and statements. Thus, giverpagssiore, the abstract se-
mantics of this expression on the abstract stetee given by [e] o and similarly for
statemens, the abstract semantics are given#ys]o. Using theZ component of the
domain and a boolean conditibnwe can filter an abstract state= {6,,..., 6} into
two new abstract statesirye = -7 [bJtrue(0) = { 6 | b maybe true in6 } and Gigise =
Z[b] taise(0) = { 6 | b maybe false in6;}.

Abstract Conditional Semantic&lsing the above definitions we can write the standard
definition for theif statement,”if (b) block else block]o = .#[block](0irue) U
[[blocks ] (Oraise)- However, using this definition of the semantics can resuéxpo-
nential growth in the number of states that the analysis mhest with (since for most
cases at the union of the abstract states that result frolyz@mgtrue andfalsebranches
will have many models that are identical except for a feadloc—writeloentries).

To avoid this we replace all theeadloc—writelocentries that refer to program
locations in thetrue or false branches of the conditional with the program location
of the conditional before the union operation. Thus anyedéhces that are solely
due toreadloc—writelocentries are removed and exponential growth is avoided.riGive
o ={6,...,6} and ablockwhich contains statements/control structures at program

locationspl = {vs,...,v;}, we define the operatdk(o,block ) = {6||ﬁ, 6 € 0},

which performs the required replacements in the heap gragtets. With this defini-
tion the improved semantics for the conditional operatairpfogram locatior) are:

Zif (b) block else block]o =
& (7 [block](0iue),block, k) U &([block: | (Otaise) , blocks , k)

Disjunctive Domain.To speed program analysis we employaatially disjunctive do-
main[11] which we use to discard elements in the abstract st@fethét contain redun-
dant read/write information. This is done by defining an oatethe program locations
based on their control-flow order. In general this order isoial (e.g. statement loca-
tions in thetrue andfalsebranches of aif statement). However, our replacement of
locations inside nested control—flow structures with thegpam location of the struc-
ture that contains them ensures that we can always compapedhram locations that
appear in theeadloc—writelocentries.

Analyze Conditional Examplerigure 6(a) is the abstract heap that approximates the
state of the program after thiue branch ([block](0ie)), where the first element
of the pair had thevsal field written. In the node that represents thata object
that was written we updated theriteloc entry to program locatiom4 (where the
write occurred, marked in red if color is available). Fig@@) shows the result of
& (7 [block](owue), block, m3), where we replaced threadloc—writelodocations that
appear in thérue branch with program location of the statement (program location
m3, shown in blue).

Figure 6(c) shows the abstract heap fromfiddeebranch where no write occurred
(- [blocks ]| (ataise))- The most recemhodlocation is unchanged (program location,



[first, m2-m2] [second, m2-m2] [first, m2-m2] [second, m2-m2]

[Data, val-m2-m4] [Data, vaI-mZ-mZ] [Data, val-m2-m3] [Data, vaI-mZ-mZ]
(a) True Branch (b) True, After Mod Location Update

[first, m2-m2] [second, m2-m2] [first, m2-m2] [second, m2-m2]

Data, val-m2-m2 Data, vaI—m2—m2] [Data, val—m2—m3] Data, val-m2-m2

(c) False, After Mod Location Update(d) Discard Subsumed False Branch
Fig. 6. Updating Read/Write Locations At Control Flow Join

where the object was initialized) & (.7 [block;](Oraise), blocks,m3) since program
locationm2is not nested in the conditional.

Given our order relation on these-modsites we can simplify the models resulting
from thetrue andfalsebranches into a single model shown in Figure 6(d). Intuijive
themay use-modhformation from thetrue branch indicates that the memory location
atp.first.val mayhave been written at location3(theif statement) or at some
previous point in the program, while the result of flaése branch indicates that the
memory location ap.first.val mayhave been written at locatian2 Since the
possibility that the object may be written at or before pesgiocationm2is implied
by the statement that the objewtybe written at or before program locatiorBwe can
safely discard the model from tliglsebranch.

Abstract Loop SemanticsThe semantics of a looping statemevttile at program
locationk can be expressed in terms of accumulating all possible &tés To do this
we define the state of the heap at the loop test foi'fhiteration of the loop as:

- fo ifi=0
9= {y[[bloclq} (- [D]true(di-1)) otherwise

Then we can define the semantics of the loop analysis as the afiall the possible
exits from the loop with the read/write program locationattbccur within the loop
body replaced by the program location of the logp. Formally:

#[while(b) blocKia = U { &(.#[b] 1aise( i), block k) | i € N}

4.4 Interprocedural Data Dependence

In order to efficiently handle large programs we memoize ltesaf analyzing each
method. At method call sites, if we were to naively compaeattemoized heap models
with the current call state the method speciBadloc—writelocentries we embed in



the model would create many spurious inequalities. As amei@consider thewap
function from our running example. Ttevap method could be called from multiple
locations in a program and at each of these call sitesPie object may have a
differentreadloc—writelocentries for thefirst ~ andsecond fields. If comparision
is done in a naive manner these differences will result irrisps mismatches with
memoized analysis values, forcing the method to be re-aedlior each call.

To avoid this problem we anonymize theadloc—writelodocations before attempt-
ing to find a match in the memo table. However, when doing thngmization we
need to ensure that we can figure out which locations in thétresapmayhave been
read/written in the call and whicimustnot have been read/written (and thus have the
samereadloc—writeloaentry as before the call).

Call Example. The anonymization and remapping operations are concépgialple
but without some intuition into how they function the defioits are difficult to follow.
Thus, we first examine how thewap call is handled in the pair example. Figure 7
shows the steps that are taken to analyze the call at progaatidnm5 assuming that
the memo table contains Subfigures 7(a) and 7(b) as a meneeaid

Figures 7(a) and 7(b) show that during the analysis o$tix@ method the analysis
has determined thfi'st  andsecond fields have been read and written (tkeadloc
andwriteloc entries refer to program locations within theap method s2, s3ands4)
but that theval fields are neither read nor written. Treadlocandwriteloc entries are
the modified—outsidealue 0. Further, based on the identity tag sets we know lteat t
object which was stored in tHest  field at the method entry (Figure 7(a)) and was
given the identity tag 2 is stored in tlsecond field at the method exit (Figure 7(b)).
A similar situation holds for the object stored in thecond field at the method entry,
which was assigned the identity tag 3.

Figure 7(c) shows the state of the heap model at the calllsitatjonmb) after we
have added fresh tags (7, 8, and 9) to uniquely identify trlesoAfter anonymizing
the locations of theeadloc—writelocentries to thenodified—outsidgalue (0) we have
the model shown in Figure 7(d), which is isomorphic (up tantity tags) to the model
in our memo table, Figure 7(a).

During the anonymization we construct a map from the idgrtigs we added
and the field identifiers to theeadloc—writelocentries in the caller scope that we are
anonymizing. This gives us the miodM= {(7,first ) — (m2,m2), (7,second ) —
(m2,m2), (8,val ) — (m2,m3), (9,val ) — (m2,m2)}. Using the isomorphism from
Oin — Ocal We have a mapl = {1— 7,2 — 8,3 — 9}.

Using these maps we transfer the read/write informatiomftoe call input to the
memoized output, replacing amgadloc—writelocentries that refer to program loca-
tions in the callee bodys(vap) with the program location of the call site (program
locationm5) and replacing any occurrences of tmedified outsidealue with the ap-
propriate entry froomodM In Figure 7(b) the node with identify tag 2 has thedified
outsidevalue for thereadlodwritelocof theval field (val-0-0 ). To place the correct
readloc—writelocvalues into this node we look up the node that it maps to in dilerc
scope (via thdT map), which gives us the identity tag 8. Then we look up théecal
scopereadloc—writelocinformation in themodM map, which gives us the read/write
information for the fieldm2-m3.



This remapping gives us the result in Figure 7(e), which shibwvat the object stored
in thesecond field of thePair object may have been written at program locatiod
but that the object stored in ttiiest  field has not been modified since initialization
at program locatiom?2 Thus, we can determine that the read frpfirst.val is
non-zero and the assertion will always succeed.

[first, 0-0] [second, 0-0] [first, s2-s3] [second, s3-s4]

(Data, val-0-0,2) ] (Data, val-0-0, (3} ] (Data, val-0-0,(3}]  (Data, val-0-0, 2}
(@) Memo In (b) Memo Out

[first, m2-m2] [second, m2-m2] [first, 0-0] [second, 0-0] [first, m5-m5] [second, m5-m5]

[Data, val-m2-m3, (8)] [Data, val-m2-m2, (9)] [ Data, val-0-0, {8} ] [ Data, val-0-0, {9} ] [Data, val-m2-m2, (9)] [Data, val-m2-m3, (8)]
(c) CallIn (d) Anonymized (e) Call Out

Fig. 7. Mapping Through Memoization

Dataflow Operations.For a method invocation at call sifgy we give each node in
the call stategey a unique tag € N, set the read/write location to tineodified outside
value and build a mapodM: N x field — (¢, 4y).

We then compare the anonymized versiowgfi with the entries in the memo table
ignoring the read/write information. If a mat¢hy,, doyt) is found then there is a graph
isomorphism® : g, — Ocq)i- This isomorphism and the fact that the set of location tags
in gin andayyt are the same implicitly defines amdp; { k | kK a location tag € gout} —
{K’| k" alocation tag € gcq}. Using this map we can then compute the result of the
call by replacing anyeadloc—writeloovalues () for the fields in each nodewith:

(0 = Lean, if £ is a location in the callee method
¥ 7 max({n' x| k € niidentityAn’ € ocan A (k) € n.identity} ), otherwise

5 Experimental Results

In this section we examine how the data dependence infoomedin be used to perform
thread level parallelization on variations of two of the m@omplex JOIlden bench-
marks,em3d andbh [13, 10]. To asses the performance of our approach we examine
the analysis runtime on the JOIden suite, several of the $PEIB benchmarks [16],
and a logic formula manipulation program we developed asctese.



5.1 Case Studies:

Em3d. The first application of the read/write dependence infdgimmawe look at is
performing thread—level parallelization of tken3d benchmark. In Figure 2 we show
the code for updating thealue field of a singleENode object. By applying our
read/write analysis we obtain the model in Figure 8 at theadridle method body. We
see that some object from the list of magnetic field nodes hddhevalue field both
read and written in the loopgadloc= c2 andwriteloc = c2 (marked in red if color
is available), while there have been reads fromabeffs andfromN pointer fields,
readloc= c2 (marked in green)vriteloc = 0. The pointers in thécomN array have
also been read in order to accessvyhkie fields in theENode objects in the opposite
field, which have been read but not writteagdloc= c2, writeloc = 0).

2, wl /®

ENode, w, vaIue—c2—c2]

[hNodes] [coeffs, w, c2-0]

float[], w, ?-c2-0
[ )

[fromN, w, c2-0]

[?, w, ap, c2-0]

ENode[], w float[], w

[eNodes] [fromN, w] [coeffs, w]

ENode, w, value-c2-0 ]

[, w]

Fig. 8. Em3d With Read/Write Info

el for(int i = 0; i < this.hNodes.size(); ++i)
e2 computeNewValue((ENode) this.hNodes.get(i));

Fig. 9. Main Em3d Compute Loop

Using this information, the fact that each reference in thieeld list LinkList )
of ENode objects refers to a unique object (the edgapsthe omitted default inter-
ference value) and the linear loop iteration, allows us tewmfeine that each magnetic
ENode object is written on a single iteration of the main updatelqmogram location
e2 in Figure 9, which callgomputeNewValue . Given this information it is valid to
thread parallelize this loop (and to vectorize the loopamputeNewValue ). Doing
so results in a speedup of 3.21 on our quad-core test machine.



BH. Figure 10 shows the model that the analysis computes fdrahp based read/write
information in thehackGravity = method of theBarnes—Hutbenchmark. For clarity
we have simplified the heap structure in areas that are rexamed to this example.

Thebh program performs tast—-multipolealgorithm on the gravitational interaction
between a set of bodies (tfBody objects) and uses a space decomposition tree of
Cell objects each of which has\éector containing a subtree or a reference to the
Body objects. The program also keeps two vectors for accessingatieshodyTab
andbodyTabRev . Figure 10 shows the state of the heap model after the loop bod
(Figure 11) that contains the majority of the computatiomtin This loop takes each
Body object and walks the space decomposition tree i(tlo¢ field) to determine a
new acceleration value for tigody object (stored in theewAcc field).

[{?, subp}, h2-0] [root, h2-0

[bodyTabRev]
[bodyTab]

{Cell Vector}, w, C, mass- —0]

[pos, w, h2-0]
-0]

double[], w, ?-h2-0

[vel, w, 0-0]

double[], w, ?-0-0

Body, w, mass-

double[], w, ?-h2-0

[newAcc, w, h2-0]

double[], w, ?-0-h2

[acc, w, 0-0]

doublel], w, ?-0-0

Fig. 10.BH With Read/Write Info

Our analysis is not able to precisely resolve the constrnatif the space decom-
position tree and conservatively assumes it may be a cytelictsire (shown by th€
in the node representing ti@ell objects). However, the analysis is able to determine
that theCell objects and th8ody objects represent distinct regions in the program.
This piece of information combined with the observatiort the space decomposition
tree is only read in the loop body (all theadlocentries set tdh2, marked in green,
and thewriteloc entries set to 0), that the only part of the heap which is mediifs
never read (thedouble[]  stored in thenewAcc field, writeloc = h2, set to red), and
that the collection being indexed over (tWector referred to by théodyTabRev
field) does not have multiple references to the same objee?@dge isnp, the omitted
default interference value), is sufficient to ensure thatdtare no heap—carried depen-
dence in this loop. Thus, we can safely thread—parallelieddop body, achieving a
factor of 2.98 speedup on our test machine.



hl Iterator b = this.bodyTabRev.iterator();
h2  while(b.hasNext())
h3 ((Body) b.next()).hackGravity(rsize, root);

Fig. 11.Main Update, Gravity Computation

5.2 Performance

The analysis algorithm was written in C++ and compiled ugiog4.2. The analysis as
well as the parallelization benchmarks were run on a 2.6 Gitld fjluad-core machine
with 4 GB of RAM (although memory consumption never exceegie¥iB).

The original Java programs are transformed into MIL programd the required
stub code is added to enable the analysis of the standardil@arées (which requires
from 200-600 lines depending on which libraries the benatirases). These MIL pro-
grams are then processed by the analyzer. A demo versior afilyzer and bench-
marks can be obtained at [13].

Benchmark.OC|ClassegMethodsAnalysis Time|ShapeRW Dep
bisort 560 |36 348 0.26s Y Y
mst 668 |52 485 0.12s Y Y
tsp 910 |42 429 0.15s Y Y
em3d 110356 488 0.31s Y Y
perimeter (111444 381 0.91s P N
health 126959 534 1.25s Y Y
voronoi  |132458 549 1.80s Y Y
power 175257 520 0.36s Y Y
bh 230461 576 1.84s P Y
db 198568 562 1.42s Y Y
logic 396072 620 48.26s P Y
raytrace |580963 506 37.09s Y Y

Fig. 12.LOC is the size of the program after transformation to MiLc{irding library stub code
that must be analyzed), Classes/Methods are the numbeassfed/methods in the program (in-
cluding Java Libraries that are used). Shape reports the d@mmectivity is correctly identified
and RW Dep reports if the RW information is useful (as in Seth.1).

We report Y(es) in th&hapecolumn if the analysis correctly identified all the rel-
evant the shape information of the heap structures in thgrano. P(artial) means the
analysis was able to determine the precise shape for sorhe déta structures but that
some properties were missed.

We report similar information for the utility of the RW inforation. Y(es) means
the read/write information would be sufficient to introdwstéstantial thread level par-
allelism (as in Section 5.1) and provides the informatiaquieed to enable significant
instruction level parallelism optimizations (e.g. codetimo to improve scheduling,
elimination of redundant loads/stores or the identifigatibloop invariant values). We
Report (N)o for only one of the benchmarkgrimeter, where the read/write informa-



tion does not enable any thread level parallelism and ordpks minor scheduling or
load elimination opportunities.

Our experimental results show that the analysis is capdbédfioiently comput-
ing very precise heap—carried dependence informationavange of benchmarks. In
particular the ability to compute this information on thenbkemarksh, em3d, voronoi
andraytrace is a significant advance in the state of the art for understgntie pro-
gram heap. Computing precise shape and dependence inifmnfaatthese benchmarks
requires the analysis to precisely model recursive datiatstres, Java collections, non-
trivial sharing between components of the heap and, in dodmmpute the dependence
information, to precisely track the part of the heap each/veidte affects.

The analysis presented in this paper is not only capable @frately modeling
all of these features but is able to do so efficiently (analyzhe smaller benchmarks
takes less than 2s per benchmark eaytkace at 5809 LOC takes only 37s). Based on
these results we believe that the analysis reported in #pgpis robust enough to be
generally useful in the optimization of smaller Java progsand we plan to continue
work on scaling the analysis to handle larger programs wighsame level of precision.
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