
Identification of Heap–Carried Data Dependence
Via Explicit Store Heap Models

Mark Marron1, Darko Stefanovic1, Deepak Kapur1, and Manuel Hermenegildo1,2

1University of New Mexico,{marron, darko, kapur }@cs.unm.edu
2Technical University of Madrid and IMDEA-Software,herme@fi.upm.es

Abstract. Dependence information between program values is extensively used
in many program optimization techniques. The ability to identify statements,
calls and loop iterations that do not depend on each other enables many trans-
formations which increase the instruction and thread-level parallelism in a pro-
gram. When program variables contain complex data structures including arrays,
records, and recursive data structures, the ability to precisely model data depen-
dence based on heap structure remains a challenging problem.
This paper presents a technique for precisely tracking heapbased data depen-
dence in non-trivial Java programs via static analysis. Using an abstract interpre-
tation framework, the approach extends a shape analysis technique based on an
existing graph model of heaps, by integrating read/write history information and
intelligent memoization. The method has been implemented and its effectiveness
and utility are demonstrated by computing detailed dependence information for
two benchmarks (Em3d and BH from the JOlden suite) and using this information
to parallelize the benchmarks.

1 Introduction

The concept of data dependence between program statements is a fundamental tool for
the reordering of program statements and the determinationof invariant values in basic
blocks, loops, or methods. Knowledge of data dependence allows the introduction of
instruction–level parallelism and thread–level parallelism (both in loops and method
invocations). In past work effective techniques for computing data dependence between
scalar variables have been developed. However, the extension of this work to tracking
memory–carried data dependence has been much less successful, in large part due to
the lack of suitable heap analysis techniques to support them.

Previous work focused broadly on two approaches for identifying possible heap–
carried data dependence, shape or points-to analysis as a proxy for data dependence [4,
7, 2, 14] wherein the identification of various acyclic structures and/or access path in-
formation is used to infer which expressions cannot access the same portion of the heap,
and the explicit tracking of read/written locations [8, 3, 9] which model the set of loca-
tions that may be read/written at each program point. This work introduced several fun-
damental concepts involved in modeling heap carried data dependence. However exper-
imental work with these approaches was limited to small numbers of micro-benchmarks
or used coarse points-to style analysis.

This work is supported in part by NSF grant 0540600.

This paper builds on the basic concepts developed in earlierwork and makes several
contributions which are critical to analyzing non-trivialprograms. The first is a novel
method for tracking read/write locations during the analysis. The approach presented in
this paper only tracks a two program locations per object field (one read location and
one write location) instead of a set of all possible read locations and a set of all possible
write locations per field. This is sufficient to identify the most recent program point
where each memory location may be used/modified while avoiding the additional space
usage and computational cost of tracking a set of program locations per object field. The
next contribution is a method to efficiently track read/write information through method
boundaries, in particular how to ensure that the addition ofuse–modinformation does
not have a serious impact on the memoization of method body analysis results, which
is critical to applying the technique to realistic programs.

Our analysis technique uses an explicit store model for the heap objects which al-
lows us to easily track the identity of objects between program statements. This differs
from some recent work on shape analysis, which uses logical models with implicit store
representations [15, 5] that cannot be efficiently extendedto track the properties of ar-
bitrary heap locations. It also differs from approaches based on separation logic which
restrict the program to regular recursive structures and limited sharing of objects on
the heap in order to ensure termination [6, 1]. These features preclude the use of these
approaches on many realistic application programs including theem3d andbh bench-
marks, which we analyze as detailed case studies here.

2 Running Examples

We use examples in this paper to illustrate the various aspects of the analysis technique.
The first is a small fragment created solely to illustrate thebasics of the analysis. The
second is a routine taken fromem3d, one of the JOlden [13, 10] benchmarks.

m1 void main() {
m2 Pair p = new Pair(new Data(5), new Data(10));
m3 if(*)
m4 p.first.val = 0;
m5 swap(p);
m6 assert(p.first.val != 0);
m7 }

s1 void swap(Pair p) {
s2 Data temp = p.first;
s3 p.first = p.second;
s4 p.second = temp;
s5 }

Fig. 1. Conditional Modify and Swap

c1 static void computeNewValue(ENode n) {
c2 for(int i = 0; i < n.fromCount; i++)
c3 n.value -= n.coeffs[i] * n.fromN[i].value;
c4 }

Fig. 2.Compute (Fromem3d)

The first example 1 creates 2Data objects, each of which has a single integer field
val , and puts them in aPair object. If the conditional holds thefirst element of
the pair is modified and then the swap method is called to interchange thefirst and
second elements of the pair. This example is simple but relevant since in order to
determine that the asserted property always holds the analysis needs to be able to track
how pointer stores affect reachability relations in the heap, to identify where each heap
location may be written, and do so across method invocations.

The second program fragment is a method taken from theem3d benchmark. This
program builds a bipartite heap structure. Each call tocomputeNewValue takes a
ENode object from one side of the bipartite graph and updates thevalue field of this
node based on the value fields ofENode objects on the opposite side of the bipartite
graph. This example demonstrates the importance of precisely resolving the heap struc-
ture so the dependence analysis can determine that the set ofheap location where the
value field is written is distinct from the locations that are read.

3 Abstract Heap Domain

The underlying abstract heap domain that we extend is a graphin which each node
represents a region of the heap (a set of objects or data structures) or a variable and
each edge represents a set of pointers or a variable target. The nodes and edges are
augmented with additional instrumentation predicates.
Types.Since each node in the graph represents a region of the heap (which may contain
objects of many types) we use a set of type names for each node in the heap graph which
contains the type of any object that may be in the region of theheap that is abstracted
by the given node.
Linearity. To model the number of objects abstracted by a given node (or pointers by
an edge) we use alinearity property which has 2 possible values 1, which indicates that
the node (edge) concretizes to either 0 or 1 objects (pointers) and the valueω , which
indicates that the node (edge) concretizes to any number of objects (pointers) in the
range[0,∞).
Abstract Layout.To track the connectivity and shape of the region a node abstracts, the
analysis usesabstract layoutpredicatesSingleton, List, Tree, MultiPath, or Cycle. The
Singletonpredicate states that there are no pointers between any of the objects repre-
sented by an abstract node. TheList predicate states that each object has at most one
pointer to another object in the region. The other predicates correspond to the standard
definitions for Trees, Dags, and Cycles in the literature.
Interference.The heap model uses two properties to track the potential that multiple
pointers or variables can reach the same memory location in the region that a particular

node represents. In this work the examples only require one of these properties (inter-
ference) so we omit the discussion of the other property (connectivity) and refer the
interested reader to [12] for a more detailed description.

Each edge abstracts a set of pointers in the concrete program. Theinterfereproperty
has three possible values, to track that some of the pointersmay alias (ap), that none
of the pointers alias but they may point into the same data structure (thus can interfere,
ip), or that each of the pointers refers to a unique and disjointdata structure in the node
that the edge ends at (they are disjoint and non-interfering, np).

Heap Representation.We represent abstract heaps pictorially as labeled, directed multi-
graphs. The variable nodes are labeled with the variable that they represent. The nodes
representing the regions are represented as a record[type , linearity , layout]
that tracks the instrumentation predicates.

The edges (which represent sets of pointers) in the figures are represented as records
[offset , linearity , interfere] . The offsetcomponent indicates the offsets
(labels) of the references that are abstracted by the edge. These labels may be any of the
field identifiers that are used in the program or the special label, ?, which is the label
given to the summary field representing all the elements in a collection objectVector ,
List , or an array.

To simplify the figures we omit entries in the labels when theyare the default do-
main value. The default values for the nodes arelayout= (S)ingletonandlinearity = 1.
The default edge values arelinearity = 1 andinterfere= np. The variable edges always
represent single references and the label is always implicitly the variable name.

3.1 Heap Structure Examples

Pair Example.Figure 3 shows the heap model (without any read/write information) that
is computed as the result of executing the pair constructor in the first example program.
The variablep points to a single object of typePair (thelinearity is 1 and the shape in
Singleton, as described above this default information is omitted from the figure). The
node representing thePair object has 2 outgoing edges representing the two pointers
stored in thefirst andsecond fields. The analysis determines that these edges each
represent a single pointer (and since any edge representinga single pointer cannot have
any interference theinterfereproperty isnp). Again the default properties of linearity
1 and non-interference are omitted from the figure. Finally,the model shows that the
first andsecond pointers each refer to a singleData object.

Em3d Example.The state of the heap at the entry to thecomputeNewValue method
in the programem3d is shown in Figure 4 (again without any read/write information).
The em3d program computes electro-magnetic field values in a 3–dimensional space
by constructing a list ofENode objects, each representing an electric field value and
a second list ofENode objects, which represent a magnetic field values. To compute
how the electric/magnetic field value for a givenENode object is updated at each step
the computeNewValue method uses an array ofENode objects from the opposite
field and performs a convolution of these field values and a scaling vector, updating the
current field value with the result.

Fig. 3. Pair Allocation, Structure Only

Fig. 4.computeNewValue , Structure Only

Figure 4 shows the heap structure computed for thecomputeNewValue method.
We have placed dashed lines around the structures that represent the magnetic field (in
blue if color is available) and the electric field (in green).Variableg points to a single
object of typeBiGrph , which is the data structure that encapsulates all the objects of
interest. TheBiGrph object has 2 fields, thehNodes field pointing to a linked list of
ENode objects that make up the magnetic field and, theeNodes field pointing to a
linked list ofENode objects that make up the electric field.

Looking at the structures in the magnetic field we see the edgelabeled[?, ω] which
represents all the pointers stored in the linked list. Sincethe linearity isω we know the
edge may represent multiple pointers but each of these pointers must point to a unique
ENode object (the default interference value of non-interferingnp is omitted). The
figure also shows that the magnetic field is represented by many ENode objects (the
node labeled[ENode,ω]) each of which has a pointer to a unique array offloats
(the edge labeledcoeffs) and an array ofENode objects (the edge labeledfromN)
which are used as the set of nodes from the opposite field. The edge that represents the

pointers stored in this array is labeled[?, ω , ap], which indicates that it represents all
the pointers stored in the array and, that the pointers it represents may alias (ap).

4 Data Dependence Extensions

To track the read/write histories of objects on the heap we extend the model presented
in Section 3 with information to track the identity of the objects represented by a given
node, and for each field in the object we track themost recentprogram location (state-
ment or control flow structure) where a read/write of that field mayhave occurred.

In order to ensure that the initial shape analysis when augmented with the read/write
domain remains efficient it is critical to minimize the amount of additional information
that is added to the heap model. The key observation is that for most optimization
applications the shape analysis only needs to provide precise information about the
most recentprogram location at which each fieldmayhave been read or written. Thus,
the analysis does not need to track every possible program location where a field may
have been read/written, and this significantly reduces the computational requirements.

4.1 Intermediate Representation

Before we introduce the domain extensions we need to specifyhow program locations
are represented. To simplify the analysis the Java programsare transformed into a struc-
tured mid-level intermediate language (called MIL). The partial grammar below pro-
vides a sample of the language constructs in the intermediate representation.

atom ::= var | literal
expr ::= atom| atom+atom| newtype(atom, . . . ,atom) | var. f

| var.m(atom, . . . ,atom) | var instanceoftype| . . .

stmt ::= var=expr| var. f =atom| break| . . .

contol ::= if(atom) blockelseblock| while(atom) block| . . .

block ::= (stmt| control)∗

The language has method invocations, conditional constructs (if , switch), ex-
ception handling (try-throw-catch) and looping statements (for , do , while).
The state modification and expressions cover the standard range of program operations
(load, store and assign along with logical, arithmetic and comparison operators). We
associate with each statement and each control flow structure a program locationℓ.

4.2 Extended Domain

Read–Write Locations.Each node may represent a number of objects of different types
(τ1 . . .τm) and each type may have many fields (f 1

τi
. . . f n

τi
). For each of these fields we

keep two program locations (ℓ), the last time the fieldmayhave been read (ℓr) and the
last time the fieldmayhave been written (ℓw).
Node Identity.In order to efficiently analyze method invocations we memoize the in-
put and return abstract states and reuse them as possible. Inorder to prevent spurious
inequalities between the read/write program locations (that refer to the locations in the

caller scope) in the memoized models we replace them with a genericmodified outside
value. To allow us to match the identities of the objects in the input state with their
position in the output state we add a unique identity tag (a value inN) to each node that
is passed into a method call.

In our extended domain each node in the heap is now represented as a tuple[type ,
linearity , layout , scalar-fields , identity] . The entriestype , layout
and count are as described in Section 3. Thescalar-fields entry is a list of
field-readloc-writeloc entries, one for each scalar field, wherereadloc
andwriteloc are either a program locationℓ or the special entry 0 (modified out-
side). The identity entry is asetof identity tags or is omitted entirely if the node
does not have a identity tag associated with it (or for clarity if it is not relevant to the
example).

To track the read write information for the pointer fields we extend each edge label
to [offset , linearity , interfere , readloc-writeloc] wherereadloc
andwriteloc are defined the same as for the scalar fields in the nodes. Again, for
clarity, we omitreadloc-writeloc information if it is irrelevant to the example.

Figure 5 shows the model that is computed as the result of executing the pair con-
structor in the first example program. The pair is marked as having read and written
the two pointer fields at initialization (them2-m2 entries on thefirst andsecond
edges) and the identity tag is omitted (since this object wasallocated in the current
scope). The twoData objects which had theirval fields initialized at program location
m2have the entrym2-m2 in theirscalar-fieldsread/write entry.

Fig. 5. Pair with use-mod

4.3 Local Data Dependence

Now that we have extended the model with the required instrumentation properties
we can define a set of dataflow operations to model the effects of program operations
on the read/write information. The changes for load and store operations are simple,
only requiring an update of the last read/write value for thetarget object to the current
program location, thus we omit a detailed description of these operations.

Data Flow Domain. If G is the set of all possible heap graphs andB = ℘(var)×
℘(var) (a simple domain to track which variablesmustbe true, the first element of
the pair, and whichmustbe false, the second element) then our abstract domain is
D =℘(G ×B).

Given an element in the abstract domain,σ ∈ D , we assume the abstract semantics
are defined for expressions and statements. Thus, given an expressione, the abstract se-
mantics of this expression on the abstract stateσ are given byS JeKσ and similarly for
statements, the abstract semantics are given byS JsKσ . Using theB component of the
domain and a boolean conditionb, we can filter an abstract stateσ = {θ1, . . . ,θk} into
two new abstract statesσtrue = S JbKtrue(σ) = {θi | b maybe true inθi} andσfalse =
S JbK f alse(σ) = {θi | b maybe false inθi}.

Abstract Conditional Semantics.Using the above definitions we can write the standard
definition for theif statement,S Ji f (b) blockt else blockf Kσ = S JblocktK(σtrue) ∪
S Jblockf K(σfalse). However, using this definition of the semantics can result in expo-
nential growth in the number of states that the analysis mustdeal with (since for most
cases at the union of the abstract states that result from analyzing trueandfalsebranches
will have many models that are identical except for a fewreadloc–writelocentries).

To avoid this we replace all thereadloc–writelocentries that refer to program
locations in thetrue or false branches of the conditional with the program location
of the conditional before the union operation. Thus any differences that are solely
due toreadloc–writelocentries are removed and exponential growth is avoided. Given
σ = {θ1, . . . ,θk} and ablock which contains statements/control structures at program

locationspl = {ν1, . . . ,νi}, we define the operator♣(σ ,block,µ) =
{

θi |
µ
pl

∣

∣

∣
θi ∈ σ

}

,

which performs the required replacements in the heap graph models. With this defini-
tion the improved semantics for the conditional operation (at program locationκ) are:

S Ji f (b) blockt else blockf Kσ =
♣(S JblocktK(σtrue),blockt ,κ)∪♣(S Jblockf K(σfalse),blockf ,κ)

Disjunctive Domain.To speed program analysis we employ apartially disjunctive do-
main[11] which we use to discard elements in the abstract states (θi) that contain redun-
dant read/write information. This is done by defining an order on the program locations
based on their control–flow order. In general this order is not total (e.g. statement loca-
tions in thetrue andfalsebranches of anif statement). However, our replacement of
locations inside nested control–flow structures with the program location of the struc-
ture that contains them ensures that we can always compare the program locations that
appear in thereadloc–writelocentries.

Analyze Conditional Example.Figure 6(a) is the abstract heap that approximates the
state of the program after thetrue branch (S JblocktK(σtrue)), where the first element
of the pair had theval field written. In the node that represents theData object
that was written we updated thewriteloc entry to program locationm4 (where the
write occurred, marked in red if color is available). Figure6(b) shows the result of
♣(S JblocktK(σtrue),blockt ,m3), where we replaced thereadloc–writeloclocations that
appear in thetrue branch with program location of theif statement (program location
m3, shown in blue).

Figure 6(c) shows the abstract heap from thefalsebranch where no write occurred
(S Jblockf K(σfalse)). The most recentmodlocation is unchanged (program locationm2,

(a) True Branch (b) True, After Mod Location Update

(c) False, After Mod Location Update(d) Discard Subsumed False Branch

Fig. 6. Updating Read/Write Locations At Control Flow Join

where the object was initialized) in♣(S Jblockf K(σfalse),blockf ,m3) since program
locationm2 is not nested in the conditional.

Given our order relation on theuse-modsites we can simplify the models resulting
from thetrue andfalsebranches into a single model shown in Figure 6(d). Intuitively
themay use-modinformation from thetrue branch indicates that the memory location
atp.first.val mayhave been written at locationm3(theif statement) or at some
previous point in the program, while the result of thefalsebranch indicates that the
memory location atp.first.val mayhave been written at locationm2. Since the
possibility that the object may be written at or before program locationm2 is implied
by the statement that the objectmaybe written at or before program locationm3we can
safely discard the model from thefalsebranch.

Abstract Loop Semantics.The semantics of a looping statementwhile at program
locationκ can be expressed in terms of accumulating all possible exit states. To do this
we define the state of the heap at the loop test for theith iteration of the loop as:

σi =

{

σ if i = 0
S JblockK(S JbKtrue(σi−1)) otherwise

Then we can define the semantics of the loop analysis as the union of all the possible
exits from the loop with the read/write program locations that occur within the loop
body replaced by the program location of the loop (κ). Formally:

S Jwhile(b) blockKσ =
⋃

{

♣(S JbK f alse(σi),block,κ)
∣

∣ i ∈ N
}

4.4 Interprocedural Data Dependence

In order to efficiently handle large programs we memoize results of analyzing each
method. At method call sites, if we were to naively compare the memoized heap models
with the current call state the method specificreadloc–writelocentries we embed in

the model would create many spurious inequalities. As an example consider theswap
function from our running example. Theswap method could be called from multiple
locations in a program and at each of these call sites thePair object may have a
different readloc–writelocentries for thefirst andsecond fields. If comparision
is done in a naive manner these differences will result in spurious mismatches with
memoized analysis values, forcing the method to be re-analyzed for each call.

To avoid this problem we anonymize thereadloc–writeloclocations before attempt-
ing to find a match in the memo table. However, when doing this anonymization we
need to ensure that we can figure out which locations in the result heapmayhave been
read/written in the call and whichmustnot have been read/written (and thus have the
samereadloc–writelocentry as before the call).

Call Example.The anonymization and remapping operations are conceptually simple
but without some intuition into how they function the definitions are difficult to follow.
Thus, we first examine how theswap call is handled in the pair example. Figure 7
shows the steps that are taken to analyze the call at program locationm5assuming that
the memo table contains Subfigures 7(a) and 7(b) as a memoizedresult.

Figures 7(a) and 7(b) show that during the analysis of theswap method the analysis
has determined thefirst andsecond fields have been read and written (thereadloc
andwriteloc entries refer to program locations within theswap method,s2, s3ands4)
but that theval fields are neither read nor written. Thereadlocandwritelocentries are
themodified–outsidevalue 0. Further, based on the identity tag sets we know that the
object which was stored in thefirst field at the method entry (Figure 7(a)) and was
given the identity tag 2 is stored in thesecond field at the method exit (Figure 7(b)).
A similar situation holds for the object stored in thesecond field at the method entry,
which was assigned the identity tag 3.

Figure 7(c) shows the state of the heap model at the call site (locationm5) after we
have added fresh tags (7, 8, and 9) to uniquely identify the nodes. After anonymizing
the locations of thereadloc–writelocentries to themodified–outsidevalue (0) we have
the model shown in Figure 7(d), which is isomorphic (up to identity tags) to the model
in our memo table, Figure 7(a).

During the anonymization we construct a map from the identity tags we added
and the field identifiers to thereadloc–writelocentries in the caller scope that we are
anonymizing. This gives us the mapModM= {(7, first)→ (m2,m2), (7,second)→
(m2,m2), (8,val) → (m2,m3), (9,val) → (m2,m2)}. Using the isomorphism from
σin 7→ σcall we have a mapΠ = {1→ 7,2→ 8,3→ 9}.

Using these maps we transfer the read/write information from the call input to the
memoized output, replacing anyreadloc–writelocentries that refer to program loca-
tions in the callee body (swap) with the program location of the call site (program
locationm5) and replacing any occurrences of themodified outsidevalue with the ap-
propriate entry frommodM. In Figure 7(b) the node with identify tag 2 has themodified
outsidevalue for thereadloc/writelocof theval field (val-0-0). To place the correct
readloc–writelocvalues into this node we look up the node that it maps to in the caller
scope (via theΠ map), which gives us the identity tag 8. Then we look up the caller
scopereadloc–writelocinformation in themodMmap, which gives us the read/write
information for the field,m2-m3.

This remapping gives us the result in Figure 7(e), which shows that the object stored
in thesecond field of thePair object may have been written at program locationm3
but that the object stored in thefirst field has not been modified since initialization
at program locationm2. Thus, we can determine that the read fromp.first.val is
non-zero and the assertion will always succeed.

(a) Memo In (b) Memo Out

(c) Call In (d) Anonymized (e) Call Out

Fig. 7. Mapping Through Memoization

Dataflow Operations.For a method invocation at call siteℓcall we give each node in
the call stateσcall a unique tagκ ∈ N, set the read/write location to themodified outside
value and build a mapModM : N×field 7→ (ℓr , ℓw).

We then compare the anonymized version ofσcall with the entries in the memo table
ignoring the read/write information. If a match(σin,σout) is found then there is a graph
isomorphismΦ : σin 7→ σcall. This isomorphism and the fact that the set of location tags
in σin andσout are the same implicitly defines a map,Π : {κ | κ a location tag∈ σout} 7→
{κ ′ | κ ′ a location tag∈ σcall}. Using this map we can then compute the result of the
call by replacing anyreadloc–writelocvalues (ℓx) for the fields in each noden with:

(ℓ′x) =

{

ℓcall, if ℓ′x is a location in the callee method
max({n′.ℓx | κ ∈ n.identity∧n′ ∈ σcall ∧Π(κ) ∈ n′.identity}), otherwise

5 Experimental Results

In this section we examine how the data dependence information can be used to perform
thread level parallelization on variations of two of the more complex JOlden bench-
marks,em3d andbh [13, 10]. To asses the performance of our approach we examine
the analysis runtime on the JOlden suite, several of the SPECjvm98 benchmarks [16],
and a logic formula manipulation program we developed as test case.

5.1 Case Studies:

Em3d. The first application of the read/write dependence information we look at is
performing thread–level parallelization of theem3d benchmark. In Figure 2 we show
the code for updating thevalue field of a singleENode object. By applying our
read/write analysis we obtain the model in Figure 8 at the endof the method body. We
see that some object from the list of magnetic field nodes has had thevalue field both
read and written in the loop,readloc= c2 andwriteloc = c2 (marked in red if color
is available), while there have been reads from thecoeffs andfromN pointer fields,
readloc= c2 (marked in green),writeloc = 0. The pointers in thefromN array have
also been read in order to access thevalue fields in theENode objects in the opposite
field, which have been read but not written (readloc= c2, writeloc= 0).

Fig. 8. Em3d With Read/Write Info

e1 for(int i = 0; i < this.hNodes.size(); ++i)
e2 computeNewValue((ENode) this.hNodes.get(i));

Fig. 9. Main Em3d Compute Loop

Using this information, the fact that each reference in the linked list (LinkList)
of ENode objects refers to a unique object (the edge isnp, the omitted default inter-
ference value) and the linear loop iteration, allows us to determine that each magnetic
ENode object is written on a single iteration of the main update loop, program location
e2, in Figure 9, which callscomputeNewValue . Given this information it is valid to
thread parallelize this loop (and to vectorize the loop incomputeNewValue). Doing
so results in a speedup of 3.21 on our quad-core test machine.

BH. Figure 10 shows the model that the analysis computes for theheap based read/write
information in thehackGravity method of theBarnes–Huttbenchmark. For clarity
we have simplified the heap structure in areas that are not relevant to this example.

Thebh program performs afast–multipolealgorithm on the gravitational interaction
between a set of bodies (theBody objects) and uses a space decomposition tree of
Cell objects each of which has aVector containing a subtree or a reference to the
Body objects. The program also keeps two vectors for accessing the bodies,bodyTab
andbodyTabRev . Figure 10 shows the state of the heap model after the loop body
(Figure 11) that contains the majority of the computation inbh. This loop takes each
Body object and walks the space decomposition tree (theroot field) to determine a
new acceleration value for theBody object (stored in thenewAcc field).

Fig. 10.BH With Read/Write Info

Our analysis is not able to precisely resolve the construction of the space decom-
position tree and conservatively assumes it may be a cyclic structure (shown by theC
in the node representing theCell objects). However, the analysis is able to determine
that theCell objects and theBody objects represent distinct regions in the program.
This piece of information combined with the observation that the space decomposition
tree is only read in the loop body (all thereadlocentries set toh2, marked in green,
and thewriteloc entries set to 0), that the only part of the heap which is modified is
never read (thedouble[] stored in thenewAcc field, writeloc= h2, set to red), and
that the collection being indexed over (theVector referred to by thebodyTabRev
field) does not have multiple references to the same object (the? edge isnp, the omitted
default interference value), is sufficient to ensure that there are no heap–carried depen-
dence in this loop. Thus, we can safely thread–parallelize the loop body, achieving a
factor of 2.98 speedup on our test machine.

h1 Iterator b = this.bodyTabRev.iterator();
h2 while(b.hasNext())
h3 ((Body) b.next()).hackGravity(rsize, root);

Fig. 11.Main Update, Gravity Computation

5.2 Performance

The analysis algorithm was written in C++ and compiled usinggcc 4.2. The analysis as
well as the parallelization benchmarks were run on a 2.6 GHz Intel quad-core machine
with 4 GB of RAM (although memory consumption never exceeded60 MB).

The original Java programs are transformed into MIL programs and the required
stub code is added to enable the analysis of the standard Javalibraries (which requires
from 200-600 lines depending on which libraries the benchmark uses). These MIL pro-
grams are then processed by the analyzer. A demo version of the analyzer and bench-
marks can be obtained at [13].

BenchmarkLOC ClassesMethodsAnalysis Time ShapeRW Dep
bisort 560 36 348 0.26s Y Y
mst 668 52 485 0.12s Y Y
tsp 910 42 429 0.15s Y Y
em3d 110356 488 0.31s Y Y
perimeter 111444 381 0.91s P N
health 126959 534 1.25s Y Y
voronoi 132458 549 1.80s Y Y
power 175257 520 0.36s Y Y
bh 230461 576 1.84s P Y
db 198568 562 1.42s Y Y
logic 396072 620 48.26s P Y
raytrace 580963 506 37.09s Y Y

Fig. 12.LOC is the size of the program after transformation to MIL (including library stub code
that must be analyzed), Classes/Methods are the number of classes/methods in the program (in-
cluding Java Libraries that are used). Shape reports the heap connectivity is correctly identified
and RW Dep reports if the RW information is useful (as in Section 5.1).

We report Y(es) in theShapecolumn if the analysis correctly identified all the rel-
evant the shape information of the heap structures in the program. P(artial) means the
analysis was able to determine the precise shape for some of the data structures but that
some properties were missed.

We report similar information for the utility of the RW information. Y(es) means
the read/write information would be sufficient to introducesubstantial thread level par-
allelism (as in Section 5.1) and provides the information required to enable significant
instruction level parallelism optimizations (e.g. code motion to improve scheduling,
elimination of redundant loads/stores or the identification of loop invariant values). We
Report (N)o for only one of the benchmarks,perimeter, where the read/write informa-

tion does not enable any thread level parallelism and only enables minor scheduling or
load elimination opportunities.

Our experimental results show that the analysis is capable of efficiently comput-
ing very precise heap–carried dependence information overa range of benchmarks. In
particular the ability to compute this information on the benchmarksbh, em3d, voronoi
and raytrace is a significant advance in the state of the art for understanding the pro-
gram heap. Computing precise shape and dependence information for these benchmarks
requires the analysis to precisely model recursive data structures, Java collections, non-
trivial sharing between components of the heap and, in orderto compute the dependence
information, to precisely track the part of the heap each read/write affects.

The analysis presented in this paper is not only capable of accurately modeling
all of these features but is able to do so efficiently (analyzing the smaller benchmarks
takes less than 2s per benchmark andraytrace at 5809 LOC takes only 37s). Based on
these results we believe that the analysis reported in this paper is robust enough to be
generally useful in the optimization of smaller Java programs and we plan to continue
work on scaling the analysis to handle larger programs with the same level of precision.

References

1. J. Berdine, C. Calcagno, B. Cook, D. Distefano, P. O’Hearn, T. Wies, and H. Yang. Shape
analysis for composite data structures. InCAV, 2007.

2. B.-C. Cheng and W. mei W. Hwu. Modular interprocedural pointer analysis using access
paths: design, implementation, and evaluation.ACM SIGPLAN Notices, 2000.

3. J.-D. Choi, M. Burke, and P. Carini. Efficient flow-sensitive interprocedural computation of
pointer-induced aliases and side effects. InPOPL, 1993.

4. R. Ghiya, L. J. Hendren, and Y. Zhu. Detecting parallelismin C programs with recursive
data structures. InCC, 1998.

5. S. Gulwani and A. Tiwari. An abstract domain for analyzingheap-manipulating low-level
software. InCAV, 2007.

6. B. Guo, N. Vachharajani, and D. August. Shape analysis with inductive recursion synthesis.
In PLDI, 2007.

7. L. J. Hendren and A. Nicolau. Parallelizing programs withrecursive data structures.IEEE
TPDS, 1(1), 1990.

8. S. Horwitz, P. Pfeiffer, and T. W. Reps. Dependence analysis for pointer variables. InPLDI,
1989.

9. J. Hummel, L. J. Hendren, and A. Nicolau. A general data dependence test for dynamic,
pointer-based data structures. InPLDI, 1994.

10. Jolden Suite. http://www-ali.cs.umass.edu/DaCapo/benchmarks.html.
11. R. Manevich, S. Sagiv, G. Ramalingam, and J. Field. Partially disjunctive heap abstraction.

In SAS, 2004.
12. M. Marron, D. Kapur, D. Stefanovic, and M. Hermenegildo.A static heap analysis for shape

and connectivity. InLCPC, 2006.
13. Modified Jolden and Demo, May 2008.http://www.cs.unm.edu/ ˜ marron .
14. R. Rugina and M. C. Rinard. Automatic parallelization ofdivide and conquer algorithms. In

PPOPP, 1999.
15. S. Sagiv, T. W. Reps, and R. Wilhelm. Solving shape-analysis problems in languages with

destructive updating. InPOPL, 1996.
16. Standard Performance Evaluation Corporation. JVM98 Version 1.04, August 1998.

http://www.spec.org/jvm98.

