Heap Analysis in the Presence of Collection Libraries

Mark Marront Darko Stefanovit

Manuel Hermenegilde?

Deepak Kapur

1 University of New Mexico
2 Technical University of Madrid
{marron,darko,kapur}@cs.unm.edu, herme@fi.upm.es

Abstract

Memory analysis techniques have become sophisticatedyariou
model, with a high degree of accuracy, the manipulation o
memory structures (finite structures, single/double khksts and
trees). However, modern programming languages providenext
sive library support including a wide range of generic aditen
objects that make use of complex internal data structurdslew
these data structures ensure that the collections areeeffiof-
ten these representations cannot be effectively modeleatibting
methods (either due to excessive analysis runtime or dubeto t
inability to represent the required information).

This paper presents a method to represent collections asing
abstraction of their semantics. The construction of thérabsse-
mantics for the collection objects is done in a manner tHatval
individual elements in the collections to be identified. @on-
struction also supports iterators over the collectionsiarable to
model the position of the iterators with respect to the eleen
the collection. By ordering the contents of the collectiasdd on
the iterator position, the model can represent a notion afjf@ss
when iteratively manipulating the contents of a collecti®hese
features allow strong updates to the individual elementkercol-
lection as well as strong updates over the collections tbbmes.

Categories and Subject Descriptors-.3.2 Logics and Meanings
of Program$: Semantics of Programming Languages (program
analysis)

General Terms Languages, Performance, Verification

Keywords shape analysis, static analysis, collection library

1. Introduction
Library-based collections are a fundamental component @d-m

ern programming languages and are used extensively in almos

any non-trivial program. Substantial work has gone intoedtgy-
ing heap analysis tools that can accurately and efficiembyae
simple data structures, mainly lists, trees, and simplécgtruc-
tures [13, 15, 16, 7]. Unfortunately, all of these technigjbhave
aspects that make their use in analyzing large programsutigat
standard libraries impractical. This is either due to thebility to
model the complex data structures (red-black trees, deirkgd
lists with tail pointers, etc.) used in the library code [IBor due to
the computational complexity of performing the analysis, [16].

Permission to make digital or hard copies of all or part o thork for personal or
classroom use is granted without fee provided that copesatr made or distributed
for profit or commercial advantage and that copies bear titiseand the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

PASTE’'07 June 13-14, 2007, San Diego, California, USA.
Copyright© 2007 ACM 978-1-59593-595-3/07/0006. . . $5.00

An alternative to directly analyzing the code that impletsen
the collection objects is to use the semantics of the catleaib-
jects to simulate the effect of each collection operatioaraatomic
program operation. This approach is frequently used toyaedi-
braries or other modules [14, 4, 9, 11, 1].

In addition to the model complexity and performance issues
that arise when directly analyzing the collection librargpie-
mentations the semantics based approach allows the mgd#lin
properties specific to each collection type (e.g. sets newetain
duplicate elements), the selective modeling of progranpgnties
(e.g. modeling sizes of collections without having to tréok size
of every heap region) and the ability to provide high levehae-
tics for complex operations so that a lightweight analysis be
used effectively (e.g. the semantics of sorting a vector).

Our primary contribution in this paper is a method for repre-
senting the semantics of collection libraries and itesatorer the
collections in a shape analysis framework. The repredenttiat
we present for the collection semantics enables the shaggsan
to identify individual elements in the collection, allowinhem to
be strongly updated. The iterator semantics provide a septa-
tion for the notion of progress in the processing of the eleime
in the collections, which allows the shape analysis to ately
model the processing of the collections.

The only property we require from the heap model is the abil-
ity to refine summarized regions of the heap. The refinement of
a summarized region into a set of regions where the relatiens
tween them are explicit is critical to identifying individlmemory
objects and allowing them to b&trongly updated. The approach
presented in this paper can be adapted to the heap modetsiaes
in the TVLA (Three-Valued Logic Analysis) based work [16, 7]
the graph model in [12], or the UMA (Unified Memory Analysis)
model [13]. In order to simplify the construction and to make
examples concrete we focus on the UMA model.

Example Programs

To gain some insight into how our extensions work and interac
with the UMA heap analysis we use the examples in Figure 1. The
examples use objects of typeéd, andt 2. Thet 1 type has a single
fieldval that points to objects of type2. Thet 2 type is a simple
object with no pointer fields. The first code segment is a Idwap t
fills a set with objects of type 1 (all of which have a pointer to
the same object in theal field). The second example takes the
resultingset and updates each element to point to tf2eobject
that the variable points to.

We are using the 1 andt 2 types to keep the examples simple.
However, the methods presented in this paper can handléasimi
programs, with the same level of accuracy, wheteand/ort 2
are replaced by simple finite structures, lists, trees, loerdibrary
collections. The analysis algorithm is also able to analyzeex-
amples when 1 and/ort 2 are replaced with DAG shaped or cyclic
structures, although potentially with reduced accuracy.

Initialize a Set Update all the elements in the set
set p = new set() t2 r = new t2()
tl q iterator i = p.begin()
t2 s = new t2() while(i.isValid())
for(int i =0; i <M ++i) (i.get()).val =r

g = new t1() i . advance()

g.val =s

p.insert(q)

Figure 1. Example Code

In both examples the analysis should determine that every el
ement in theset is unique (although the elements may reference
the same object in theal field). In the second example the anal-
ysis should capture the fact that on each iteration of the the
element that the iterator refers to hasvtl offset updated and
after the loop all the elements in teet have been updated. Thus,
there are no longer any objects in the set with pointers irvtde
field that refer to the same object as the variahle

3. Heap Model

The UMA [13] abstract domain is based on an abstract heaphgrap
model [3, 17, 10]. Each node represents a region of the hedp an
each edge represents a set of pointers. The UMA model uses-a nu
ber of instrumentation domains that, when added to the nadés
edges in the abstract heap graph allows connectivity toawked
more accurately, enables the modeling of shape and endtdes t
refinement of nodes in the heap model.

Regions of the Heap. A region of memory 0 is a subset of
the objects/arrays in memory, all the pointers that contleem
and all the cross region pointers that start or end in this re-
gion. GivenCp C {objects/arrays in memo}y let P; = {pointer
p|3Ja,b e Cq,pis stored ina and points td}. Let P. = {pointer
p|Jae Ch,x¢Cq, pis stored ina and points tx® p is stored in

x and points ta@}. Then a region is the tupl€g, P, F;).

Connectivity. Connectivity within a region describes how ob-
jects/arrays in the region are connected. For a regien(C, P, Fe)
and objectsa, b € C, objectsa andb are connected if they are in
the same weakly-connected component of the g(@hP5); ob-
jectsa andb are disjoint if they are in different weakly-connected
components of the graph.

3.1 Basic Properties

The UMA model uses a number of simple properties to augment
the nodes and edges. The most basic is the numeric abstractio
which has two values, exactly on#) @nd the rangél,] (#). The
other is a set of type names that represents all the posgijies bf

the objects/arrays that the node represents.

3.2 Pointer Connectivity Properties

The UMA model relies on tracking the potential that two pest
can reach the same location in a region of memory to drive the
tracking of theAbstract Layoutsaand to enable the refinement of
the common case heap structures that it encounters.

Connected Edges. The first property is when two pointers are
represented by different edges in the heap model. Givendhe c
cretization operatoy and two edges;, e that are incoming edges
to the noden (end atn), the predicate that defin@sConnectedn
the abstract domain ig;, e, areinConnectedwith respect ta if:
dp1 € y(er) Adpz € y(e2) Ada,b € y(n) s.t. (p1 ends ata) A (p2
ends ab)A (a, b connected iry(n)).

Interfering Pointer Edges. The second property is for the case
where the pointers of interest are represented by the sageeied
the abstract model. To model this, thrgerfere property is intro-
duced. An edgerepresents interfering pointers if there exist point-
ersp,q € y(e) such that the objects thatq point to are connected.
A two-element latticenp < ip, npfor edges with all non-interfering
pointers andp for edges with potentially interfering pointers is
used to represent the interference property.

3.3 The Heap Graph

Each node in the graph contains a record that tracks the tfpes
the objects/arrays that a node represetysed, the total number
of objects/arrays that may be in the region representedibytiue
(siz@, and the abstract layout of a nodayouf. Each node also
needs to track the connectivity relation between each paicom-
ing edges. In [13] a binary relati@onnRC E x E is used to track
theinConnectedelation. However, for this work it is sufficient to
use a simple binary domaic¢nnB, whereconnBis D if all the

in edges must be disjoint ar@@lif any of the in edges may be con-
nected. In this work we assume that the variables may be ctathe
to any edge or variable in the node they refer to and thus aceégl

in the connBbinary predicate. Thus, each node is represented as a
record of the fornf t ypes | ayout size connB].

Each edge contains a record that tracks domain information
about the edge. Theffsetcomponent indicates the offsets (labels)
of the pointers that are abstracted by the edge. The number of
pointers that this edge may represent is tracked withnth&Cut

Next we have the offsets. Each edge in the model represents aproperty. Thenterfereproperty tracks the possibility that the edge

set of pointers and each pointer has an offset (label) asolivith
it. The UMA model allows the offsets to be any of the field iden-
tifiers declared in the program or a special offsetThis special
offset is used to represent pointers which are stored inray.ar
The last of the basic properties is thbstract LayoutThis con-
cept is used to represent the possible memory layouts tlegfi@r
of the heap may have. The possible layouts &imgleton List,
Treg MultiPath, or Cycle Of particular interest are th®ingleton
layout, which indicates that there are no pointers betwegno
the objects in the region, and thést layout, which indicates that
each object has at most one pointer to another object in gierre

represents pointers that interfere. Thus, in the figurek edge is
represented as a recofdf f set maxCut interfere}.

The abstract heap domain is restricted via a normal form. The
normal form ensures that the heap graph remains finite, thaea
outgoing edges from a node have unique labels, and that éhere
no unreachable nodes. The graph is kept finite by ensuringtlya
recursive structure (structures that involve recursiveatypes)
are represented by a finite number of nodes (see [13] for a more
complete description of how this is done). The program asisly
is then performed using sets of the heap graphs to repreasent t
possible program states at each point in the program.

[{t1},S,1,D] [{t1}, S 1,D] [{t1},S,1,D0] [{tl1}, S 1, D]
{val, 1, np} {val, 1, np} {val, 1, np} {val, 1, np}
[{t23,5,1,D] [{t2}.5.1,D]
(a) Disjoint Edges (b) Refined

Figure 2. Refinement of a region with disjoint sub-regions

4. Refinement

During the dataflow analysis, portions of the abstract heaply
are summarized into single nodes to improve efficiency and to
eliminate unbounded recursive data structures. This suinati@n
can cause a substantial loss of accuracy. To minimize teigracy
loss the UMA algorithm uses a technique that (for several-com
mon cases) undoes the summarization by transforming a symma
node into a number of nodes (and edges) such that the redhijn
between variables and regions are more explicit.

There are currently three cases that the UMA algorithm refine
For this paper the only case that is relevant is when all thenm
ing edges for a given node are disjoint. In this case we knaw th
each of these edges represents a set of pointers which ptord i
disjoint sub-region of the region represented by the notiasTthe
algorithm can expand each sub-region into a separate natie in
abstract graph (one for each disjoint edge).

Consider the case in Figure 2(a) where the the two edges with
theval offsets refer to the same node (which is a node represent-

ing cells of typet 2, with aSingletoriayout, that may represent any
number of objects, and all the incoming edgesdisoint). Since
the incoming edges refer to disjoint sections of the node are c
partition this summary node into two distinct nodes. Theifian-

ing results in Figure 2(b). Note that the newly created nazesh
only have a single incoming edge representing at most ongeuoi
and they haveSingletonlayouts. Thus, the node can represent at
most one object and the size is set to 1.

5. Domain Extensions For Collections

The fundamental idea for modeling the collections and fitesa
is to classify the pointers that are stored in a collectidn fiour

categories based on their relation to any iterators thaaetieg on
the collection. Based on this classification we create aiapeffset
for each category, just as was done for arrays in Section 3.1.

¢ Pointers that have an unknown relation to the active iterato
or when there is no active iterator for this collection. Eslge
representing pointers in this category are given the Iabel

¢ The single pointer that the iterator is currently at in théem
tion. The edge representing this pointer is given the l@bel

¢ Pointers that come before (in whatever iterator order isifipd
by the collection) the location that the iterator is at. Exige
representing pointers from this class are given the IBi@!|

¢ Pointers that come after (in whatever iterator order is ifipelc
by the collection) the location that the iterator is at. Exige
representing pointers from this class are given the lAi@!I

This scheme for classifying the pointers in a collection spe-
cific case of thepartitioning functiongthat are used in [6] to parti-
tion arrays of scalars. The definition we use is only preciserw
there is a single iterator that is active in a collection.He tase of
multiple iterators simultaneously indexing through aediion our

partition must conservatively assume that any relatioriccbold
between the positions of the iterators. The use of more fkegir-
titioning functionswvould allow our analysis to partition the pointers
in a collection even when multiple iterators are being useddex
through the collection. However, the use of more gengaatition
functionssubstantially complicates the analysis and we expect that
most of the time only a single iterator will be active in a eclion.
Based on this assumption we opted for the fixed partition.

Modifications to the Model. To model the collections and iter-
ators we need to extend the abstract domain from Sectiont8 wit
some additional properties. The most basic extension iddatze
typesl i st, vector, set, map andi t erat or and the stan-
dard assortment of built-in functions to the primitive tgpand
functions that the analysis understands. We introduce gheld
(@, B@, A@) to represent the partitions introduced by the iterators
in collections. Finally, we want to be able to determine viah{i
any) iterator variable is currently active in a given coliec. To

do this we add aiter field to the record that represents collection
nodes. Thater field is either a variable name, indicating that the
iterator with the given name is being used to partition thetgos

in the collection or to indicate that no iterator variable is currently
being used to partition the collection.

Modifications to the Dataflow Operators. Our modifications
have only a minimal impact on the UMA algorithm and we only
need to modify the node join algorithm. First, we define a sim-
ple function that takes a node and if it is currently partigd on

an iterator forgets all the partition and iterator inforfoat The
procedure tdorgetthis information is shown in Alg. 1.

Algorithm 1 : forgetlterator

input : nanode
if n has an active iteratothen
n.iter < *;
foreach out edge @lo
if e.offsete {B@, @,A@} then e.offset— ?;

When performing the join operation we check if the nodes that
are being joined are from differenbntextggraphs) then if théer
fields are the same we retain the iterator information, etfserwe
forget it by calling thforgetlteratoralgorithm. This is safe since in
both heap graphs the nodes being joined are partitionecttsetine
iterator variable and thus the joined node must be pargétidsy the
iterator variable. Since the edges in the UMA model represeaty
exist pointers, the edges from the collections are cogréethdled.

6. Modeling Iterator and Collection Operations

In this section we look at how the various collection methads
implemented. Even our simplified collection library has aano
trivial number of methods to manipulate the various coitect
objects and the associated iterators. Thus, we focus omilciegc
the most interesting methods. For simplicity we assumedtaif
the out edges for any given node have unique labels (no n@des h
ambiguousdges).

Forget and Clear Iterators. Our library collection semantics as-
sumes that if the collection contents are modified then atiyeac
iterators are invalidated. To model the invalidation of temdtor we
use a methodglearlterator, which first invokes thdorgetlterator
method to erase the iterator and associated edge parfitiem the
clearlterator method joins all theembiguous edged his ensures
that the collection will have (at most) a single edge withltiee|?.

Insertion and Deletion. For the insert operation we first call the
clearlterator method. Next we add an edge from the collection to
the object that we want to add to the collection and we setibel |

of this edge a$.

The deleteoperation for our collection library takes an iterator
and removes the element referred to by that iterator froncdhe
lection. To model this we remove the edge wi@hlabel (which
strongly deletes the iterator target from the collection).

Iterator Initialization and Get. The most common way to initial-
ize an iterator is to get an iterator to the first element (nédpect to
the collection’s iteration order) of a collection. Thegi n method
in our collection library is used to do this. To simulate tlfeet of
this operation in the heap graph (Alg. 2) we use tlearlterator
method to forget the partitioning of any other iteratorstondollec-
tion. Then we create two edges: one is used to representimenst
in the collection that the iterator refers to, the other edgesed to
represent all the elements that come after the elementedftn
by the iterator. Since the iterator must refer to the firsinelpt in
the collection (with respect to iteration order) we do notahen
edge to represent elements that come before the iteraten, e
see if the? edge has the interfere propeity If it does we set the
node that represents the contents of the collection as ¢na@on-

IsValid. In thei sVal i d method we want to (when possible)
propagate the knowledge that on a given gastval i d returned
true or falseand update the model to represent this information. If
we take a branch that can only be executed when a given itésato
invalid then we want to update our model to reflect this infation
(Alg. 4). To do this we have two cases. If the given iteratanas
the active iterator we do nothing. If the given iterator is Httive
iterator we only need to delete the edges with@dabel and the
edges with theA@ label. TheeraseEdgeWithOffseemoves the
edge with a given offset from the abstract heap graph. Oueour
abstraction has no way to represent that an iterator muslizbso

in the case thatsVal i d returnstrue we do not do anything.

Algorithm 4 : isValidsgse

input : i an iterator

n < the target of;

if i is not the active iterator for hen return;
n.eraseEdgeWithOffse®);
n.eraseEdgeWithOffsed(@);

7. Examples

nectededges (since the newly created edges must be connected)|nitialize the Set The set insertion example, Figure 1, demon-

otherwise it is left unchanged. Finally, we delete thedge.

Algorithm 2 : iteratorBegin

input : na collection nodey an iterator variable
n.clearlteraton();

if n does not have an edge with lal®then return;
e, — the edge with labe?;

ny < endpoint ofe;;

e@ < newEdgé@, 1,np);

ea@ — NewEdgéA@, e;.maxCute,.interfere);
add edgegg andeag fromnton;

if e;.interfere= ip then ny.connB« C;

delete edge»;

strates how the insertion operation works and provides aorop-
nity to develop some intuition into how the UMA algorithm vksr
Figure 3(a) shows the abstract domain at the end of the fopt lo
iteration. The variabl@ points to theset object and the variable
s points to the object of type2 that all the elements in the set will
reference (since variable connectivity is ignored to&nBterm
is D). The first of thet 1 objects has been allocated and has had
theval field set. Since we just allocated the object that the node
represents we know it hassizeof 1 and aSingletonlayout.
We also created an edge from thet object to thet 1 object.
Since this edge was just created (by a store to an unknowtidaca
in the collection) it must represent a single pointer stdrethe
collection fnaxCut= 1, interfere= np and offset= ?). Since the
variableq is dead at this point we explicitly nullify it.
Figure 3(b) shows the state of the heap model at the end of the
second iteration. Another element has been allocated awedtéd

Theget operator can be treated as a simple field load off the into the set. Theal offset of this object has been set to refer to the
special field@. Using this approach passes all the work onto the ex- same node that points to. Since there are now two incoming edges

isting UMA framework which performs the appropriate opinat

Iterator Advance. After initializing an iterator we often want to
advance it through the collection (taelvance method) and use
thei sVal i d test to check if the iterator still refers to a valid point
in the collection.

The advance method needs to re-label the existing edge with

the @ label to have thé8@ label and create a new edge with the
@ label that is parallel to the edge with the@ label (if such an
edge exists). This is shown in Alg. 3, which assumes thatitheng
iterator is valid and is the current active iterator for tlodlection.

Algorithm 3: iteratorAdvance

input : nanode that represents a collection

if n does not have an edge with lal@lthen return;
ea@ < the edge with labeh@);

n < endpoint ofea@;

re-label the edge with labé@ to have labeB@;

e@ < newEdgé@, 1,np);

add edgeeg fromnto ny;

if en@.interfere= ip then n,.connB«— C;

that may be connected, the target node hastimmBcomponent
set toC, indicating theval edges may b&nConnected

Since the abstract heap in Figure 3(b) is not in normal foha (t
set node hasambiguousedges) it needs to be normalized (see
Section 3.3). This results in the abstract heap in Figurk 3(c

The two nodes with typ¢ 1 have been combined into a new
summary node. The edges with the lab2lsave been joined and
are represented by an edge labe{@d4, np} since the edge rep-
resents more than one pointer and the pointers cannot engerf
Finally, the edges with the labelsal have been joined and are
represented by an edge that is labefedl ,#,ip} since the edge
represents more than one pointer and the pointers may engerf
(the edges that were joined wergConnecteyl Running through
the loop again produces the same result, thus we have coattred
possible iterations of the loop and are done.

Update the Set The second example from Figure 1 traverses all
elements in theset (from the first example) and updates thal

field of each object to refer to the same objectr ag-igure 4(a)
shows the state of the abstract heap after allocating a dextgact

of typet 2 and initializing the iterator. We have set the iteratdo
point to theset object, created a new edge to represent the single
entry the iterator refers to (the edge with la@@land a new edge to
represent the entries that come later in the iteration dttleredge

[{t1}.S, 1, D|

[{t1}, S, 1,D]

(a) Added First Entry

(b) Added Second Entry

(c) Normalize

Figure 3. Add Elements to a Set Container

with the labelA@). When initializing the iterator the unknown edge
?is npwhich means that the newly created edg@sahd A@) can

not beinConnectedThus, the refinement method can split the node
that represents thel objects into two nodes (one representing
the heap reachable from th@ edge and one representing the
heap reachable from the@ edge). Additionally, the@ edge has
maxCutof size 1 and points to&ingletomode, thus the refinement
algorithm can safely assume that the targetdizsl as well.

This allows the node to be strongly updated when the assign-

ment is done. The result is shown in Figure 4(b). When thatiter
is advanced we set the curre@t edge to have the lab&8@ and
split a new out edge from the curreh@ edge. The result of this is
shown in Figure 4(c), which is the state of the abstract hedpea
end of the first abstract loop iteration.

The state of the heap model at the end of the second iteration i
shown in Figure 4(d). The assignment was able to stronglatepd
the target of theval field of the object referred to by the iterator,
note that theconnBflag in the node pointed to by is set toC to
denote that the edges airgConnected The iterator advance has
indexed the current iterator position, splitting out a n@wvedge
and resulting in two edges with the lat®@. Thus, we need to
combine their targets into a summary node and join the eddes.
results in the abstract heap shown in Figure 4(e).

In Figure 4(e) we have some unknown number of pointers be-
fore the current iterator which all point to unique objectsype

JoldenWC UMA Base UMA Lib
Benchmark || Time | Shape| Speedup|| Time | Shape| Speedup
bh 2.58s N NA 2.83s P 1.02
em3d 0.06s N NA 0.11s Y 1.88
health 1.24s P NA 1.56s Y 1.15
power 0.09s Y 1.68 0.38s Y 1.68
tsp 0.08s P 1.51 || 0.10s Y 1.51
Overall 4.05s | 1/2/2 1.23 || 4.98s| 5/1/0 1.44

Figure 5. Analysis and Parallelization Benchmarks

We ran the original UMA algorithm with the library code in-
lined so that it was analyzed directly. We then ran the allgori
using the collection semantics. To compare the accuradyeofa-
sults we report if the algorithm was able to determine thepsha
information for the data structures created by the programasthe
performance improvement that was obtained by parallejibased
on this information. We use three categories for the acguséthe
shape analysies(Y) is used when the analysis is able to provide
the correct shape information for all of the relevant heaypcstres.
Partial (P) indicates that the analysis was able to determine the cor
rect shape for some of the heap data structures but that sopoe-i
tant properties were missed (which may not matter for paliad-
tion). No (N) is used when the analysis failed to correctly identify
the shape of a substantial portion of the heap data striscture

The UMA algorithm is written in C++ and compiled with gcc
3.3.5. The benchmarks were run on an Intel (Dual Core) Pailiiu

t 1 (the edge isip) and each of these objects has a reference stored 2.8 GHz machine with 1 GB of RAM. The parallelization bench-

in their val field, which (may) point to the same object as the
variabler . Then we have the single element currently referred to
by the iterator and some number of pointers that come after th
iterator, which refer to the objects that have not been guiathe
state shown in Figure 4(e) is also the repeated state of #teaab
loop execution so we are done processing the loop body.

If we apply the exit test condition,sVal i d, which erases the
edges with label® andA@, to the state shown in Figure 4(e), we
get the result shown in Figure 4(f). Note that there are ngédon
any references from the objects in thet to the region of the heap
pointed to bys: each element in the set was strongly updated and
by modeling the progress of the iterator we determined that t
contents of the collection have been strongly updated.

8. Performance

To evaluate the utility of the semantic model for the collats
we examine a variation of the Jolden [2] benchmarks. Theedold
suite contains a number of pointer intensive kernels thatpar-
allelizable using shape based approaches [5, 8]. The ingltam
tion in [2] does not utilize the Java collection librariedug, we

selected five of the benchmarks, and updated them to use the co

lection libraryl i st s andvect or s instead of singly-linked lists
and arrays (we also addressed the major issues in healjh [18]

marks were run with the default inputs from [2] on the same ma-
chine with the Sun Java 1.5 JVM.

The results in Figure 5 indicate that the use of semantics to
model the collection objects results in much more accuetalts
than attempting to directly analyze the actual impleméotatf the
collections. On our test system the maximum speedup is 2 &nd w
did not employ any transformations other than parallegjziecur-
sive tree calls and foreach parallelization. Given thesestaints
the average speedup of 1.44 indicates that, in generalntilgsis
is able to accurately model the connectivity of the prograah

The increased analysis time when using the collection sgosan
is due to the refinement of sections of the heap graph thatabe b
analysis is unable to expand, i.e. is due to a more accurpte-re
sentation of the heap and not the implementation of the sirsan

9. Conclusion

This paper presented a technique for extending an existag h
analysis to handle various types of generic collection abjen-
stead of attempting to extend the range of data structustdtip
target analysis understands our analysis treats the tiohscand
iterators over the collections as opaque objects. By igigothe
internal representation of the collections we avoided siseiés of
model complexity and computational intractability.

{A@, #, np} {A@, #, np} 6@, 1, npj (@, 1, np} \{A@, #, np}
[{t1},S. 1,0 [{t1},S. # D] [{t1},S. 1,0 [{t1},S. # D] [{t1},S.1,D] [{t}.5,1,0] [{t1}, S # D]
{val, #, ip} {val, #, ip} {val, 1, np} {val, #, ip}
o {val, 1, np} o {val, 1, np}
{t2}.5,1,C {t2},5,1,D

(a) Initialized Iterator (b) Update the Entry

{B@, 1, np}, 1, {A@, #, np} {B@, #, np} {A@, #, np} {7, #, np}
[{t1},s, 1, D] [{t1}, S, # D] [{t1}. s, # D] [{t1},5,1,0] [{t1}, S, #, D] [{t1}. s # D]

{val, 1, np} {val, #,ip} {val, #, ip} {val, #, ip} {val, #, ip}
{t2},5.1,D {t2},S.1,D

(d) End of Second Iteration (e) Normalize and Fix Point (f) Interpret Exit Test

Figure 4. Update Data in the Set

To handle the manipulation of these collections we intreduc [3] D. R. Chase, M. N. Wegman, and F. K. Zadeck. Analysis ohjes

a partition scheme using the iterators in a collection. Témiton and structures. IRLDI, 1990.
is based on the idea that an iterator splits the elementsicdh [4] M. Codish, S. Debray, and R. Giacobazzi. Compositionaalgsis of
lection into three classes (before the current positioa, simgle Modular Logic Programs. IROPL, 1993.

element at the current position and elements after the rijpiEsi-
tion). We then extended the UMA heap analysis with the seicgnt
required to model the collections and iterators. The exddmdodel
is capable of identifying individual elements in the cotlens, per-
forming strong updates on the individual elements and, lygus

[5] R. Ghiya, L. J. Hendren, and Y. Zhu. Detecting paralfali;n C
programs with recursive data structures Ci@, 1998.

[6] D. Gopan, T. W. Reps, and S. Sagiv. A framework for numeric
analysis of array operations. ROPL, 2005.

the partition induced by the iterators, is able to model theative [7] B. Hackett and R. Rugina. Region-based shape analytiistricked

processing of the collection. This allows the heap analgsicu- locations. InPOPL, 2005.

rately track destructive update operations that involvidections [8] L. J. Hendren and A. Nicolau. Parallelizing programshai¢cursive

and their contents, which is critical to obtaining accuratelysis data structuresEEE TPDS 1(1), 1990.

results when dealing with imperative programs. .] [9] T. A. Henzinger, R. Jhala, and R. Majumdar. Permissiterfaces.
The experimental results show that the analysis can achieve In FSE 2005.

substan.tlally more accurate resullts by using a §emantnm:|tﬂp- [10] N. D. Jones and S. S. Muchnick. Flow analysis and optution of

proach instead of analyzing the library code directly. Fertthe Lisp-like structures. IPOPL, 1979.

analysis is efficient enough to be of practical use in opttiim

and error detection applications [11] V. Kuncak, P. Lam, K. Zee, and M. Rinard. Modular plugigab

analyses for data structure consiste8EE TSE 2006.

[12] T. Lev-Ami, N. Immerman, and S. Sagiv. Abstraction férape
ACknOWIedgmentS analysis with fast and precise transformersCHV, 2006.

The first author would like to thank Rupak Majumdar for thecon [13] M. Marron, D. Kapur, D. Stefanovic, and M. Hermenegild static
versations that lead to the approach taken in this paperioMar heap analysis for shape and connectivityl @PC, 2006.

his editorial assistance and the PASTE reviewers for the&-u
ful comments. This work is supported by the National Science
Foundation (grants 0085792, 0238027, and 0540600) andr unde . d iihel Vi h sl
subcontract R7A824-79200004 from the Los Alamos Computer 151 S- Sagiv, T. W. Reps, and R. Wilhelm. Solving shape-ysia
Science Institute and Rice University. M. Hermenegildo lsoa problems in languages with destructive updatingP@PL, 1996.
supported by the P. of Asturias Chair, and projects MEC-MERI [16] S. Sagiv, T. W. Reps, and R. Wilhelm. Parametric shajadyais via

[14] A. Rountev and B. G. Ryder. Points-to and side-effeclyses for
programs built with precompiled libraries. @C, 2001.

CAM-PROMESAS, and EU-MOBIUS. 8-valued logic. IPOPL, 1999.

[17] R. P. Wilson and M. S. Lam. Efficient context-sensitiveirper
References analysis for C programs. IALDI, 1995.

[18] C. zilles. Benchmark health considered harmful Clomputer Arch.

[1] F. Bueno, M. G. de la Banda, M. Hermenegildo, K. Marriott,
G. Puebla, and P. J. Stuckey. A model for inter-module aisalys
and optimizing compilationLNCS 2001.

News 2001.

[2] B. Cahoon and K. S. McKinley. Data flow analysis for softera
prefetching linked data structures in JavaP&CT, 2001.

