CLEF 2014 Conference and Labs of the Evaluation Forum Information Access Evaluation meets Multilinguality, Multimodality, and Interaction

15 - 18 September 2014, Sheffield - UK

SEARCH AND CONTEXT

Overview

- Importance of context in information retrieval
- "Potential for personalization" framework
- □ Examples with varied user models and evaluation methods
 - Personal navigation
 - Client-side personalization
 - Short- and long-term models
 - Time-aware models
- Challenges and new directions

Search and Context

Context Improves Query Understanding

Queries are difficult to interpret in isolation

Easier if we can model: who is asking, what they have done in the past, where they are, when it is, etc.

Searcher: (SIGIR | Susan Dumais ... an information retrieval researcher)

vs. (SIGIR | Stuart Bowen Jr. ... the Special Inspector General for Iraq Reconstruction)

Previous actions: (SIGIR | information retrieval)

vs. (SIGIR | U.S. coalitional provisional authority)

Location: (SIGIR | at SIGIR conference) vs. (SIGIR | in Washington DC)

Time: (SIGIR | Jan. submission) vs. (SIGIR | Aug. conference)

 Using a <u>single ranking</u> for everyone, in every context, at every point in time, <u>limits how well a search engine can do</u>

SIGIR

SIGIR

CLEF 2014

- □ Have you searched for CLEF 2014 recently?
- What were you looking for?

CLEF 2014 | Conference and Labs of the Evaluation Forum

clef2014.clef-initiative.eu ▼
Welcome CLEF 2014 is the fif

Welcome. CLEF 2014 is the fifth campaigns which have run since

CLEF 2014 | Conference and Labs of the Evaluation Forum

clef2014.clef-initiative.eu/index.php?page=Pages/labs.html ▼

CLEF 2014 Conference and Labs of the Evaluation Forum Information Access Evaluation ality, and Interaction 15 - 18 September 2014 ...

ImageCLEF 2014 | ImageCLEF - Image Retrieval in CLEF

www.imageclef.org/2014 ▼

ImageCLEF - Image Retrieval in CLEF. Navigation. Image Image annotation; Liver CT annotation; Domain adaptatio

LifeCLEF 2014 | ImageCLEF - Image Retrieval in CLEF

www.imageclef.org/lifeclef/2014 ▼

ImageCLEF - Image Retrieval in CLEF. Navigation. ImageCLEF 2014; LifeCLEF 2014. ...

e tab) Revisions

CLEF 2014

clef2014.clef-initiative.eu/resou

Call for Labs Participation CLEF campaign and workshop series

CLEF 2014 | Conference and Labs of the Evaluation Forum

clef2014.clef-initiative.eu/index.php?page=Pages/programme.html ▼

CLEF 2014 Conference and Labs of the Evaluation Forum Information Access Evaluation

action 15 - 18 September 2014 ...

[PDF] Clef Notes 2014

www.esm.rochester.edu/studentlife/files/Clef-Notes.pdf

Clef Notes 2014 Eastman School of Music Summer E-Newsletter Student Living Center 103, 100 Gibbs Street, Rochester, NY 146

UNC Clef Hangers | Carolina's Oldest A Capella Group

clefhangers.com ▼

Spring Concert. Memorial Hall UNC-Chapel Hill Saturday, October 25, 2014 _

SDumais - CLEF 2014, Sept 16 2014

Potential For Personalization

- A single ranking for everyone limits search quality
- Quantify the variation in individual relevance for the same query
- Different ways to measure individual relevance
 - Explicit judgments from different people for the same query
 - Implicit judgments (search result clicks, content analysis)
- Personalization can lead to large improvements
 - Study with explicit judgments
 - 46% improvements for core ranking
 - □ 70% improvements with personalization

Potential For Personalization

- Not all queries have high potential for personalization
 - E.g., facebook vs. sigir
 - E.g., * maps

Learn when to personalize

User Models

- Constructing user models
 - Sources of evidence
 - Content: Queries, content of web pages, desktop index, etc.
 - Behavior: Visited web pages, explicit feedback, implicit feedback
 - Context: Location, time (of day/week/year), device, etc.
 - □ Time frames: Short-term, long-term
 - Who: Individual, group
- Using user models
 - Where resides: Client, server
 - How used: Ranking, query support, presentation, etc.
 - When used: Always, sometimes, context learned

User Models

- Constructing user models
 - Sources of evidence
 - Content: Queries, content of web pages, desktop index, etc.
 - Behavior: Visited web pages, explicit feedback, implicit feedback
 - Context: Location, time (of day/week/year), device, etc.
 - □ Time frames: Short-term, long-term

PNav

Who: Individual, group

PSearch

- Using user models
 - Where resides: Client, server

Short/Long

- How used: Ranking, query support, presentation, etc.
- When used: <u>Always</u>, sometimes, context learned

Time

Example 1: Personal Navigation

- □ Re-finding is common in Web search
 - 33% of queries are repeat queries
 - 39% of clicks are repeat clicks
- Many of these are navigational queries
 - E.g., facebook -> www.facebook.com
 - Consistent intent across individuals
 - Identified via low click entropy
- "Personal navigational" queries
 - Different intents across individuals, ... but consistently the same intent for an individual
 - SIGIR (for Dumais) -> <u>www.sigir.org/sigir2014</u>
 - SIGIR (for Bowen Jr.) -> www.sigir.mil

		Repeat Click	New Click
Repeat Query	33%	29%	4%
New Query	67 %	10%	57%
		39%	61%

Personal Navigation Details

- □ Large-scale log analysis & online A/B evaluation
- Identifying personal navigation queries
 - Use consistency of clicks within an individual
 - Specifically, the last two times a person issued the query, did they have a unique click on same result?
- Coverage and prediction
 - Many such queries: ~12% of queries
 - □ Prediction accuracy high: ~95% accuracy
 - Consistent over time
 - High coverage, low risk personalization
- Used to re-rank results, and augment presentation

Example 2: PSearch

- Rich client-side model of a user's interests
 - Model: Content from desktop search index & Interaction history Rich and constantly evolving user model
 - Client-side re-ranking of (lots of) web search results using model
 - Good privacy (only the query is sent to server)
 - But, limited portability, and use of community

PSearch Details

Personalized ranking model

- Score: Weighted combination of personal and global web features
 - $Score(result_i) = \alpha PersonalScore(result_i) + (1 \alpha) WebScore(result_i)$
- Personal score: Content and interaction history features
 - Content score: log odds of term in personal vs. web content
 - Interaction history score: visits to the specific URL, and back off to site

Evaluation

- Offline evaluation, using explicit judgments
- In situ evaluation, using PSearch prototype
 - 225+ people for several months
 - **■** Effectiveness:
 - CTR 28% higher, for personalized results
 - CTR 74% higher, when personal evidence is strong
 - Learned model for when to personalize

Example 3: Short + Long

- □ Short-term context
 - Previous actions (queries, clicks) within current session
 - (Q=sigir | information retrieval vs. iraq reconstruction)
 - (Q=ego | id vs. dangerously in love vs. eldorado gold corporation)
 - (Q=acl | computational linguistics vs. knee injury vs. country music)
- Long-term preferences and interests
 - Behavior: Specific queries/URLs
 - (Q=weather) -> weather.com vs. weather.gov vs. intellicast.com
 - Content: Language models, topic models, etc.
- Learned model to combine both

Short + Long Details

- User model (content)
 - Specific queries/URLs
 - Topic distributions, using ODP
- Which sources are important?
 - Session (short-term): +25%
 - Historic (long-term): +45%
 - +65-75% Combinations:
- What happens within a session?
 - 60% sessions involve multiple queries
 - 1st query, can only use historical
 - By 3rd query, short-term features more important than long-term

- User model (temporal extent)
 - Session, Historical, Combinations
 - Temporal weighting

Atypical Sessions

Example user model

55% Football ("nfl","philadelphia eagles","mark sanchez")
14% Boxing ("espn boxing","mickey garcia","hbo boxing")
09% Television ("modern familiy","dexter 8","tv guide")
06% Travel ("rome hotels","tripadvisor seattle","rome pasta")
05% Hockey("elmira pioneers","umass lax","necbl")

New Session 1:

Boxing ("soto vs ortiz h Typical Boxing ("humberto soto")

New Session 2:

Dentistry ("oral sores")

Dentistry ("aphthous sore")

Healthcare ("aphthous ulcer treatment")

Atypical

- □ ~6% of session atypical
 - Tend to be more complex, and have poor quality results
 - Common topics: Medical (49%), Computers (24%)
 - What you need to do vs. what you choose to do

Atypical Sessions Details

- Learn model to identify atypical sessions
 - Logistic regressions classifier
- Apply different personalization models for them
 - If typical, use long-term user model
 - If atypical, use short-term session user model
- Accuracy by similarity of session to user model

Example 4: Temporal Dynamics

- Queries are not uniformly distributed over time
 - Often triggered by events in the world
- What's relevant changes over time
 - E.g., US Open ... in 2014 vs. in 2013

- □ E.g., US Tennis Open 2014 ...
 - Before event: Schedules and tickets, e.g., stubhub
 - During event: Real-time scores or broadcast, e.g., espn
 - After event: General sites, e.g., wikipedia, usta

Temporal Dynamics Details

- Develop time-aware retrieval models
- Model <u>content</u> change on a page
 - Pages have different rates of change (influences document priors, P(D))
 - Terms have different longevity on a page (influences term weights, P(Q|D))
 - 15% improvement vs. LM baseline

- Model <u>user interactions</u> as a time-series
 - Model Query and URL clicks as time-series
 - Enables appropriate weighting of historical interaction data
 - Useful for queries with local or global trends

Challenges in Personalization

- User-centered
 - Privacy
 - Transparency and control
 - Serendipity
- □ Systems-centered
 - Evaluation
 - Measurement, experimentation
 - System optimization
 - Storage, run-time, caching, etc.

Privacy

- User profile and content need to be in the same place
- Local profile (e.g., PSearch)
 - Local profile, local computation
 - Only query sent to server
- Cloud profile (e.g., Web search)
 - Cloud profile, cloud computation
 - Transparency and control over what's stored
- Other approaches
 - Light weight profiles (e.g., queries in a session)
 - Public or semi-public profiles (e.g., tweets, Facebook status)
 - Matching to a group vs. an individual

Serendipity

- Does personalization mean the end of serendipity?
 - ... Actually, it can improve it!
- □ Experiment on Relevance vs. Interestingness
 - Personalization finds more relevant results
 - Personalization also finds more interesting results
 - Even when interesting results were not relevant
- Need to be ready for serendipity
 - Like the Princes of Serendip

Evaluation

- □ External judges, e.g., "assessors"
 - Lack diversity of intents and realistic context
 - Crowd workers may help some
- Actual searcher
 - Offline
 - Allows safe exploration of many different alternatives
 - Labels can be explicit or implicit judgments (log analysis)
 - Online
 - Explicit judgments: Nice, but annoying and may change behavior
 - Implicit judgments: Scalable, but can be very noisy
 - Note ... not directly repeatable; requires production-level code; mistakes costly; biased toward what is presented; etc.
- Diversity of methods important
 - \blacksquare User studies, log analysis, and A/B testing

Summary

- Queries difficult to interpret in isolation
- Augmenting query with context helps
 - Who, what, where, when?

- Potential for improving search using context is large
- Examples
 - PNav, PSearch, Short/Long, Time
- Challenges and new directions
 - Spatio-temporal especially in mobile, social, proactive

Thanks!

- □ Questions?
- More info:

http://research.microsoft.com/~sdumais

□ Collaborators:

Eric Horvitz, Jaime Teevan, Paul Bennett, Ryen White, Kevyn Collins-Thompson, Peter Bailey, Eugene Agichtein, Krysta Svore, Kira Radinsky, Jon Elsas, Sarah Tyler, Alex Kotov, Anagha Kulkarni, Paul André, Carsten Eickhoff

References

Short-term models

- White et al., CIKM 2010. Predicting short-term interests using activity based contexts.
- □ Kotov et al., SIGIR 2011. Models and analyses of multi-session search tasks.
- □ Eickhoff et al., WSDM 2013. Personalizing atypical search sessions.
- P. André et al., CHI 2009. From x-rays to silly putty via Uranus: Serendipity and its role in Web search.

□ Long-term models

- □ Teevan et al., SIGIR 2005. Personalizing search via automated analysis of interests and activities. *
- □ Teevan et al., SIGIR 2008. To personalize or not: Modeling queries with variations in user intent. *
- □ Teevan et al., TOCHI 2010. Potential for personalization. *
- □ Teevan et al., WSDM 2011. Understanding and predicting personal navigation. *
- □ Bennett et al., SIGIR 2012. Modeling the impact of short- & long-term behavior on search personalization. *

Temporal models

- □ Elsas &Dumais, WSDM 2010. Leveraging temporal dynamics of document content in relevance ranking. *
- □ Kulkarni et al., WSDM 2011. Understanding temporal query dynamics.
- Radinsky et al., TOIS 2013. Behavioral dynamics on the web: Learning, modeling and predicting. *
- □ http://www.bing.com/community/site_blogs/b/search/archive/2011/02/10/making-search-yours.aspx
- http://www.bing.com/community/site_blogs/b/search/archive/2011/09/14/adapting-search-to-you.aspx