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Overview

S
0 Large-scale behavioral log data

0 Web-based services enable us to capture traces
of human behavior in situ at a scale previously
unimaginable

o0 Transformed how web-based systems are
designed, evaluated and improved

0 Opportunities
0 Examples from web search
o0 Observations: Understand behavior
O Experiments: Improve systems and services

0 Challenges and limitations



20 Years Ago ... In Web and Search
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20 Years Ago ... In Web and Search
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0 NCSA Mosaic graphical browser two years old
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0 Behavioral logs
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Today ... Search is Everywhere

e
0 A billion web sites

0 Trillions of pages indexed by search engines
0 Billions of web searches and clicks per day
0 Search is a core fabric of everyday life

o Diversity of tasks and searchers

O Pervasive (web, desktop, enterprise, apps, etc.)

0 Understanding and supporting searchers
more important now than ever before



What Are Behavioral Logs?

]
0 Traces of human behavior

O ... seen through the lenses of whatever sensors we have

T TTOTation

ararc pleasure in ourage niczbem]nzmon, whenall thae js

' .,mlnngmmwmandm.
sgm.\p,li\eeyei:glumdmd!h:scnseor
.;;;r tics of paper. Sure, an
3 turning pages, just as a screen could im,
py of a book—J. Edgar Hoover’s Lolita, nympktemszm-
a(I'm making this up)—but never its feel. Smartas it is, clectronic

n vahi:hll.lauum'twnnﬂumuwmfw?ﬁ \es

h h rmgd“- PRy
from /

fymu) ifr-"ﬁ"’

g9

=m d[«(a. :':J |

Mmrvod.mm

dio cli

=-LL.'. (,.*:.)'i .

n.f,«‘ ;(.

‘arkiliasy,
: FRES ) awro
fait




What Are Behavioral Logs?

!
0 Traces of human behavior
O ... seen through the lenses of whatever sensors we have
0 Web search: queries, results, clicks, dwell time, etc.

> bing | chi2015

0 Actual, real-world (in situ) behavior

o Not ...
m Recalled behavior

B Subjective impressions of behavior
m Controlled experimental task



How Are Behavioral Logs Used?
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Kinds of Behavioral Data

Lab Studies

In lab, controlled tasks, with
detailed instrumentation and
interaction

O

10-100s of people
(and tasks)

Known tasks, carefully
controlled

Detailed information:
video, gaze-tracking,
think-aloud protocols

Can evaluate
experimental systems




Kinds of Behavioral Data
N

o 100-1000s of
people (and tasks)

Panel Studies
In the wild, real-world tasks,
ability to probe for detail

0 In-the-wild

0 Special client
instrumentation

0 Can probe about
specific tasks,
successes/failures




Kinds of Behavioral Data
N

Log Studies

In the wild, no explicit
feedback but lots of implicit
feedback

Millions of people (& tasks)
In-the-wild
Diversity and dynamics

Abundance of data, but it’s
noisy and unlabeled




Kinds of Behavioral Data
N

Observational Experimental

Lab Studies
Controlled tasks, in In-lab behavior In-lab controlled tasks,
laboratory, with detailed observations comparisons of systems

instrumentation

Panel Studies
In the wild, real-world tasks,
ability to probe for detail

Ethnography, case studies,

. Clinical trials and field tests
panels (e.g., Nielsen)

Log Studies

In the wild, no explicit
feedback but lots of implicit
feedback

A/B testing of alternative

Logs from a single system .
2 =y systems or algorithms

Goal: Build an abstract picture of behavior

Goal: Decide if one approach is better than another



Benefits of Behavioral Logs
N

0 Real-world

o Portrait of real behavior

0 Large-scale
O Millions of people and tasks
0 Rare behaviors are common
o Small differences can be measured

O Tremendous diversity of behaviors and information

needs (the “long tail”)

. 1 | Q = gyrocopter
0 Real-time [W
O Feedback is immediate

-\ 2005




Behavioral Logs and Web Search
N

0 How do you go from 2.4 words to any’rhmg sensible?
o0 Content R D
® Match (query, page content)
o Link structure
m Used to set non-uniform priors on pages
0 User behavior E—
® Anchor text
m Query-clicks
® Query reformulations
0 Contextual metadata
® Who, what, where, when, ... —

— Driven by ...
behavioral data

0 Aggregate behavioral data used to improve search
algorithms and experiences



Surprises In (Early) Web Search Logs

0 Early web search log analysis

o Silverstein et al. 1998, Broder 2002 T
AltaVista®

0 Web search I= library search
o0 Queries are very short, 2.4 words
O Lots of people search for sex
o “Navigating” is common, 30-40%
B Getting to web sites vs. finding out about things

o0 Queries are not independent, e.g., tasks

O Amazing diversity of information needs (“long tail”)



Queries Are Not Equally Likely

0 Excite 1999 data
O ~2.5 mil queries <i
0 Head: top 250 aceour
O Tail: ~950k occur exa C

Frequenhcy

{ |

/

Q Rank

y

Top 10 Q
*  sex * hotmail
* yahoo * games
* chat e mp3

* horoscope o weqther
* pokemon o epay

Navigational queries, one-
word queries

Query Freq =10
e antivirus AND download

* sony playstation cheat codes
* email clipart

* no bake cookies

* interior design schools

Multi-word queries, specific URLs

Query Freq = 1
* acm98
* winsock 1.1 y2k compliant

* how do you say father and son
in korean

* email address for paul allen
the seattle seahawks owner

Complex queries, rare info
needs, misspellings, URLs




Queries Vary Over Time and Task
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Uses of Analysis

0 Q typology
o E.g., ranking

0 Q frequency

o E.g., caching
O Repeat Q

o E.g., history
O Sessions

o E.g., ranking

0 Test set
development

0 Complementary
research



White et al., 2013, 2014

Beyond Improving Web Search
N

0 Search for health information common and important
0 80% of U.S. adults use web search to find medical info

O 1 in 250 people query about the top-100 prescription drugs

0 Mining health search data to identify adverse drug

effects and drug interactions
O Today detection based on reports from pa

0 Case study of Paroxetine and Pravastatin

®m 2011 report: Paroxetine + Pravastatin => Hyperglycemia

® Pre-2011 search logs: Increased use of terms related to hyperglycemia
(e.g., thirsty, appetite increase, frequent urination , high blood sugar)

O Search logs can increase speed and scale of detection



Value of Observational Logs

S
0 Examine search behavior in natural settings
0 Description: What do people currently do?

O Prediction: What will people do in similar situations®

0 Provide insights about how people search at scale
O Identify important problems to study

1 Enable more realistic simulations and evaluations

0 Motivate ideas for how to improve search system

O E.g. ranking algorithms, presentation, interaction

0 Provide a potentially powerful lens for scientific
inquiry in medical and social domains



Kohavi et al., KDD 1999
Dumais et al., 2014

From Observations to Experiments
N

0 Observations generate insights about behavior
and ideas for improvements

0 Experiments are the way to systematically improve

O Controlled experiments to compare system variants

Time To Click

m System latency

® Ranking algorithms

® Snippet generation it

m Spelling and query suggestions

m Presentation

0 Data- vs. HIPPO-driven design




Experiments At Web Scale
N

0 Basic questions _

0 What do you want to evaluate? e

0 What metric(s) do you care about?

0 Within- vs. between-subject designs

O Within: Interleaving (for ranking changes); otherwise
temporal split between experimental and control conditions

O Between: More widely useful, but higher variance

0 Some things easier to study than others

o Algorithmic vs. Interface vs. Social Systems

0 Counterfactuals, Power, and Ramping-Up important



Value of Behavioral Logs
N

0 Provide (often surprising) insights about how people
interact with existing search systems

O Focus efforts on supporting actual (vs. presumed) activities

m E.g., Diversity of tasks, searchers, contexts of use, etc.
O Suggest experiments about important or unexpected behaviors

O Used to develop predictive models and evaluation sets

O Support new search experiences

........

0 Improve system performance

o Caching, ranking algorithms, presentation, interaction, etc.

0 Changed how systems are designed, evaluated, improved



What Logs Alone Cannot Tell Us

am 4/15/15 142039

chi -

social science 10:44 am 4/15/15 142039
computational social science 10:56 am 4/15/15 14703
chi 2015 11:21 am 4/15/15 689327

0 Limited annotations

L) * :
n People S Intent infercontinental hotel seoul 11:59 am 4/15/15 &,
restavrants seaftle 12:01 pm 4/15/15
) pikes market restourants 12:17 pm 4/15/1
O People S success wwar shlmen T

daytrips in seattle, wa 1:30 pm 4/15/1
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O People’s attention S— C1apm 4/15/15 142059
sex videos 1:49 am 4/16,/15 142039

0 Behavior can mean many things

0 Limited to existing systems and interactions

O Logs convey “what” people are doing, but not “why”

0 Complement with other techniques to provide a more
complete picture (e.g., lab, panel studies, modeling)



Example: Relevance

Fox et al., TOIS 2005

0 Curious Browser — linking implicit and explicit

o Capture many implicit actions (e.g., query, click, dwell time,

scroll)

O Probe for explicit judgments of page relevance and session
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Fox et al., TOIS 2005
Example: Relevance
N

0 Curious Browser — linking implicit and explicit
o Capture many implicit actions (e.g., query, click, dwell time, scroll)
O Probe for explicit judgments of page relevance and session
SUCCessS
0 Learned models to predict explicit judgments (page
relevance, session success) from implicit indicators
O Relevance of web page to query

m Click => 45% accuracy in predicting relevance
m Click + Dwell time + Session end => 75% accuracy

O Session success
®m Very highly correlated with clicks rated at “relevant”

... but misses effort, expectations, delight

0 Use learned models to predict relevance, success



Diriye et al., CIKM 2012

Example: Abandonment

N
0 So, no clicks is a bad sign, right?

1 U5 Dollar equals |

... it depends 094Eu0s [ wanzsmmygon

0 Increasingly search engines provide T LB e e
“CInSWGI'S” VS. .I O'blue IinkS Perfect Baked Potatoes - What's Cooking America

whatscookingamerica.net/Q-A/PotatoBaking htm ~

Perfect Baked Potato Rea pe: Recipe Type: Potatoes, Vegetables Yields: serves many
WCrep time 10 min Bake fime- G oo | ngredients: Baking Potatges

0 Retrospective survey
eer——

You abandoned your search query:
maui weather

‘Why did you not click on the rearch results?

0 In situ abandonment survey
implicit-explicit)

0 Predictive model for good vs. bad
abandonment : s




Teevan et al., SIGIR 2007

Example: Re-Finding

Tyler & Teevan, WSDM 2010

0 Observational log analysis Repeat  New
Click  Click
O 33% of queries are repeat queries = =
0 39% of clicks are repeat clicks I;::::" 33% | 29% 4%
0 Many are navigational queries y
ew
o E.g., chi 2015 -> chi2015.acm.org Query 67% | 10% | 57%
0 “Personal” navigational queries
39% | 61%

o Different intents across individuals, but

same intent for an individual
m E.g.,, ACM Awards (for S.Dumais) -> awards.acm.org
m E.g.,, ACM Awards (for G.Brooks) -> acmcountry.com

O Simple accurate personalization algorithm

0 A/B experiments show benefits



http://www.sigir.org/
http://www.sigir.org/
http://www.sigir.org/

Bennett et al., SIGIR 2012

Example: Sessions and Tasks

1 Queries do not occur in isolation

0 60% of search sessions contain multiple queries

0 50% of search time spent in sessions of 30+ mins

0 Model this query context

O Short-term session activities (queries, clicks)

O Long-term preferences and interests

1 A/B experiments show improvements

0 But ... broader support for accomplishing
tasks still lacking



Uniqueness of Behavioral Logs
N

H Behavioral search logs uniquely h

0 Real-world: Represent natural task

Lab Studies T
Controlled tasks, in distribution

laboratery, with detailed 0 Large-scale: Highlight diversity of tasks,
instrumentatfion

queries and searcher interaction

Panel Studies 0 Real-time: Interaction immediately reflect
In the wild, real-world tasks, +interaction immediarely retiects

ability to probe for detail things in the world

Log Studies
In the wild, no explicit A /B testing of alternative

feedback but lots of implicit
feedback

Logs from a single system
J gie sy systems or algorithms




Summary

N
0 Large-scale behavioral log data

O Provide traces of human behavior in situ at a scale and
fidelity previously unimaginable
0 Changed how web-based systems are
designed, evaluated and improved
O Observations: enable us to characterize behavior
0 Experiments: used to improve web search

O More important now than ever before

0 CHI community should lead in shaping best
practices in behavioral log studies
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