ALPS: Accurate Landmark Positioning at City Scales

Yitao Hu*, Xiaochen Liu*, Suman Nath’, Ramesh Govindan*

tMicrosoft Research

Abstract

Context awareness is crucial for ubiquitous computing,
and position is an important aspect of context. In an
ideal world, every stationary object or entity in the built
environment would be associated with position, so that
applications can have precise spatial context about the
environment surrounding a human. In this paper, we
take a step towards this ideal: by analyzing images from
Google Street View that cover different perspectives of a
given object and triangulating the location of the object,
our system, ALPS, can discover and localize common
landmarks at the scale of a city accurately and with high
coverage. ALPS contains several novel techniques that
help improve the accuracy, coverage, and scalability of
localization. Evaluations of ALPS on many cities in the
United States show that it can localize storefronts with a
coverage higher than 90% and a median error of 5 meters.

Author Keywords
Context-aware computing; Landmark localization
system; Machine/Deep learning.

ACM Classification Keywords
[.5.4 Pattern Recognition: Applications; 1.4.9 Image
Processing and Computer Vision: Applications.

INTRODUCTION

Context awareness is essential for ubiquitous computing,
and prior work [62, 65] has studied automated methods
to detect objects in the environment or determine their
precise position. One type of object that has received
relatively limited attention is the common landmark, an
easily recognizable outdoor object which can provide
contextual cues. Examples of common landmarks include
retail storefronts, signposts (stop signs, speed limits),
and other structures (hydrants, street lights, light poles).
These can help improve targeted advertising, vehicular
safety, and the efficiency of city governments.

In this paper, we explore the following problem: How
can we automatically collect an accurate database of the
precise positions of common landmarks, at the scale of
a large city or metropolitan area? The context aware

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
the author(s) must be honored. Abstracting with credit is permitted.
To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. Request per-
missions from Permissions@acm.org.

UbiComp 16, September 12 - 16, 2016, Heidelberg, Germany
Copyright is held by the owner/author(s). Publication rights licensed
to ACM.

ACM 978-1-4503-4461-6/16/09 $15.00

DOI: http://dx.doi.org/10.1145/2971648.2971674

*University of Southern California

applications described above require an accurate database
that also has high coverage: imprecise locations, or spotty
coverage, can diminish the utility of such applications.

In this paper, we discuss the design of a system called
ALPS (Accurate Landmark Positioning at city Scales),
which, given a set of landmark types of interest (e.g.,
Subway restaurant, stop sign, hydrant), and a geographic
region, can enumerate and find the precise position of all
instances of each landmark type within the geographic
region. ALPS uses a novel combination of two key ideas.
First, it uses image analysis to find the position of a land-
mark, given a small number of images of the landmark
from different perspectives. Second, it leverages recent
efforts, like Google Street View [26], that augment maps
with visual documentation of street-side views, to obtain
images of such landmarks. At a high-level, ALPS scours
Google Street View for images, applies a state-of-the-art
off-the-shelf object detector [49] to detect landmarks in
images, then triangulates the position of the landmarks
using a standard least-squares formulation. On top of
this approach, ALPS adds novel techniques that help the
system scale and improve its accuracy and coverage.

Contributions. Our first contribution is techniques for
scaling landmark positioning to large cities. Even a mod-
erately sized city can have several million Street View
images. If ALPS were to retrieving all images, it would
incur two costs, both of which are scaling bottlenecks
in ALPS: (1) the latency, network and server load cost
of retrieving the images, and (2) the computational la-
tency of applying object detection to the entire collection.
ALPS optimizes these costs, without sacrificing coverage,
using two key ideas. First, we observe that Street View
has a finite resolution of a few meters, so it suffices to
sample the geographic region at this resolution. Second,
at each sampling point, we retrieve a small set of images,
lazily retrieving additional images for positioning only
when a landmark has been detected in the retrieved set.
In addition, the ALPS system can take location hints to
improve scalability: these hints specify where landmarks
are likely to be found (e.g., at street corners), which helps
narrow down the search space.

Our second contribution is techniques that improve ac-
curacy and coverage. Object detectors can have false
positives and false negatives'. ALPS can reduce false
negatives by using multiple perspectives: if a landmark is
not detected at a sampling point either because it is oc-
cluded or because of poor lighting conditions, ALPS tries

1For an object detector, a false positive means that the detector de-
tected a landmark in an image that doesn’t actually have the landmark.
A false negative is when the detector didn’t detect the landmark in the
image that actually does contain the landmark.

mailto:Permissions@acm.org
http://dx.doi.org/10.1145/2971648.2971674

to detect it in images retrieved at neighboring sampling
points. To avoid false positives, when ALPS detects a
landmark in an image, it retrieves zoomed in versions of
that image and runs the object detector on them, using
majority voting to increase detection confidence. Once
ALPS has detected landmarks in images, it must resolve
aliases (multiple images containing the same landmark).
Resolving aliases is especially difficult for densely de-
ployed landmarks like fire hydrants, since images from
geographically nearby sampling points might contain dif-
ferent instances of hydrants. ALPS clusters images by
position, then uses the relative bearing to the landmark
to refine these clusters. Finally, ALPS uses least squares
regression to estimate the position of the landmark; this
enables it to be robust to position and orientation errors,
as well as errors in the position of the landmark within
the image as estimated by the object detector.

Our final contribution is an exploration of ALPS’ perfor-
mance at the scale of a zip-code, and across several major
cities. ALPS can cover over 92% of Subway restaurants
in several large cities and over 95% of hydrants in one
zip-code, and localize 93% of Subways and 87% of hy-
drants with an error less than 10 meters. Its localization
accuracy is better than Google Places [25] for over 85%
of the Subways in large cities. ALPS’s scaling optimiza-
tions can reduce the number of retrieved images by over
a factor of 20, while sacrificing coverage only by 1-2%.
Its accuracy improvements are significant: for example,
removing the bearing-based refinement (discussed above)
can reduce coverage by half.

MOTIVATION AND CHALLENGES

Positioning Common Landmarks. Context awareness
[48, 59] is essential for ubiquitous computing since it can
enable computing devices to reason about the built and
natural environment surrounding a human, and provide
appropriate services and capabilities. Much research has
focused on automatically identifying various aspects of
context [62, 65, 34], such as places and locations where a
human is or has been, the objects or people within the
vicinity of the human and so forth.

One form of context that can be useful for several kinds
of outdoor ubiquitous computing applications is the land-
mark, an easily recognizable feature or object in the built
environment. In colloquial usage, a landmark refers to a
famous building or structure which is easily identifiable
and can be used to give directions. In this paper, we focus
on common landmarks, which are objects that frequently
occur in the environment, yet can provide contextual
cues for ubiquitous computing applications. Examples
of common landmarks include storefronts (e.g., fast food
stores, convenience stores), signposts such as speed limits
and stop signs, traffic lights, fire hydrants, and so forth.

Potential Applications. Knowing the type of a common
landmark (henceforth, landmark) and its precise posi-
tion (GPS coordinates), and augmenting maps with this
information, can enable several applications.

Autonomous cars [54] and drones [13] both rely on visual
imagery. Using cameras, they can detect command land-
marks in their vicinity, and use the positions of those
landmarks to improve estimates of their own position.
Drones can also use the positions of common landmarks,
like storefronts, for precise delivery.

Signposts can provide context for vehicular control or
driver alerts. For example, using a vehicle’s position and
a database of the position of speed limit signs [43], a
car’s control system can either automatically regulate
vehicle speed to within the speed limit, or warn drivers
when they exceed the speed limit. Similarly, a vehicular
control systems can use a stop sign position database to
slow down a vehicle approaching a stop sign, or to warn
drivers in danger of missing the stop sign.

A database of automatically generated landmark posi-
tions can be an important component of a smart city [6].
Firefighters can respond faster to fires using a database
of positions of fire hydrants [19]. Cities can maintain
inventories of their assets (street lights, hydrants, trees
[61], and signs [3] are example of city assets) [30, 18];
today, these inventories are generated and maintained
manually. Finally, drivers can use a database of parking
meter positions, or parking sign positions to augment the
search for parking spaces [42], especially in places where
in-situ parking place occupancy sensors have not been
installed [17].

Landmark locations can also improve context-aware cus-
tomer behavior analysis [36]. Landmark locations can
augment place determination techniques [15, 4]. Indeed,
a database of locations of retail storefronts can directly
associate place names with locations. Furthermore, land-
mark locations, together with camera images taken by
a user, can be used to more accurately localize the user
itself than is possible with existing location services. This
can be used in several ways. For example, merchants can
use more precise position tracks of users to understand
the customer shopping behavior. They can also use this
positioning to target users more accurately with adver-
tisements or coupons, enriching the shopping experience.

Finally, landmark location databases can help provide
navigation and context for visually impaired persons [10,
28]. This pre-computed database can be used by smart
devices (e.g. Google Glass) to narrate descriptions of
surroundings (e.g., “You are facing a post office and your
destination is on its right, and there is a barbershop on
its left.”) to visually impaired users.

Challenges and Alternative Approaches. An accurate
database which has high coverage of common landmark
locations can enable these applications. High coverage is
important because, for example, a missing stop sign can
result in a missed warning. Moreover, if the database
is complete for one part of a city, but non-existent for
another, then it is not useful because applications cannot
rely on this information being available.

To our knowledge, no such comprehensive public database
exists today, and existing techniques for compiling the
database can be inaccurate or have low coverage. On-
line maps (e.g., Google Places [25] or Bing Maps [8])
contain approximate locations of some retail storefronts
(discussed below). Each city, individually, is likely to
have reasonably accurate databases of stores within the
city, or city assets. In some cases, this information is
public. For example, the city of Los Angeles has a list
of fire hydrant locations [40], but not many other cities
make such information available. Collecting this infor-
mation from cities can be logistically difficult. For some
common landmarks, like franchise storefronts, their fran-
chiser makes available a list of franchisee addresses: for
example, the list of Subway restaurants in a city can be
obtained from subway.com. From this list, we can po-
tentially derive locations through reverse geo-coding, but
this approach doesn’t generalize to the other landmarks
discussed above. Prior work has explored two other ap-
proaches to collecting this database: crowdsourcing [46,
66], and image analysis [21]. The former approach relies
on users to either explicitly (by uploading stop signs to
OpenStreetMaps) or implicitly (by checking in on a social
network) tag landmarks, but can be inaccurate due to
user error, or have low coverage because not all common
landmarks may be visited. Image analysis, using geo-
tagged images from photo sharing sites, can also result
in an incomplete database.

In this paper, we ask the following question: is it possible
to design a system to automatically compile, at the scale of
a large metropolis, an accurate and high coverage database
of landmark positions? Such a system should, in addition
to being accurate and having high coverage, be extensible
to different types of landmarks, and scalable in its use
of computing resources. In the rest of the paper, we
describe the design of a system called ALPS that satisfies
these properties.

THE DESIGN OF ALPS

Approach and Overview

The input to ALPS is a landmark type (a chain restaurant,
a stop sign, etc.) and a geographical region expressed
either using a zip code or a city name.? The output
of ALPS is a list of GPS coordinates (or positions) at
which the specified type of landmark may be found in
the specified region. Users of ALPS can specify other
optional inputs, discussed later.

ALPS localizes landmarks by analyzing images using the
following idea. To localize a fire hydrant, for example,
suppose we are given three images of the same fire hy-
drant, taken from three different perspectives, and the
position and orientation of the camera when each im-
age was taken is also known. Then, if we can detect
the hydrant in each image using an object detector, then
we can establish the bearing of the hydrant relative to

2For now, we have only experimented with cities and regions in North
America, but ALPS should be extensible to other parts of the globe as
well.

each image. From the three bearings, we can triangulate
the location of the hydrant. ALPS uses more complex
variants of this idea to achieve accuracy, as discussed
below.

To obtain such images, ALPS piggybacks on map-based
visual documentation of city streets [27, 9]. Specifically,
ALPS uses the imagery captured by Google’s Street View.
The vehicles that capture Street View images have po-
sitioning and bearing sensors [53], and the Street View
API permits a user to request an image taken at a given
position and with a specified bearing. ALPS’s coverage
is dictated in part by Street View’s coverage, and its
completeness is a combination of its coverage, and the
efficacy of its detection and localization algorithms.

Street View (and similar efforts) have large databases,
and downloading and processing all images in a speci-
fied geographic region can take time, computing power,
and network bandwidth. To scale to large geographic
regions (e.g., an entire zipcode or larger), ALPS employs
novel techniques that (a) retrieve just sufficient images
to ensure high coverage, (b) robustly detect the likely
presence of the specified landmark, then (c) drill down
and retrieve additional images in the vicinity to localize
the landmarks.

Finally, users can easily extend ALPS to new landmark
types, and specify additional scaling hints.

ALPS comprises two high-level capabilities (Figure 1):
Seed location generation takes a landmark type specified
by user as input, and generates a list of seed locations
where the landmarks might be located; and Landmark
localization takes seed locations as input and generates
landmark positions in the specified geographic region as
output.

In turn, seed location generation requires three concep-
tual capabilities: (1) base image retrieval which down-
loads a subset of all Street View images; (2) landmark
detection that uses the state-of-the-art computer vision
object detection [49] to detect and localize® landmarks
retrieved by base image retrieval, and applies additional
filters to improve the accuracy of detection; (3) image
clustering groups detected images that likely contain the
same instance of the landmark. The result of these three
steps is a small set of seed locations where the landmark
is likely to be positioned, derived with minimal resources
without compromising coverage.

Landmark localization reuses the landmark detection
capability, but requires two additional capabilities: (1)
adaptive image retrieval, which drills down at each seed
location to retrieve as many images as necessary for
localizing the object; (2) and a landmark positioning
capability that uses least squares regression to triangulate
the landmark position.

3In the context of object detection, to localize means to find the posi-
tion of the object in the image. ALPS uses this capability to localize
the object in the global (GPS) coordinate frame.

I
H 1
I
landmark !
type i IBr:::;e (‘ (Image H seed
?:;igrphic '\ Retrieval L" i Lr i ! locations
C: Adaptive (l (I K 1 Ianc!rpark i
: |
I

the region

—r

Figure 1: ALPS Components

Base Image Retrieval

ALPS retrieves images from Street View, but does not re-
trieve all Street View images within the input geographic
region. This brute-force retrieval does not scale, since
even a small city like Mountain View can have more than
10 million images. Moreover, this approach is wasteful,
since Street View’s resolution is finite: in Figure 2(a),
a Street View query for an image anywhere within the
dotted circle will return the image taken from one of the
points within that circle.

ALPS scales better by retrieving as small a set of images
as possible, without compromising coverage (Figure 2(b)).
It only retrieves two Street View images in two opposing
directions perpendicular to the street, at intervals of
2r meters, where 2r is Street View’s resolution (from
experiments, r is around 4 meters). By using nominal
lane [55] and sidewalk [56] widths, Street View’s default
angle of view of 60°, it is easy to show using geometric
calculations that successive 8 meter samples of Street
View images have overlapping views, thereby ensuring
visual coverage of the entire geographic region.

(a) (b)

Figure 2: Base Image Retrieval

Landmark Detection

Given an image, this capability detects and localizes
the landmark within the image. This is useful both
for seed location generation, as well as for landmark
localization, discussed earlier. Recent advances [35, 23] in
deep learning techniques have enabled fast and accurate
object detection and localization. We use a state-of-the-
art object detector, called YOLO [49]. YOLO uses a
neural network to determine whether an object is present
in an image, and also draws a bounding box around the
part of the image where it believes the object to be (i.e.,
localizes the object in the image). YOLO needs to be
trained, with a large number of training samples, to
detect objects. We have trained YOLO to detect logos

of several chain restaurants or national banks, as well
as stop signs and fire hydrants. Users wishing to extend
ALPS functionality to other landmark types can simply
provide a neural network trained for that landmark.

Even the best object detection algorithms can have false
positives and negatives [32]. False positives occur when
the detector mistakes other objects for the target land-
mark due to lighting conditions, or other reasons. False
negatives can decrease the coverage and false positives can
reduce positioning accuracy. In our experience, false neg-
atives arise because YOLO cannot detect objects smaller
than 50 x 50 pixels or objects that are blurred, partially
obscured or in shadow, or visually indistinguishable from
the background.

iz iizd

Rz

zoom-in = 1 zoom-in =2 zoom-in=3

zoom-in =4
Figure 3: How zooming-in can help eliminate false posi-
tives

ALPS reduces false positives by using Street View’s sup-
port for retrieving images at different zoom levels. Recall
that base image retrieval downloads two images at each
sampling point. ALPS applies the landmark detector to
each image: if the landmark is detected, ALPS retrieves
six different versions of the corresponding Street View
image each at different zoom levels. It determines the tilt
and bearing for each of these zoomed images based on
the detected landmark. ALPS then uses two criteria to
mark the detection as a true positive: that YOLO should
detect a landmark in a majority of the zoom levels, and
that the size of the bounding box generated by YOLO is
proportional to the zoom level. For example, in Figure
3, YOLO incorrectly detected a residence number, when
detecting a Subway logo, in the first three zoom levels
(the first zoom level corresponds to the base image). Af-
ter zooming in further, YOLO was unable to detect the
Subway logo in the last 3 zoomed-in images. In this case,
ALPS declares that the image does not contain a Subway
logo, because the majority vote failed. We address false
negatives in later steps.

Image Clustering

To generate seed locations, ALPS performs landmark
detection on each image obtained by base image retrieval.
However, two different images might contain the same
landmark: the clustering step uses image position and

orientation to cluster such images together. In some cases,
this clustering can reduce the number of seed locations
dramatically: in Figure 4(a), 87 landmarks are detected in
the geographic region shown, but a much smaller fraction
of them represent unique landmarks (Figure 4(b)).

3Ny WA §
IAY LIISIM S

W ath St

zgéth st 2 W 5th St i; Wi 5th St =
:'\Iy :'v:v.v».J ' e i!h:h:‘,g ' Ao Nish r, i ;‘;'
(a) (b)

Figure 4: Clustering can help determine which images
contain the same landmark

W 4th St

any apUewWION

)
oAy UOUBA S Ty
Q-

The input to clustering is the set of images from the base
set in which a landmark has been detected. ALPS clusters
this set by using the position and bearing associated with
the image, in two steps: first, it clusters by position, then,
within each cluster it distinguishes pairs of images whose
bearing is inconsistent.

To cluster by position, we use mean shift clustering [22]:
(1) put all images into a candidate pool; (2) select a
random image in the candidate pool as the center of a new
cluster; (3) find all images within R meters (R=>50 in our
implementation) of the cluster center, put these images
into the cluster, and remove them from the candidate
pool; (4) calculate the mean shift of the center of all
nodes within the cluster, and if the center is not stable,
go to step (3), otherwise go to step (2).

Clustering by position works well for landmarks likely to
be geographically separated (e.g., a Subway restaurant),
but not for landmarks (e.g., a fire hydrant) that can be
physically close. In the latter case, clustering by position
can reduce accuracy and coverage.

S ;57\332 :

A B C
FO ;’
(a) (b)

<82
Figure 5: Clustering by bearing is necessary to distinguish
between two nearby landmarks

To improve the accuracy of clustering, we use bearing
information in the Street View images to refine clusters
generated by position-based clustering. Our algorithm
is inspired by the RANSAC [20] algorithm for outlier
detection, and is best explained using an example. Figure
5(a) shows an example where ALPS’s position-based

clustering returns a cluster with 9 images A-I. In Figure
5(b), images A-F and images F-I see different landmarks.
ALPS randomly picks two images A and D, adds them
to a new proto-cluster, and uses its positioning algorithm
(described below) to find the approzimate position of
the landmark (S1) as determined from these images.
It then determines which other images have a bearing
consistent with the estimated position of S1. H’s bearing
is inconsistent with S1, so it doesn’t belong to the new
proto-cluster, but B’s bearing is. ALPS computes all
possible proto-clusters in the original cluster, then picks
the lowest-error large proto-cluster, outputs this as a
refinement of the original cluster, removes these images
from the original cluster, and repeats the process. In
this way, images A-FE are first output as one cluster, and
images F-I as another.

Each cluster contains images that, modulo errors in posi-
tion, bearing and location, contain the same landmark.
ALPS next uses its positioning algorithm (discussed be-
low) to generate a seed location for the landmark.

A

(a) (b)
Figure 6: Adaptive Image Retrieval

Adaptive Image Retrieval

A seed location may not be precise, because the images
used to compute it are taken perpendicular to the street
(Figure 6(a)). If the landmark is offset from the center
of the image, errors in bearing and location can increase
the error of the positioning algorithm. Moreover, the
landmark detector may not be able to accurately draw
the bounding box around a landmark that is a little off-
center. Location accuracy can be improved by retrieving
images whose bearing matches the heading from the
sampling point to the seed location (so, the landmark is
likely to be closer to the center of the image, Figure 6(b)).
(A seed location may not be precise also because a cluster
may have too few images to triangulate the landmark
position. We discuss below how we address this.)

To this end, we use an idea we call adaptive image re-
trieval: for each image in the cluster, we retrieve one
additional image with the same position, but with a bear-
ing directed towards the seed location (Figure 6(b)). At
this stage, we also deal with false negatives. If a cluster
has fewer than k images (k = 4 in our implementation),
we retrieve one image each from neighboring sampling
points with a heading towards the seed location, even if
these points are not in the cluster. In these cases, the

landmark detector may have missed the landmark be-
cause it was in a corner of the image; retrieving an image
with a bearing towards the seed location may enable
the detector to detect the landmark, and enable higher
positioning accuracy because we have more perspectives.

Landmark Positioning

Precisely positioning a landmark from the images ob-
tained using adaptive image retrieval is a central capabil-
ity in ALPS. Prior work in robotics reconstructs the 3-D
position of an object from multiple locations using three
key steps [51, 14]: (1) camera calibration with intrinsic
and extrinsic parameters (camera 3-D coordinates, bear-
ing direction, tilt angle, field of view, focus length, etc.);
(2) feature matching with features extracted by algorithm
like SIFT [41]; (3) triangulation from multiple images
using a method like singular value decomposition [24].

In our setting, these approaches don’t work too well: (1)
Street View does not expose all the extrinsic and intrinsic
camera parameters; (2) some of available parameters
(GPS as 3-D coordinates, camera bearing) are noisy and
erroneous, which may confound feature matching; (3)
Street View images of a landmark are taken from different
directions and may have differing light intensity, which
can reduce feature matching accuracy; (4) panoramic
views in Street View can potentially increase accuracy,
but there can be distortion at places in the panoramic
views where images have been stitched together [53].

Instead, ALPS (1) projects the landmark (e.g., a logo)
onto a 2-dimensional plane to compute the relative bear-
ing of the landmark and the camera, then (2) uses least
squares regression to estimate the landmark position.

Estimating Relative Bearing. ALPS projects the view-
ing directions onto a 2-D horizontal plane as shown in
Figure 7(a). O represents the landmark in 3-dimensions,

and O’ represents the projected landmark on a 2-D hori-
zontal plane. C; and its corresponding C; represent the
camera locations in 3-D and 2-D respectively. Thus, C;O
is the relative bearing from camera ¢ to landmark O, and
C;O is its projection.

The landmark detector draws a bounding box around the
pixels representing the landmark, and for positioning, we

need to be able to estimate the relative bearing of the
center of this bounding box relative to the bearing of the

camera itself. In Figure 7(b), line AB demarcates the
(unknown) depth of the image and vector C' H represents
the bearing direction of camera, so 0" is the image of o}

on AB. Our goal is to estimate ZO'C' X or /4, which is
the bearing of the landmark relative to x-axis.

To do this, we need to estimate the following three vari-

ables: (1) the camera angle of view ZAC'B or /1, which
is the maximum viewing angle of the camera; (2) the cam-
era bearing direction Z/H C' X or /2, which is the bearing
direction of the camera when the image was taken; (3)
the relative bearing direction of the landmark £0"C'D

or /3, which is the angle between the bearing direction
of the camera and the bearing direction of the landmark.

/1 and /2 can be directly obtained from image meta-
data returned by Street View. Figure 7(b) illustrates

how to calculate /3 = arctan(|DZ)” \/|D_C" |). Land-
mark detection returns the image width in pixels and the
pixel coordinates of the landmark bounding box. Thus,

IDO"| = |AO" |- | AB|. Since tan(3 1) = |AD|/|DC|,
we can calculate |D_C"| = %\A%| tan(321). Then we de-

rive /3 as arctan(|D5”|/|D_C"|). Finally, we can calcu-
late the bearing direction of the landmark: /4 = /2— /3.

Figure 7: Landmark Positioning

Positioning using Least Squares Regression. For each
cluster, using adaptive image retrieval, ALPS retrieves
N images for a landmark and can calculate the relative
bearing of the landmark to the camera by executing land-
mark detection on each image. Positioning the landmark
then becomes an instance of the landmark localization
problem [58, 33|, where we have to find the landmark
location P = [z,,y,] given N distinct viewing locations
pi =[x, yi],4 = 1,2,..., N with corresponding bearing
0;,i=1,2,...,N, where [x;,y;] is point p;’s GPS coordi-
nates in x-y plane. From first principles, we can write
(or Z4) as follows:

tan(6;) = S2(0) _ o= vi. (1)

cos(0;) wmo—w;

Simplifying this equation and combining the equations
for all images, we can write the following system of linear
equations:

Gp = h, (2)
where 3 = [7,,9,]7 represents the landmark location,

G = [917927 . 7gN]Ta 9i = [Sin(ai)7 —COS(QZ')L h =
[hl, hg, ey hN}T, hl = [sm(ﬁl)xl — 005(91)%]

In this system of linear equations, there are two unknowns
z, and y,, but as many equations as images, resulting
in an overdetermined system. However, many of the 6;s
may be inaccurate because of errors in camera bearing,
location, or landmark detection. To determine the most
likely position, ALPS approximates B using least squares
regression, which minimizes the squared residuals S(8) =

||GB — h||?, as output. If G is full rank, the least squares
solution of Equation 2 is:

A~

= argmin(S(B)) = (GTG)~'GTh. (3)

Putting it All Together

Given a landmark type and a geographic region, ALPS
first retrieves a base set of images for the complete region,
which ensures coverage. On each image in this set, it
applies landmark detection, retrieving zoomed-in versions
of the image if necessary to obtain higher confidence
in the detection and reduce false positives. It applies
position and bearing based clustering on the images where
a landmark was detected. Each resulting cluster defines
a seed location, where the landmark might be.

At each seed location, ALPS adaptively retrieves addi-
tional images, runs landmark detection on each image
again to find the bearing of the landmark relative to the
camera for each image, and uses these bearings to for-
mulate a system of linear equations whose least squares
approximation represents the position of the landmark.

Flexibility
ALPS is flexible enough to support extensions that add
to its functionality, or improve its scalability.

New landmark types. Users can add to ALPS’s library of
landmark types by simply training a neural network to
detect that type of landmark. No other component of
the system needs to be modified.

Seed location hints. To scale ALPS better, users can
specify seed location hints in two forms. ALPS can take
a list of addresses and generate seed locations from this
using reverse geo-coding. ALPS also takes spatial con-
straints that restrict base image retrieval to sampling
points satisfying these constraints. For example, fire hy-
drants usually can be seen at or near street corners, or
on a street midway between two cross-streets. There-
fore, to specify such constraints, ALPS provides users
with a simple language with 4 primitives: at_corner
(only at street corners), midway (at the midpoint between
two cross-streets, searching radius (search within a
radius of the points specified by other constraints), and
lower_image (the landmark like a fire hydrant only ap-
pears in the lower part of the image). More spatial
constraints may be required for other landmarks: we
have left this to future work.

ALPS EVALUATION

In this section, we evaluate the coverage, accuracy, scala-
bility and flexibility of ALPS on two different types of
landmarks: Subway restaurants, and fire hydrants.

Methodology

Implementation and Experiments. We implemented ALPS
in C++ and Python and accessed Street View images
using Google’s APT [27]. Our implementation is 2708 lines
of code.* All experiments described in the paper are run

4 Available at https://github.com/USC-NSL/ALPS

on a single server with an Intel Xeon CPU at 2.70GHz,
32GB RAM, and one Nvidia GTX Titan X GPU inside.
Below, we discuss the feasibility of parallelizing ALPS’s
computations across multiple servers.

Dataset. We evaluate ALPS using images for several
geographic regions across five cities of the United States.
In some of our experiments, we use seed location hints to
understand the coverage and accuracy at larger scales.

Ground Truth. For both landmark types we evaluate,
getting ground truth locations® is not easy because no ac-
curate position databases exist for these. So, we manually
collected ground truth locations for these as follows. For
Subway restaurants, we obtained street addresses for each
restaurant within the geographic region from the chain’s
website [50]. For fire hydrants, there exists an ArcGIS
visualization of the fire hydrants in 2 zipcodes [40] (as
an aside, such visualizations are not broadly available for
other geographic locations, and even these do not reveal
exact position of the landmark). From these, we obtained
the approximate location for each instance of the land-
mark. Using this approximate location, we first manually
viewed the landmark on Street View, added a pinpoint on
Google Maps at the location where we observed the land-
mark to be, then extracted the GPS coordinate of that
pinpoint. This GPS coordinate represents the ground
truth location for that instance.

We validated of this method by collecting measurements
at 30 of these landmarks using a high accuracy GPS
receiver [52]. The 90th percentile error between our
manual labeling and the GPS receiver is 6 meters.

Metrics. To measure the performance of ALPS, we use
three metrics. Coverage is measured as the fraction of
landmarks discovered by ALPS from the ground truth
(this measures recall of our algorithms). Where appro-
priate, we also discuss the false positive rate of ALPS,
which can be used to determine ALPS’s precision. The
accuracy of ALPS is measured by its positioning error,
the distance between ALPS’s position and ground truth.
For scalability, we quantify the processing speed of each
module in ALPS and the number of retrieved images.
(We use the latter as a proxy for the time to retrieve
images, which can depend on various factors like the
Street View image download quota (25,000 images per
day per user [27]) and access bandwidth that can vary
significantly).

Coverage and Accuracy

To understand ALPS’s coverage and accuracy, we applied
ALPS to the zip-code 90004 whose area is 4 sq. km.,
to localize both Subway restaurants and fire hydrants.
To understand ALPS’s performance at larger scales, we

5We define the precise physical GPS address as ground truth location
51n the three cases where the error was high, we noticed that a sun-
shade obstructed our view of the sky, so the GPS receiver is likely to
have obtained an incorrect position fix.

https://github.com/USC-NSL/ALPS

used seed location hints to run ALPS at the scale of large
cities in the US.

Zip-code 90004. Table 1 shows the coverage of the two
landmark types across the entire zip-code. There are
seven Subways in this region and ALPS discovers all of
them, with no false positives. Table 3 shows that ALPS
localizes all Subways within 6 meters, with a median
error of 4.7 meters. By contrast, the error of the GPS
coordinates obtained from Google Places is over 10 meters
for each Subway and nearly 60 meters in one case. Thus,
at the scale of a single zip-code, ALPS can have high
coverage and accuracy for this type of landmark.

Fire hydrants are much harder to cover because they are
smaller in shape, lower in position so can be occluded,
can blend into the background or be conflated with other
objects. As Table 1 shows, ALPS finds 262 out of 330 fire
hydrants for an 79.4% coverage. Of the ones that ALPS
missed, about 16 were not visible to the naked eye in any
Street View image, so no image analysis technique could
have detected these. In 12 of these 16, the hydrant was
occluded by a parked vehicle (which is illegal, Figure 8
b)) in the Street View image, and the remaining 4 simply
did not exist in the locations indicated in [40]. Excluding
these, ALPS’s coverage increases to about 83.4%. ALPS
can also position these hydrants accurately. Figure 9
shows the cumulative distribution function (CDF) of
errors of ALPS for fire hydrants in 90004. It can localize
87% of the hydrants within 10 meters, and its median
error is 4.96 meters.

We then manually inspected the remaining 52 fire hy-
drants visible to the human eye but not discovered by
ALPS. In 6 of these cases, the fire hydrant was occluded
by a car in the image downloaded by base image retrieval:
a brute-force image retrieval technique would have dis-
covered these (see below). The remaining 46 missed
hydrants fell roughly evenly into two categories. First,
24 of them were missed because of shortcomings of the
object detector we use. In these cases, even though the
base image retrieval downloaded images with hydrants in
them, the detector did not recognize the hydrant in any
of the images either because of lighting conditions (e.g.,
hydrant under the shade of a tree, Figure 8 a)), or the
hydrant was blurred in the image. The remaining 22 false
negatives occurred because of failures in the positioning
algorithm. This requires multiple perspectives (multiple
images) to triangulate the hydrant, but in these cases,
ALPS couldn’t obtain enough perspectives either because
of detector failures or occlusions. Finally, the 21 false
positives were caused by the object detector misidenti-
fying other objects (such as a bollard, Figure 8 ¢)) as
hydrants. Future improvements to object detection, or
better training and parametrization of the object detec-
tor, can reduce both false positives and false negatives.
We have left this to future work.

Finally, both false positives and negatives in ALPS can be
eliminated by using competing services like Bing Street-
side [9] which may capture images when a landmark is

Type # landmark | # visible | # ALPS | Coverage
Subway | 7 7 7 100%
Hydrant | 330 314 262 83.4%

Table 1: Coverage of ALPS

not occluded, or under different lighting conditions, or
from perspectives that eliminate false positive detections.
To evaluate this idea, we downloaded images from Bing
Streetside near fire hydrants that were not detected using
Google Street View. By combining both image sources,
ALPS detected 300 out of 314 visible fire hydrants, re-
sulting in 95.5% coverage in this area.

Figure 8:)yrant occluded by a parked vehicle. (b)
Detection failure because hydrant is under the shade of a
tree. (c) False positive detection of bollard as hydrant.

City-Scale Positioning. To understand the efficacy of lo-
calizing logos, like that of Subway, over larger scales, we
evaluated ALPS on larger geographic areas on the scale
of an entire city. At these scales, ALPS will work, but
we did not wish to abuse the Street View service and
download large image sets. So, we explored city-scale
positioning performance by feeding seed-location hints in
the form of addresses for Subway restaurants, obtained
from the chain’s web page.

Table 2 shows the coverage with seed locations in different
areas. Across these five cities, ALPS achieves more than
92% coverage. With seed location hints, ALPS does not
perform base image retrieval, so errors arise for other
reasons. We manually analyzed the causes for errors in
these five cities. In all cities, the invisible Subways were
inside a building or plaza, so image analysis could not
have located them. The missed Subways in Los Angeles,
Mountain View, San Diego and Redmond were either
because: (a) the logo detector failed to detect the logo in
any images (because the image was partly or completely
occluded), or (b) the positioning algorithm did not, in
some clusters, have enough perspectives to localize.

ALPS does not exhibit false positives for Subway restau-
rants. For hydrants, all false positives arise because the
landmark detector mis-detected other objects as hydrants.
The Subway sign is distinctive enough that, even though
the landmark detector did have some false positives, these
were weeded out by the rest of the ALPS pipeline.

At city-scales also, the accuracy of ALPS is high. Figure
10 shows the CDF of errors of ALPS and Google Places
locations for all of the Subways (we exclude the Subways
that are not visible in any Street View image). ALPS can
localize 93% of the Subways within 10 meters, and its

median error is 4.95 meters while the median error from
Google places is 10.17 meters. Moreover, for 87% of the
Subways, Google Places has a higher error than ALPS
in positioning. These differences might be important for
high-precision applications like drone-based delivery.

Scalability: Bottlenecks and Optimizations

Processing Time. To understand scaling bottlenecks in
ALPS, Table 4 breaks down the time taken by each
component for the 90004 zip-code experiment (for both
Subways and hydrants). In this experiment, base image
retrieval, which retrieved nearly 150 thousand images, was
performed only once (since that component is agnostic
to the type of landmark being detected). Every other
component was invoked once for each type of landmark.

Of the various components, clustering and positioning are
extremely cheap. ALPS thus has two bottlenecks. The
first is image retrieval, which justifies our optimization of
this component (we discuss this more below). The second
bottleneck is running the landmark detector. On average,
it takes 59 milliseconds for the landmark detector to
run detection on an image, regardless of whether the
image contains the landmark or not. However, because
we process over 150 thousand images, these times become
significant. (Landmark detection is performed both on
the base images to determine clusters, and on adaptively
retrieved images for positioning, hence the two numbers
in the table). Faster GPUs can reduce this time.

Fortunately, ALPS can be scaled to larger regions by
parallelizing its computations across multiple servers.
Many of its components are trivially parallelizable, in-
cluding base image retrieval which can be parallelized by
partitioning the geographic region, and adaptive image
retrieval and positioning which can be partitioned across
seed location. Only clustering might not be amenable to
parallelization, but clustering is very fast. We have left
an implementation of this parallelization to future work.

The Benefit of Adaptive Retrieval. Instead of ALPS’s two
phase (basic and adaptive) retrieval strategy, we could
have adopted two other strategies: (a) a naive strategy
which downloads images at very fine spatial scales of 1 me-
ter, (b) a one phase strategy which downloads 6 images,
each with a 60° viewing angle so ALPS can have high
visual coverage. For the 90004 zip-code experiment, the
naive strategy retrieves 24 x more images than ALPS’s
two-phase strategy, while one-phase retrieves about 3x
as many. The retrieval times are roughly proportional
to the number of images retrieved, so ALPS’s optimiza-
tions provide significant gains. These gains come at a
very small loss in coverage: one-phase has 1.91% higher
coverage than two-phase for hydrants” mostly because
the former has more perspectives: for example, hydrants

7We have not evaluated the coverage gains for naive, given the large
number of retrievals (3 million) required.

that were occluded in the base images can be seen in
one-phase images.

Seed Location Hints. We have already seen that seed
location hints helped us scale ALPS to large cities. These
hints provide similar trade-offs as adaptive retrieval: sig-
nificantly fewer images to download at the expense of
slightly lower coverage. For hydrants in 90004, using
hints that tell ALPS to look at street corners or mid-way
between intersections and in the lower half of the image
enabled ALPS to retrieve 3x fewer images, while only
detecting 5% fewer hydrants.

Accuracy and Coverage Optimizations

Object Detection Techniques. The accuracy of the object
detector is central to ALPS. We evaluated the recall,
precision, and processing time of several different object
detection approaches: YOLO, HoG+SVM, and keypoint
matching [16] with SIFT [41] features. For HoG+SVM,
we trained LIBSVM [38] with HoG [12] features and a
linear kernel. Table 5 shows that YOLO outperforms
the other two approaches in both recall and precision for
recognizing the Subway logo. YOLO also has the fastest
processing time due to GPU acceleration.

Street View Zoom. ALPS uses zoomed Street View images
to increase detection accuracy. To quantify this, after
using zoomed in images the landmark detector had a
precision of 96.2% and a recall of 86.8%. In comparison,
using only Yolo without zoomed in images had a precision
of 85.1% and recall of 87.4%.

To understand how the object detector affects the ac-
curacy of ALPS, we manually labeled the position of
the Subway logo in all the images in the dataset of Sub-
ways in LA. We thus emulated an object detector with
100% precision and recall. This ideal detector finds the 3
missing Subways (by design), but with position accuracy
comparable to YOLO (Figure 11).

Importance of Bearing-based Clustering. We used the fire
hydrant dataset to understand the incremental benefit
of bearing-based cluster refinement. Without this refine-
ment, ALPS can only localize 141 fire hydrants of 314
visible ones, while the refinement increases coverage by
nearly 2x to 262 hydrants. Moreover, without bearing-
based refinement, position errors can be large (in one
case, as large as 80 meters) because different hydrants
can be grouped into one cluster.

RELATED WORK

Prior work in ubiquitous and pervasive computing deals
with localizing objects within the environment, or hu-
mans. Some of these have explored localizing users using
low-cost energy-efficient techniques on mobile devices:
magnetic sensors [63], inertial and light sensors [65], in-
ertial sensors together with wireless fingerprints [29, 31],
RF signals [45, 7, 47], mobility traces [34] and other activ-
ity fingerprints [37]. Other work has explored localizing
a network of devices using low-cost RF powered cameras
[44]. Many of these techniques are largely complementary

City # Subway | # Visible | # ALPS | Coverage | Median error(m)
Los Angeles 123 118 115 97% 4.8
Mountain View | 38 26 24 92% 5.1
San Francisco 49 39 39 100% 4.2
San Diego 57 44 41 93% 5.0
Redmond 31 25 24 96% 4.8
Table 2: Coverage with Seed Locations
Subway # 1 2 3 4 5 6 7
Error of Google (m) | 10.06 | 11.53 | 14.10 | 30.38 | 59.48 | 16.60 | 14.90
Error of ALPS (m) | 2.03 | 4.53 | 6.78 2.93 739 | 594 | 3.33
Table 3: Error of ALPS and Google for localizing Subways
1
1 1 /(,__/
0.8 ~

0.8 0.8

0.6 0.6)

0.6) ,/

0.4

CDF

o I3
a a
o o

0.4 0.4

0.2 0.2

—ALPS
0 0
0 5 10 15 20 25 0 10 20

error(m)
Figure 9: Distribution of position
errors for hydrants in 90004 zip-code

30

error(m)
Figure 10: Distribution of errors for
Subways in five cities

Module Base Retrieval Base Detection Cluster
Time (s) | 3528 8741 0.749
Module Adaptive Retrieval | Adaptive Detection | Positioning
Time (s) | 715 1771 0.095
Table 4: Processing time of each module
YOLO | HoG+SVM | SIFT

Precision 85.1% 74.2% 63.7%

Recall 87.4% 80.5% 40.6%

Speed (sec/img) | 0.059 0.32 0.65

Table 5: Evaluation of different object detection methods

to ALPS, which relies on Street View images to local-
ize common landmarks. Perhaps closest to our work is
Argus [64], which complements WiFi fingerprints with
visual cues from crowd-sourced photos to improve indoor
localization. This work builds a 3-D model of an indoor
setting using advanced computer vision techniques, and
uses this to derive geometric constraints. By contrast,
ALPS derives geometric constraints by detecting common
landmarks using object detection techniques. Finally, sev-
eral pieces of work have explored augmenting maps with
place names and semantic meaning associated with places
[15, 4]. ALPS derives place name to location mappings
for common places with recognizable logos.

Computer vision research has considered variants of the
following problem: given a GPS-tagged database of im-
ages, and a query image, how to estimate for the GPS
position of the given image. This requires matching the
image to the image(s) in the database, then deriving
position from the geo-tags of the matched images. Work
in this area has used Street View images [67, 57], GIS
databases [2]), or images from Flickr [11]). The general
approach is to match features, such as SIFT in the query
image with features in the database of images. ALPS is
complementary to this line of work, since it focuses on
enumerating common landmarks of a given type. Because
these landmarks have distinctive structure, we are able
to use object detectors, rather than feature matching.

0.2 /
— ALPS w/o ideal detector
——ALPS ALPS w/ ideal detector
— Google 0
0 5 10 15 20

40 50 60 error(m)

Figure 11: Distribution of position
errors for ALPS on Subway w/ and
w/o ideal detector in Los Angeles
Research has also considered another problem variant:
given a set of images taken by a camera, finding the
position of the camera itself. This line of work [1, 39]
attempts to match features in the images to a database
of geo-tagged images, or to a 3-D model derived from the
image database. This is the inverse of the our problem:
given a set of geotagged images, to find the position of
an object in these images. Finally, Baro et al. [5] pro-
pose efficient retrieval of images from an image database
matching a given object. ALPS goes one step further
and actually positions the common landmark.

Recently, Convolutional Neural Network (CNN) based ob-
ject detection methods have begun to outperform earlier
methods (e.g., cascade classifiers [60]) in both speed and
coverage. YOLO [49], a CNN-based detector, is able to
process images very fast and is crucial for scaling ALPS.

CONCLUSION

ALPS achieves accurate, high coverage, positioning of
common landmarks at city-scales. It uses novel techniques
for scaling (adaptive image retrieval) and accuracy (in-
creasing confidence using zooming, disambiguating land-
marks using clustering, and least-squares regression to
deal with sensor error). ALPS discovers over 92% of
Subway restaurants in several large cities and over 95%
of hydrants in a single zip-code, while localizing 93% of
Subways and 87% of hydrants with an error less than 10
meters. Future work includes documenting large cities,
and extending ALPS to common landmarks that may be
set back from the street yet visible in Street View, such
as transmission or radio towers, and integrating Bing
Streetside to increase coverage and accuracy.

Acknowledgements. This research was partially spon-
sored by the US Army Research Laboratory under Coop-
erative Agreement Number W911NF-09-2-0053.

Bibliography
[1] Pratik Agarwal, Wolfram Burgard, and Luciano Spinello. “Met-
ric localization using Google Street View”. In: 2015 IEEE/RSJ
International Conference on Intelligent Robots and Systems,
IROS 2015, Hamburg, Germany, September 28 - October 2,
2015. 2015, pp. 3111-3118.

[2] Shervin Ardeshir et al. “GIS-assisted Object Detection and
Geospatial Localization”. In: Computer Vision—-ECCV 201}4.
Springer, 2014, pp. 602—-617.

[3] Vahid Balali, Elizabeth Depwe, and Mani Golparvar-Fard.
“Multi-class traffic sign detection and classification using google
street view images”. In: Transportation Research Board 94th

Annual Meeting, Transportation Research Board, Washington,
DC. 2015.

[4] Xuan Bao et al. “PinPlace: Associate Semantic Meanings with
Indoor Locations Without Active Fingerprinting”. In: Pro-
ceedings of the 2015 ACM International Joint Conference on
Pervasive and Ubiquitous Computing. UbiComp ’15. Osaka,
Japan: ACM, 2015, pp. 921-925.

[5] Xavier Baré et al. “Generic Object Recognition in Urban Image
Databases”. In: Artificial Intelligence Research and Develop-
ment, Proceedings of the 12th International Conference of the
Catalan Association for Artificial Intelligence, CCIA 2009,
October 21-23, 2009, Vilar Rural de Cardona (El Bages), Car-
dona, Spain. 2009, pp. 27-34.

[6] Michael Batty et al. “Smart cities of the future”. In: The
European Physical Journal Special Topics 214.1 (2012), pp. 481—
518.

[7] Jacob T. Biehl et al. “LoCo: A Ready-to-deploy Framework
for Efficient Room Localization Using Wi-Fi”. In: Proceedings
of the 2014 ACM International Joint Conference on Pervasive
and Ubiquitous Computing. UbiComp ’14. Seattle, Washington:
ACM, 2014, pp. 183-187.

[8] Bing Maps API. https://msdn.microsoft.com/en-us/library/
dd877180.aspx. 2016.

[9] Bing Streetside. https://www.bing.com/mapspreview. 2016.
[10] Cities Unlocked. http://www.citiesunlocked.org.uk/. 2016.

[11] David J. Crandall et al. “Mapping the World’s Photos”. In:
Proceedings of the 18th International Conference on World
Wide Web. WWW ’09. Madrid, Spain: ACM, 2009, pp. 761—
770.

[12] Navneet Dalal and Bill Triggs. “Histograms of Oriented Gra-
dients for Human Detection”. In: 2005 IEEE Computer Soci-
ety Conference on Computer Vision and Pattern Recognition
(CVPR 2005), 20-26 June 2005, San Diego, CA, USA. 2005,
pp. 886-893.

[13] Pasquale Daponte et al. “Metrology for drone and drone for
metrology: measurement systems on small civilian drones”.
In: Proc. of 2nd Int. Workshop on Metrology for Aerospace.
Benevento, Italy, 2015, pp. 316-321. URL: http://ieeexplore.
ieee.org/xpl/articleDetails.jsp?arnumber=7180673.

[14] Hugh F. Durrant-Whyte and Tim Bailey. “Simultaneous local-
ization and mapping: part 1”. In: IEEE Robot. Automat. Mag.
13.2 (2006), pp. 99-110.

[15] Moustafa Elhamshary and Moustafa Youssef. “CheckInside:
A Fine-grained Indoor Location-based Social Network”. In:
Proceedings of the 2014 ACM International Joint Conference
on Pervasive and Ubiquitous Computing. UbiComp ’14. Seattle,
Washington: ACM, 2014, pp. 607-618.

[16] Feature Points Matching. http://opencv- python- tutroals.
readthedocs.org/en/latest /py_ tutorials/py feature2d/py
matcher/py__matcher.html.

[17] Find a Parking Space Online. https://www.technologyreview.
com/s/410505/find-a- parking-space-online/. 2008.

(18] Fire Mapping: Building and Maintaining Datasets in ArcGIS.
http://www.esri.com/library/ebooks/fire-mapping.pdf. 2012.

[19] Firefighters Searching for Hydrants. http:/ / patch.com /
connecticut/danbury /firefighters-searching- for-hydrants. 2013.

[20] Martin A. Fischler and Robert C. Bolles. “Random Sample
Consensus: A Paradigm for Model Fitting with Applications
to Image Analysis and Automated Cartography”. In: Commun.
ACM 24.6 (1981), pp. 381-395.

[21] Flickr API https://www.flickr.com/services/api/. 2016.

[22] Keinosuke Fukunaga and Larry D. Hostetler. “The estimation
of the gradient of a density function, with applications in
pattern recognition”. In: IEEE Trans. Information Theory 21.1
(1975), pp. 32-40.

[23] Ross B. Girshick. “Fast R-CNN”. In: 2015 IEEE International
Conference on Computer Vision, ICCV 2015, Santiago, Chile,
December 7-13, 2015. 2015, pp. 1440-1448.

[24] G. Golub and C. ER Reinsch. “Singular value decomposition
and least squares solutions”. In: Numerische Mathematik 14.5
(1970), pp. 403-420.

[25] Google Place API. https://developers.google.com/places/web-
service/search. 2016.

[26] Google Street View. https:/ / www . google . com / maps /
streetview/.

[27] Google Street View Image API. https://developers.google.com/
maps/documentation/streetview/. 2016.

[28] Kotaro Hara et al. “Exploring early solutions for automati-
cally identifying inaccessible sidewalks in the physical world
using google street view”. In: Human Computer Interaction
Consortium (2013).

[29] Suining He et al. “Calibration-free Fusion of Step Counter and
Wireless Fingerprints for Indoor Localization”. In: Proceedings
of the 2015 ACM International Joint Conference on Pervasive
and Ubiquitous Computing. UbiComp ’15. Osaka, Japan: ACM,
2015, pp. 897-908.

[30] High-Tech Web Mapping Helps City of New York’s Fire De-
partment Before Emergencies. http://www.esri.com/news/
arcnews/falllOarticles/new-york-fire-dept.html. 2010.

[31] Sebastian Hilsenbeck et al. “Graph-based Data Fusion of Pe-
dometer and WiFi Measurements for Mobile Indoor Position-
ing”. In: Proceedings of the 2014 ACM International Joint
Conference on Pervasive and Ubiquitous Computing. UbiComp
’14. Seattle, Washington: ACM, 2014, pp. 147-158.

[32] ILSVRC2015 Results. http:/ /image- net.org / challenges /
LSVRC/2015/results. 2015.

[33] Steven M Kay. Fundamentals of Statistical Signal Processing:
Practical Algorithm Development. Vol. 3. Pearson Education,
2013.

[34] Christian Koehler et al. “Indoor-ALPS: An Adaptive Indoor
Location Prediction System”. In: Proceedings of the 2014 ACM
International Joint Conference on Pervasive and Ubiquitous
Computing. UbiComp ’14. Seattle, Washington: ACM, 2014,
pp. 171-181.

[35] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Ima-
genet classification with deep convolutional neural networks”.

In: Advances in neural information processing systems. 2012,
pp. 1097-1105.

[36] SangJeong Lee et al. “Understanding customer malling behavior
in an urban shopping mall using smartphones”. In: Proceedings
of the 2013 ACM conference on Pervasive and ubiquitous
computing adjunct publication. ACM. 2013, pp. 901-910.

[37] Seungwoo Lee et al. “Non-obstructive Room-level Locating Sys-
tem in Home Environments Using Activity Fingerprints from
Smartwatch”. In: Proceedings of the 2015 ACM International
Joint Conference on Pervasive and Ubiquitous Computing.
UbiComp ’15. Osaka, Japan: ACM, 2015, pp. 939-950.

[38] LIBSVM. https://www.csie.ntu.edu.tw/~cjlin/libsvm/. 2016.

https://msdn.microsoft.com/en-us/library/dd877180.aspx
https://msdn.microsoft.com/en-us/library/dd877180.aspx
https://www.bing.com/mapspreview
http://www.citiesunlocked.org.uk/
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7180673
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7180673
http://opencv-python-tutroals.readthedocs.org/en/latest/py_tutorials/py_feature2d/py_matcher/py_matcher.html
http://opencv-python-tutroals.readthedocs.org/en/latest/py_tutorials/py_feature2d/py_matcher/py_matcher.html
http://opencv-python-tutroals.readthedocs.org/en/latest/py_tutorials/py_feature2d/py_matcher/py_matcher.html
https://www.technologyreview.com/s/410505/find-a-parking-space-online/
https://www.technologyreview.com/s/410505/find-a-parking-space-online/
http://www.esri.com/library/ebooks/fire-mapping.pdf
http://patch.com/connecticut/danbury/firefighters-searching-for-hydrants
http://patch.com/connecticut/danbury/firefighters-searching-for-hydrants
https://www.flickr.com/services/api/
https://developers.google.com/places/web-service/search
https://developers.google.com/places/web-service/search
https://www.google.com/maps/streetview/
https://www.google.com/maps/streetview/
https://developers.google.com/maps/documentation/streetview/
https://developers.google.com/maps/documentation/streetview/
http://www.esri.com/news/arcnews/fall10articles/new-york-fire-dept.html
http://www.esri.com/news/arcnews/fall10articles/new-york-fire-dept.html
http://image-net.org/challenges/LSVRC/2015/results
http://image-net.org/challenges/LSVRC/2015/results
https://www.csie.ntu.edu.tw/~cjlin/libsvm/

[39] Heng Liu et al. “Finding perfect rendezvous on the go: accurate
mobile visual localization and its applications to routing”. In:
Proceedings of the 20th ACM Multimedia Conference, MM 12,
Nara, Japan, October 29 - November 02, 2012. 2012, pp. 9-18.

[40] Los Angeles County Fire Hydrant Layer. http://egis3.lacounty.
gov/dataportal/2012/05/23/los-angeles-county-fire-hydrant-
layer/. 2012.

[41] David G. Lowe. “Distinctive Image Features from Scale-
Invariant Keypoints”. In: International Journal of Computer
Vision 60.2 (2004), pp. 91-110.

[42] Suhas Mathur et al. “Parknet: drive-by sensing of road-side
parking statistics”. In: Proceedings of the 8th international

conference on Mobile systems, applications, and services. ACM.
2010, pp. 123-136.

[43] Andreas Mogelmose, Mohan Manubhai Trivedi, and Thomas B
Moeslund. “Vision-based traffic sign detection and analysis for
intelligent driver assistance systems: Perspectives and survey”.
In: IEEE Transactions on Intelligent Transportation Systems
13.4 (2012), pp. 1484-1497.

[44] Saman Naderiparizi et al. “Self-localizing Battery-free Cam-
eras”. In: Proceedings of the 2015 ACM International Joint
Conference on Pervasive and Ubiquitous Computing. UbiComp
’15. Osaka, Japan: ACM, 2015, pp. 445-449.

[45] Kazuya Ohara et al. “Transferring Positioning Model for Device-
free Passive Indoor Localization”. In: Proceedings of the 2015
ACM International Joint Conference on Pervasive and Ubig-
uitous Computing. UbiComp ’15. Osaka, Japan: ACM, 2015,
pp. 885-896.

[46] OpenStreetMap. http://www.openstreetmap.org/. 2016.

[47] Anindya S. Paul et al. “MobileRF: A Robust Device-free Track-
ing System Based on a Hybrid Neural Network HMM Classifier”.
In: Proceedings of the 2014 ACM International Joint Confer-
ence on Pervasive and Ubiquitous Computing. UbiComp ’14.
Seattle, Washington: ACM, 2014, pp. 159-170.

[48] Charith Perera et al. “Context Aware Computing for The
Internet of Things: A Survey”. In: IEEE Communications
Surveys and Tutorials 16.1 (2014), pp. 414-454.

[49] Joseph Redmon et al. “You Only Look Once: Unified, Real-
Time Object Detection”. In: CoRR abs/1506.02640 (2015). URL:
http://arxiv.org/abs/1506.02640.

[50] Subway. http://www.subway.com/. 2016.

[51] Carlo Tomasi and Takeo Kanade. “Shape and motion from
image streams under orthography: a factorization method”. In:
International Journal of Computer Vision 9.2 (1992), pp. 137—
154.

[52] u-bloz GPS module. https://www.u-blox.com/en/product/c94-
m8p.

[63] Understand Street View. https://www.google.com /maps/
streetview/understand/. 2016.

[54] Christopher Urmson et al. “Autonomous driving in urban envi-
ronments: Boss and the Urban Challenge”. In: Journal of Field
Robotics Special Issue on the 2007 DARPA Urban Challenge,

Part I 25.8 (2008). Ed. by Sanjiv Singh Martin Buehler Karl
Lagnemma, pp. 425-466.

[65] US Lane Width. http://safety.fhwa.dot.gov/geometric/pubs/
mitigationstrategies/chapter3/3_ lanewidth.cfm. 2016.

[66] US Sideway Guideline. http : / / www . thwa . dot . gov /
environment / bicycle pedestrian / publications / sidewalks /
chap4a.cfm. 2016.

[57] Gonzalo Vaca-Castano, Amir Roshan Zamir, and Mubarak
Shah. “City scale geo-spatial trajectory estimation of a mov-
ing camera”. In: Computer Vision and Pattern Recognition
(CVPR), 2012 IEEE Conference on. IEEE. 2012, pp. 1186—
1193.

(58] Reza M Vaghefi, Mohammad Reza Gholami, and Erik G Strom.
“Bearing-only target localization with uncertainties in observer
position”. In: Personal, Indoor and Mobile Radio Commu-
nications Workshops (PIMRC Workshops), 2010 IEEE 21st
International Symposium on. IEEE. 2010, pp. 238-242.

[59] Katrien Verbert et al. “Context-Aware Recommender Systems
for Learning: A Survey and Future Challenges”. In: IEEE
Trans. Learn. Technol. 5.4 (Jan. 2012), pp. 318-335.

[60] Paul Viola and Michael Jones. “Rapid Object Detection Using
a Boosted Cascade of Simple Features”. In: Computer Vision
and Pattern Recognition, 2001. CVPR 2001. Proceedings of
the 2001 IEEE Computer Society Conference on. Vol. 1. IEEE.
2001, pp. I-511.

[61] Jan D. Wegner et al. “Cataloging Public Objects Using Aerial
and Street-Level Images - Urban Trees”. In: The IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR).
2016.

[62] Muchen Wu, Parth H. Pathak, and Prasant Mohapatra. “Moni-
toring Building Door Events Using Barometer Sensor in Smart-
phones”. In: Proceedings of the 2015 ACM International Joint
Conference on Pervasive and Ubiquitous Computing. UbiComp
’15. Osaka, Japan: ACM, 2015, pp. 319-323.

[63] Hongwei Xie et al. “MaLoc: A Practical Magnetic Fingerprint-
ing Approach to Indoor Localization Using Smartphones”. In:
Proceedings of the 2014 ACM International Joint Conference
on Pervasive and Ubiquitous Computing. UbiComp ’14. Seattle,
Washington: ACM, 2014, pp. 243-253. por: 10.1145/2632048.
2632057. URL: http://doi.acm.org/10.1145/2632048.2632057.

[64] Han Xu et al. “Enhancing Wifi-based Localization with Visual
Clues”. In: Proceedings of the 2015 ACM International Joint
Conference on Pervasive and Ubiquitous Computing. UbiComp
’15. Osaka, Japan: ACM, 2015, pp. 963-974.

[65] Qiang Xu, Rong Zheng, and Steve Hranilovic. “IDyLL: Indoor
Localization Using Inertial and Light Sensors on Smartphones”.
In: Proceedings of the 2015 ACM International Joint Confer-
ence on Pervasive and Ubiquitous Computing. UbiComp ’15.
Osaka, Japan: ACM, 2015, pp. 307-318.

[66] Yelp API https://www.yelp.com/developers/documentation/
v2/search api. 2016.

[67] Amir Roshan Zamir and Mubarak Shah. “Accurate Image
Localization Based on Google Maps Street View”. In: Computer
Vision—-ECCYV 2010. Springer, 2010, pp. 255-268.

http://egis3.lacounty.gov/dataportal/2012/05/23/los-angeles-county-fire-hydrant-layer/
http://egis3.lacounty.gov/dataportal/2012/05/23/los-angeles-county-fire-hydrant-layer/
http://egis3.lacounty.gov/dataportal/2012/05/23/los-angeles-county-fire-hydrant-layer/
http://www.openstreetmap.org/
http://arxiv.org/abs/1506.02640
http://www.subway.com/
https://www.u-blox.com/en/product/c94-m8p
https://www.u-blox.com/en/product/c94-m8p
https://www.google.com/maps/streetview/understand/
https://www.google.com/maps/streetview/understand/
http://safety.fhwa.dot.gov/geometric/pubs/mitigationstrategies/chapter3/3_lanewidth.cfm
http://safety.fhwa.dot.gov/geometric/pubs/mitigationstrategies/chapter3/3_lanewidth.cfm
http://www.fhwa.dot.gov/environment/bicycle_pedestrian/publications/sidewalks/chap4a.cfm
http://www.fhwa.dot.gov/environment/bicycle_pedestrian/publications/sidewalks/chap4a.cfm
http://www.fhwa.dot.gov/environment/bicycle_pedestrian/publications/sidewalks/chap4a.cfm
http://dx.doi.org/10.1145/2632048.2632057
http://dx.doi.org/10.1145/2632048.2632057
http://doi.acm.org/10.1145/2632048.2632057
https://www.yelp.com/developers/documentation/v2/search_api
https://www.yelp.com/developers/documentation/v2/search_api

	Abstract
	Introduction
	Motivation and Challenges
	The Design of ALPS
	Approach and Overview
	Base Image Retrieval
	Landmark Detection
	Image Clustering
	Adaptive Image Retrieval
	Landmark Positioning
	Putting it All Together
	Flexibility

	ALPS Evaluation
	Methodology
	Coverage and Accuracy
	Scalability: Bottlenecks and Optimizations
	Accuracy and Coverage Optimizations

	Related Work
	Conclusion

