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Purpose: In this paper, the authors proposed a new 3D registration algorithm, 3D-scale invariant
feature transform (SIFT)-Flow, for multiatlas-based liver segmentation in computed tomography (CT)
images.
Methods: In the registration work, the authors developed a new registration method that takes
advantage of dense correspondence using the informative and robust SIFT feature. The authors
computed the dense SIFT features for the source image and the target image and designed an objective
function to obtain the correspondence between these two images. Labeling of the source image
was then mapped to the target image according to the former correspondence, resulting in accurate
segmentation. In the fusion work, the 2D-based nonparametric label transfer method was extended to
3D for fusing the registered 3D atlases.
Results: Compared with existing registration algorithms, 3D-SIFT-Flow has its particular advantage
in matching anatomical structures (such as the liver) that observe large variation/deformation. The
authors observed consistent improvement over widely adopted state-of-the-art registration methods
such as ELASTIX, ANTS, and multiatlas fusion methods such as joint label fusion. Experimental
results of liver segmentation on the MICCAI 2007 Grand Challenge are encouraging, e.g., Dice
overlap ratio 96.27%±0.96% by our method compared with the previous state-of-the-art result of
94.90%±2.86%.
Conclusions: Experimental results show that 3D-SIFT-Flow is robust for segmenting the liver from
CT images, which has large tissue deformation and blurry boundary, and 3D label transfer is effective
and efficient for improving the registration accuracy. C 2016 American Association of Physicists in
Medicine. [http://dx.doi.org/10.1118/1.4945021]
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1. INTRODUCTION

According to International Agency for Research on Cancer
of World Health Organization,1 liver cancer was estimated to
cause nearly 746 000 deaths worldwide (83% in less devel-
oped regions) in 2012, making it the second most common
cause of death from cancer. It is in general difficulty for doctors
to prognose liver cancer (overall ratio of mortality to incidence
of 0.95). computed tomography (CT) imaging combined with
computer-aided diagnosis (CAD) technologies2 conveniently
provides assistance to prognosis of liver cancer.

The task of liver segmentation from 3D CT images is
challenging due to the large deformation of the liver and
lack of clear texture patterns, as illustrated in Fig. 1. In
addition to performing manual delineations, that is, time-
consuming and also results in large variation from expert-
to-expert, semiautomatic and fully automatic segmentation
algorithms become increasingly popular in the field.3

Existing literature in medical image segmentation can be
roughly divided into two broad categories: (1) parametric
approaches that use model-based methods4,5 and (2) nonpara-
metric algorithms that use atlas-based registration methods.6,7
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F. 1. A clinical CT image. (a)–(c) show livers in different planes. (a) Transverse plane; (b) sagittal plane; (c) coronal plane. The liver in CT image has blurry
margin and low gray contrast to the adjacent organs.

In this paper, we study automatic segmentation of liver
in 3D CT images by focusing on atlas-based approaches
in which an existing atlas is registered to a target (input)
image. Ideally, if two images can be perfectly registered,
then labeling of the existing atlas can be directly mapped
to the input image, resulting in accurate segmentation of
the input image. Due to the large variation in individual
anatomical structures, it is hard to achieve perfect alignment.
Therefore, multiatlas-based segmentation (MAS) methods,
which take advantage of having multiple atlases associated
with manually delineated labels, have received growing
interests.8 The advantage of multiatlas-based methods over
single-atlas-based approaches is evident9,10 as using multiple
atlases more effectively captures the large intrinsic structural
variation in CT images. In MAS, each atlas (source) image is
registered to a target (input) image; based on the registration
(mapping) function, the annotated label map corresponding
to the atlas is transformed into the input image spaces;
the resulting transformed label maps are then combined to
form the segmentation for the input image, typically through
a fusion mechanism. Therefore, registration and fusion are
the two key steps that critically determine the quality of
multiatlas-based segmentation results.7,11

Inspired by the success of 2D-scale invariant feature
transform (SIFT)-Flow approach in performing large-scale
image matching12–14 and guiding active contours for tracking
cell junctions15 in the biomedical field, we propose a new
multiatlas liver segmentation algorithm that extends 2D-
SIFT-Flow12 and the label transfer method16 to deal with

3D CT images. We call our method, 3D-SIFT-Flow and 3D
label transfer, respectively, for registration and label fusion.
The SIFT descriptor17 has been considered as a milestone
achievement in computer vision and has been widely adopted
in a variety of applications such as object recognition,18 point
tracking,19,20 and panorama creation.21 SIFT descriptor is
robust, to a certain degree, to local deformation, orientation,
scaling, and illumination. SIFT has also been adopted in
medical imaging.22–24 At the same time, optical flow25 has
already successfully been used in medical imaging domain
due to its fast computation and precision in mapping structures
of interest. Many models based on 2D as well as 3D
optical flow methods have been developed and available for
medical image registration applications,26,27 but optical flow
is only based on intensity. SIFT Flow12 combining the SIFT
descriptor with optical flow has particular advantage in dealing
with images of large difference like the liver in CT images,
whereas standard optical flow methods would only be able to
cope with images of relatively small variation.26,27

2. RELATED WORK
2.A. Liver segmentation

Liver segmentation in CT images is an important task in
medical imaging. Accurate segmentation of liver provides
liver volume measurements and assists visualization as well
as CAD. However, 3D CT liver segmentation remains
a challenging task due to existence of large anatomical
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deformation and low intensity contrast. In addition, blurry
texture of anatomical structures and the background makes the
segmentation task difficult. In the past, various techniques for
liver segmentation have been proposed.28 A comprehensive
survey on liver CT image segmentation methods is given
by Mharib et al.,3 reviewing semiautomatic and automatic
liver segmentation, experimenting on several methods (i.e.,
gray level based techniques, learning techniques, model fitting
techniques and probabilistic atlases). As noted by Mharib,3 the
liver segmentation task however still relies greatly on heavy
manual intervention and heavy parameter tuning.

A CT liver segmentation challenge was organized for
MICCAI 2007 (Ref. 29) in which ten automatic and six
interactive methods were proposed, such as region-growing
based,30 shape-constrained segmentation methods31,32 and
gradient vector flow snake based.33 Most of these methods
performed efficiently and robustly in experiments but several
problems remained to be improved later (i.e., poor results
in real-world clinical images and computational complexity).
Methods have been continuously proposed thereafter and
results being improved gradually. An automatic method
based on a statistical shape mode and an optimal-surface-
detection strategy34 achieved advanced performance,but this
method failed in some long and narrow regions of liver.
Linguraru et al.35 combined liver with spleen and segmented
them using normalized probabilistic atlases and enhancement
estimation. Linguraru et al.36 also proposed a novel 3D
affine invariant shape parameterization to compare local
shape across organs. Danciu et al.37 presented a 3D DCT
supervised segmentation method to detect liver volumes.
A modified k-means segmentation method with a special
localized contouring algorithm by Goryawala et al.38 used
leveraging of multicore platform to reduce the processing
time to one hour, which is still not computationally feasible
in clinical applications. Yuan et al.39 proposed geodesic
curves to track fuzzy borders between liver and chest wall
to deal with the similar HU values on noncontrast-enhanced
planning CT images. Cheng et al.40 used random walker
algorithm in 3D liver segmentation and model reconstruction,
but it largely depends on the labels given by users. Platero
and Tobar41 developed a novel system by combining the
spatial normalization with the segmentation method based
on standard CRF models for liver segmentation. It used 19
atlases and achieved high Dice coefficient (95%–97%) and a
final score of 76 based on the dataset from the MICCAI 2007
Grand Challenge.

2.B. Multiatlas-based segmentation

Good results of MAS depend on excellent registration
methods and effective label fusion methods.

Recently, registration techniques in medical imaging start
to reach their clinical application and several novel methods
have emerged.42,43 ELASTIX (Ref. 44) is a popular program
for registration of medical data. It consists of various transform
methods (rigid, affine, nonrigid), similarity measures (mutual
information), optimization methods, interpolation methods,
and multiresolution schemes. For nonrigid registration, it

mainly measures similarity according to image intensity
subject to linear or B-spline warping. Despite its popu-
larity, ELASTIX still faces challenge in dealing with large
anatomical deformation in clinical CT images. The ANTS
system45 offers open source for large deformation image
registration. It was top ranked in a comprehensive brain
MRI image registration study43 and has been widely used
in other modalities as well. The ANTS toolkit provides
deformable mappings (affine, elastic, diffeomorphic) to find
large sharp differences and compute the best correspondence
between two medical images. Among these transformation
models, symmetric diffeomorphic transformation based on
optimizing and integrating a time-varying velocity field is
the most flexible and complex model for large deformable
registration. However, since the similarity metric in ANTS is
still based on intensities of individual pixels/voxels, ANTS
also potentially has problems dealing with large structural
deformation. HAMMER (Ref. 46) uses several specifically
designed features in measuring the similarity, but it has a very
specific problem setting that prevents it from being used in
the general situations other than brain data.

In multiatlas-based segmentation, effectively fusing the
labels after registration is also an important step. In some
early attempts, an atlas selection procedure47 and weight
voting48 were proposed.8 Extension to weight voting by using
global voting and local and semilocal weighting schemes
were proposed. Recently, various methods were proposed
(i.e., using STAPLE algorithm,49 based on off-line learning,50

nonlocal statistical label fusion51). Among these methods, a
joint label fusion7 achieved the best performance in the recent
MICCAI 2012 Workshop on Multi-Atlas Labeling for the
task of hippocampus segmentation, considered as the state-
of-the-art method. We call it Multiatlas-based Joint Label
Fusion (MAJLF). It combines corrective learning and the
nonlocal STAPLE algorithm49 to handle the limitation of many
approaches that different atlases may produce similar label
errors when the weights are calculated dependently for each
atlas. Due to its good performance, our label fusion will be
compared with MAJLF (Ref. 7) in the experiment section.

3. MATERIALS AND METHODS

In this section, we propose the general registration method
based on the 3D-SIFT-Flow in detail. In addition, a 3D method
based on nonparametric label transfer16 is implemented for the
task.

3.A. 3D SIFT

SIFT is a local descriptor characterizing the local gradient
distribution in the image. It was first published by Lowe18

for feature extraction and object detection. This descriptor is
invariant to translation, rotation, scaling (i.e., affine transfor-
mation), and local intensity scale of the detected object. There-
fore, it is widely used in computer vision for object detection,
video tracking, imaging stitching, gesture recognition, and 3D
modeling.
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F. 2. A 3D SIFT descriptor and a 3D-SIFT-flow illustration. The first figure shows a voxel in liver. The middle one presents how 3D SIFT descriptor is
computed and the third one illustrates 3D-SIFT-flow.

In this paper, we use 3D SIFT features to characterize
the nonrigid soft tissue deformation in 3D CT images,
which can be approximated as a combination of local affine
transformations at each pixel. As shown in Fig. 2, to calculate
3D SIFT features, for each pixel p, its local neighborhood is
extracted as a cubic region R centered at p. The size of R is
determined by the intensity scale of p, and the orientation of
R is rotated to the intensity gradient of p. R is further divided
into several subblocks (2×2×2 subblocks in our case), and
in each subblock a histogram of gradient magnitudes of six
directions is calculated. As a result, the 3D SIFT for p is a
real vector of 2×2×2×6= 48 dimensions.

3.B. General registration method based
on 3D-SIFT-flow

We attempt to calculate correspondence between two
medical images, i.e., a source image and a target image,
and use the correspondence computed from the registration
to warp labeling of the source image to the target image. In
this paper, we propose a 3D-SIFT-Flow algorithm intended
for high-quality 3D medical image registration. The basic
idea is to present flow-based registration25 based on 3D SIFT
features instead of intensity similarities. The motivation to
present a 3D-SIFT-Flow method (show in Fig. 2) for 3D
medical image registration comes from the fact that 2D SIFT
Flow method12 performs robust matching across different
scene/object appearances in natural scene images and the
discontinuity-preserving spatial model allows matching of
objects located at different parts of the scene by describing
the image locally using the SIFT descriptor.18 We use the
dense SIFT descriptor to characterize local image structures
and encode contextual information. The image with a per-
pixel SIFT descriptor is called a SIFT image. We designed
an objective function similar to that of 2D-SIFT-Flow12 to
estimate correspondence between two SIFT images. The
registration process is driven by minimizing the following
energy function:

E(w) =


p
min(∥s1(p)− s2(p+w(p))∥1,t) (1)

+


p
η(|u(p)+ v(p)+r(p)|) (2)

+


(p,q)∈ϵ
min(α|u(p)−u(q)|,d)

+min(α|v(p)− v(q)|,d)
+min(α|r(p)−r(q)|,d), (3)

where s1 and s2 are the SIFT vectors of two images,
w(p) = (u(p), v(p), r(p)) is the flow vector at pixel location
p = (x,y, z), and ϵ contains all the spatial neighborhoods
(a six-neighbor system is used). Parameters η and α are used
to maintain the desired balance between the terms. The first
term [Eq. (1)] accounts for the dissimilarity of SIFT images,
the second term [Eq. (2)] provides a regularization on the first
order magnitude of w, and the third term [Eq. (3)] constrains
the flow vectors of adjacent pixels to be similar. We use
thresholds t and d to account for matching outliers and flow
discontinuities, allowing large deformation of soft tissues and
discontinuous displacements between adjacent tissues. Due to
the large deformation of livers, the weight of Eqs. (2) and (3)
should be heavier than Eq. (1). The key to making the energy
function more robust for liver segmentation is to decrease the
value of α and η.

To optimize the objective function, we use a dual-layer
loopy belief propagation (BP-S) method similar to the one
used in 2D-SIFT-Flow.12 Three dimensions are separated by
setting up three layers with exactly the same grid. In message
passing, we first update the intralayer message in three layers
respectively, and then update the interlayer message between
them. Different from 2D-SIFT-Flow, when implementing
interlayer message updating, we transfer messages in a plane
to the third dimension. For example, minimize the messages in
the x–y plane and transfer it to z. To speed up the optimization,
we use a coarse-to-fine matching scheme similar to the one
used in 2D-SIFT-Flow.12

3.C. 3D label transfer method

A 3D method based on nonparametric label transfer16 is
proposed to merge the labels of registered atlases based on
SIFT features. To facilitate the description, we use following
notation: the target image is I and the number of atlases
is M . For the ith atlas, we have following information:
{si,ci,wi}i=1:M, i.e., the SIFT of original image: si, annotation
ci, and wrap mapping function wi. Our goal is to obtain c,
which is the annotation of the target image by the former
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information. An energy function will be formulated to inte-
grate the following consideration: position, prior probability,
and neighbor relationship. The energy function is similar to
2D Label Transfer.16 We expand it to three dimensions as
following:

F =


p
ψ(c(p);s,s′i)+α


p
λ(c(p))

+ β


{p1,p2}∈ ϵ
c(p1) ,c(p2)

φ(c(p1), c(p2); I)+ logZ, (4)

where Z is the normalization constant.
For the likelihood term ψ, we define

ψ = min
c(p)=ci(p)

{s(p)− si(p+w(p))}. (5)

Note that if we do not have c(p)= ci(p) for any i, then ψ
will be the maximal value of the difference measure function.
For the prior term λ, it will be voted by labels of candidates,

λ =−log
( |{i |c(p)= ci(p)}|+1

M

)
. (6)

We put a negative sign here because the better our solution
is, the less F will be. In smooth term φ, we use this function

φ=
ξ+e−γ∥I(p1)−I(p2)∥2

ξ+1
, (7)

where γ = (2⟨∥I(p)− I(q)∥2⟩)−1.
This function obtains a maximal value 1 when two pixels

are same and converges to ξ/(ξ+1) when two pixels are very
different. Note that before this calculation, we use a 3D Gauss
filter with a radius of 3 to smooth the target image. To optimize
the objective function with respect to the annotations c(p), we
still use the BP-S algorithm as mentioned in this section.

3.D. Data

We used CT abdomen images with the liver ground-truth
annotation from the MICCAI 2007 Grand Challenge.52 All
images have been acquired in transversal direction and the
pixel spacing varies from 0.55 to 0.8 mm and the interslice

distance varies from 1 to 3 mm. These images are stored in
Metaformat: an ASCII readable header (.mhd) and a separate
raw image data file (.raw). - (Ref. 53) was used to
visualize the data in the paper. The dataset contains 40 images
(20 training images, 10 testing images for the qualifying,
and 10 for the contest). We used 10 from 20 training images
(Numbers 1, 2, 3, 8, 11, 16, 17, 18, 19, 20) and then extracted
the region of interest (128×128×128 voxels) containing the
liver for registration and label fusion test.

3.E. Implementation details

Ten CT images were used in our experiment. Each original
image was used as a target image and the remaining images
were used as source images, respectively. We calculated the
correspondence between the source images and the target
image via 3D-SIFT-Flow. Labeling of source images was
then warped according to the correspondence computed by
the former step to obtain candidate segmentations for the
target image. Finally, these candidates were fused to one final
segmentation image via 3D label transfer.

3.F. Comparison

3.F.1. Registration

Three registration methods were compared in our experi-
ments: ELASTIX, ANTS, 3D-SIFT-Flow. We aligned images
by affine registration for ELASTIX and ANTS respectively,
but did no initial rigid or affine registration for 3D-SIFT-Flow.

ELASTIX: It uses the 3D B-spline registration based on
mutual information. A multiresolution registration scheme is
used to accelerate the registration. Four levels of resolution are
used. The down-sampling ratios for the four resolution levels
are 8, 4, 2, and 1. An adaptive stochastic gradient descent
algorithm is used for the optimization at each level. We used
default parameter file in ELASTIX.54

ANTS: We used symmetric normalization model (nonrigid)
transformation. The following parameter settings used in
the experiment were proven to be effective to handle large
deformation.45

ANTS 3 −m cc[{fix},{mov},1, 4] −o output . nii −r Gauss[3, 0]
−t SyN [0.5] −i 100x100x100x20

WarpImageMultiTransform 3 {mov} {result} −R {fix}
outputWarp.nii.gz outputAffine.txt

3D-SIFT-Flow: For every pixel in a 3D medical image, its
neighborhoods were divided into a 2×2×2 cell array and the
gradient orientations were quantized into a 6-bin histogram
in each cell. Thus, we obtained a 48D vector as the SIFT
representation for a pixel. The down-sampling ratios for the
four resolution levels are 8, 4, 2, and 1 in the coarse-to-fine
scheme. We used α = 0.25, η = 0.0001 in the energy function
and window size = 7 in the BP-S algorithm.

3.F.2. Fusion

3D SIFT Flow was compared with the state-of-the-art label
fusion method, MAJLF.7 We applied both of them to each
registration result.

MAJLF:7 We used the following parameters: 0.1 as the
regularization term added to the matrix for inverse, and 2 as
the exponent for mapping intensity difference to joint error.

Medical Physics, Vol. 43, No. 5, May 2016
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T I. Dice coefficient of three registration methods (mean ± standard
deviation %).

ELASTIX ANTS 3D-SIFT-Flow

86.29±3.86 90.71±3.18 92.56±2.01

3D label transfer: We used the following parameters: α = 0,
β = 0.02, M = 9 in the experiments.

4. RESULTS
4.A. 3D-SIFT-Flow

In our experiments, Dice coefficient (Mean overlap)55

was used to evaluate the overlapping ratio between the
segmentation result and the ground truth. It is the intersection
divided by the mean volume of the two regions,

DC= 2


r
|Sr∩Gr |

r
(|Sr |+ |Gr |) , (8)

F. 3. Comparison of three registration methods. X axis: the number se-
quence of the target image; Y axis: average Dice coefficient of the results
registered by the remaining nine source images (%). The differences between
3D-SIFT-flow and ELASTIX/ANTS are significant (both p < 0.0001).

where Sr is the region of the segmentation result, and Gr is
the region of the ground truth.

Results of three registration methods are shown in Table I.
The Dice coefficient between the manual and automated

F. 4. Comparison of three registration methods with liver annotation: I, II, III, IV, V, VI, VII, VIII are the results of eight CT images. Three rows of the results
show liver on different planes (from top to bottom: transverse plane, sagittal plane and coronal plane). (a) The target image; (b) the source image; (c) the result
produced by ELASTIX; (d) the result produced by ANTS; (e) the result produced by 3D-SIFT-flow. White: the ground truth; red: the predicted result (color in
online version only).

Medical Physics, Vol. 43, No. 5, May 2016



2235 Xu et al.: 3D-SIFT-Flow for CT liver image segmentation 2235

T II. Dice coefficient of the segmentation results produced by two fusion
methods (mean ± standard deviation %).

ELASTIX ANTS 3D-SIFT-Flow

No fusiona 86.29±3.86 90.71±3.18 92.56±2.01
MAJLF (Ref. 7) 94.90±2.86 92.61±1.20 96.25±0.69
3D label transfer 94.90±1.86 95.23±1.49 96.27±0.96

aSegmentation performed only by registration.

segmentations are 92.56%±2.01% by 3D-SIFT-Flow, which
verifies the advantage of our registration method, as shown
in Fig. 3 and Table I. The highest accuracy and the smallest
standard deviation show that 3D-SIFT-Flow performs better
and more stable than two state-of-the-art registration methods.
Additionally, a t-test was conducted between the results of
3D-SIFT-Flow and ANTS/ELASTIX. The p-values were both
<0.0001, which shows the significant difference between
3D-SIFT-Flow and ELASTIX/ANTS. Additionally, Fig. 3
also indicates that 3D-SIFT-Flow does not always achieves
the highest DICE coefficient (e.g., target image 10), ANTS
sometimes provide comparable results (e.g., target images
2, 3, 6, 7). We observed two reasons. One is that sharp
differences between these target images and template images
are weak enough for ANTS to deal with. The other reason is
that we reduced the value of parameter α in Eq. (3) which
constrains the flow vectors of adjacent pixels to be similar.
Such setting can help us detect some blurry margins, at the
cost of damaging continuity. Although the discontinuity may
cause several errors, this problem can be successfully solved
in the label fusion step. For the runtime, 3D-SIFT-Flow was

F. 5. Dice coefficient of the results produced by three registration methods
(ELASTIX, ANTS, and 3D-SIFT-Flow) and further improved by 3D label
transfer. Our fusion method increased the Dice coefficient by 4%–8% for
three registration methods.

run on a Microsoft Windows HPC cluster (2 quad-core Xeon
2.43-GHz processor, 16 GB RAM), taking about 40 min each).
ANTS and ELASTIX took nearly 25 min and 1 min on the
some HPC cluster, separately. We will further discuss the
runtime of 3D SIFT Flow in Sec. 5.

We show eight typical results in Fig. 4. Compared with the
target image, the liver in source image has a different position
and large deformation. Take Fig. 4 (VIII) for an example.
In transverse plane, the margin of liver in the source image
is convex, while it is concave in the target image. The view
in coronal plain shows that livers in these two images have
large differences in margin and large soft-tissue deformation
in the upper right corner. Two state-of-the-art methods failed
to find corresponding voxels between two images. However,
3D-SIFT-Flow is capable of compensating for large soft-tissue

F. 6. Some results produced by 3D label transfer and label fusion candidates for the target image. (a) The target image; (b) the label fusion result produced by
3D label transfer; (c)–(h) six candidates registered by 3D-SIFT-flow. White: the ground truth; red: the predicted result (color in online version only).
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F. 7. Comparison of some label fusion results produced by MAJLF (Ref. 7) and 3D label transfer: I, II, III, IV are the results of four CT images. Three rows
show liver on different planes (from top to bottom: transverse plane, sagittal plane, and coronal plane). (a) The original image; (b)–(d) the results produced by
ELASTIX, ANTS, and 3D-SIFT-flow, respectively [(1) MAJLF (Ref. 7) and (2) 3D label transfer). That is, (d2) are the label fusion results produced by 3D label
transfer based on 3D-SIFT-Flow registration method, White: the ground truth; red: the predicted result (color in online version only).

deformation due to the combination of SIFT features and
optical flow.

4.B. 3D label transfer

Table II presents the results of 3D label transfer and
MAJLF. 3D label transfer further improved Dice coeffi-
cient between the manual and automated segmentations to
96.27%±0.96% (3D-SIFT-Flow), 95.23%±1.49% (ANTS),

and 94.90% ± 1.86% (ELASTIX). Our fusion method
increased Dice coefficient of the results by 4%–8% for three
registration methods. Figure 5 illustrates the Dice coefficient
of each group of atlases (before fusion and after fusion).
Additionally, Fig. 6 presents the results of 3D label transfer
and six candidates based on 3D-SIFT-Flow.

Table II also shows the comparison between 3D label trans-
fer and MAJLF. Two fusion methods both achieved a signif-
icant improvement of registration results. The improvements
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T III. Average values of 5 measures, scores and the final score for 3D-SIFT-Flow/3D label transfer: volu-
metric overlap error (m1), absolute relative volume difference (m2), average symmetric surface distance (m3),
average symmetric RMS surface distance (m4), maximum surface distance (m5).

m1 (%) m2 (%) m3 (mm) m4 (mm) m5 (mm) Final score

Measures 7.19±1.78 3.41±2.70 0.83±0.27 1.65±0.57 17.05±5.97
Scores 71.93 81.89 79.17 77.02 77.57 77.52

of ELASTIX/3D-SIFT-Flow by 3D label transfer and MAJLF
were similar. For example, 3D SIFT Flow combined with
MAJLF almost yields comparable accuracy with our 3D SIFT
Flow/3D label transfer. The reason is that MAJLF sometimes
successfully decreases the influence of similar errors between
each candidate by combining corrective learning with the
nonlocal STAPLE algorithm. However, 3D label transfer
increased Dice coefficient by 2.5% in ANTS, which was
higher than MAJLF. In Fig. 7, we show four examples. The
number sequence of the target image is 1, 2, 5, and 10.
It shows the label fusion results by 3D label transfer and
MAJLF on three different planes (transverse plane, sagittal
plane, and coronal plane). White patterns are the ground truth
and red patterns are the predicted result. To evaluate 3D-SIFT-
Flow/3D label transfer with other methods in the MICCAI
2007 Grand Challenge, we measure results in standard as
the overlap error, relative absolute surface difference, average
symmetric distance, root mean square symmetric distance,
and maximum symmetric distance, as well as the final score.56

The result of each measure is transformed to a score (0–100),
compared with a standard value which is calculated by
averaging the manual segmentations. The final score is the
average of scores of 5 different measures. A final score
of 75 for liver segmentation can loosely indicate that the
proposed method is comparable to human performance. In
the experiment, 3D-SIFT-Flow/3D label transfer achieved a
score of 77, as shown in Table III. High Dice coefficient and
high scores of 5 different measures illustrate the efficiency and
effectiveness of our multiatlas-based segmentation system.

For computational complexity, we ran 3D label transfer
and MAJLF on the same computer configuration (Intel core
i7-4770 CPU 3.40 GHz) and used 9 atlases. The time
consumption of two fusion method is shown in Table IV. 3D
label transfer cost 5.67±0.10 min, which is more than 5 times
less than MAJLF. Moreover, we ran both fusion methods on
different numbers of atlas (as shown in Fig. 8). It presents that
the speed of MAJLF greatly depends on the number of the
atlases. If the number becomes larger, MAJLF requires more
time because of the additional step of solving the inverse of
the pairwise dependence matrix in its algorithm.7 Compared
with MAJLF, 3D label transfer performs stably and robustly
when the number of atlases increases.

T IV. The running time of two fusion methods (min).

MAJLF (Ref. 7) 3D label transfer

Time 32.36±1.58 5.67±0.10

5. DISCUSSION

Liver segmentation using CT data is useful in biomedical
applications, but it is still a challenge due to large anatomical
deformation, low intensity contrast and blurry margin. In this
study, we have successfully proposed 3D-SIFT-Flow to the
medical image context and it has proven to effectively handle
large anatomical deformation of the liver. The results show that
our approach works better for liver CT registration than two
state-of-the-art software packages, i.e., ANTS and ELASTIX.
The t-test showed significant difference between 3D-SIFT-
Flow and ELASTIX/ANTS (both p < 0.0001). Among three
methods, 3D-SIFT-Flow achieved the highest Dice coefficient
and the best visual matching quality (as shown in Fig. 4). Eight
examples of the liver from different planes illustrate that our
approach successfully finds the voxel-to-voxel correspondence
between two CT images although livers have big differences
in position, margin, and gray level. The good performance of
3D-SIFT-Flow should be contributed to the adoption of SIFT
feature and the usage of optical flow optimization.

As proven by a large number of existing studies, SIFT
is good at describing salient image features such as cor-
ners and edges. Therefore, our method performs well at
matching boundaries and sharp corners. In contrast, ANTS
and ELASTIX fail to deal with complex organ boundaries,
especially the concave and convex edges. ELASTIX uses
mutual information, which is an intensity-based similarity
measurement without special consideration of edge features.
ANTS uses histogram matching as the similarity metric. It
works well for images with several intensity clusters (i.e.,
the brain MR images), but is not as effective for liver CT
images with less contrast. On the other hand, optical flow
allows us to capture large intersubject deformation because
the mathematical definition of optical flow is more flexible

F. 8. The figure shows time consumption of two fusion methods. It com-
pares 3D label transfer with MAJLF (Ref. 7) when the number of atlases
increases.
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than the symmetric normalization model and the B-spline
deformation used in ANTS and ELASTIX, respectively.

During registration, several different parameters were used
in 3D-SIFT-Flow. We attempted to detect some greatly blurry
patterns of liver, so we set several parameters of the Gauss
filter in the feature extraction part. However, our registration
method achieved similar results when the image preprocessing
was changed. Regarding the energy function of SIFT Flow
[Eqs. (1)–(3)], α controls the weight of the smoothness term
[Eq. (3)] which constrains the similarity of adjacent pixels.
We set α = 1 at first and then reduced the value of α to 0.25
(used in this paper). Both parameter settings were used on
90 registration experiments. Average of Dice coefficient of
registration results increased by nearly 1.0%. Unlike that of
natural scene images, the margin of liver is more changeable
and deformed [Figs. 4(I-a) and 4(V-c)], so adjacent voxels may
not be so similar. However, if we further reduce the value of
α, the continuity of 3D-SIFT-Flow will be damaged. In terms
of discontinuity, although the segmentation results of α = 1
look more continuous than α = 0.25, the little destruction to
segmentation is acceptable and some blurry margins can be
successfully detected. The small displacement term in Eq. (2)
constrains the flow vectors to be as small as possible. This
term must be heavily weighted due to the large deformation
and big offset between the source image and the target image.
We also reduced the value of η to lower the weight of
Eq. (2). In the coarse-to-fine matching scheme, the window
size was enhanced in the experiment to get a bigger searching
area in order to match some large deformed parts between
two images. In addition, 3D-SIFT-Flow uses the truncated
L1-norm regularization to achieve good performance and
deformation fields computed by the voxel-to-voxel alignment
are likely “blocky” and diffeomorphic.

As a cost of better registration accuracy, 3D-SIFT-Flow
needs more time than the other two methods (about 40 min
for the image of 128×128×128 voxels on a 2 quad-core Xeon
2.43-GHz processor, 16 GB RAM). Most of the computation
is spent on dual-layer loopy belief propagation (BP-S) and
the large searching area. Nevertheless, with the progress in
computing power, it can be expected that the computation
burden will be greatly alleviated in the near future. Moreover,
since the BP-S algorithm can be parallelized, we will also focus
on parallel computing to speed up 3D-SIFT-Flow. Another
drawback of 3D-SIFT-Flow is its comparatively large memory
requirement of the dense SIFT feature. To align two typical
512× 512× 256 CT scans is likely to be 512× 512× 256× 4
(32 bits float) × 48 (SIFT features) × 2 = 24 GB.

For multiatlas fusion, we compared the proposed 3D
label transfer method with MAJLF.7 Compared to the results
without atlas fusion, both fusion methods achieved 4%–8%
improvements of Dice coefficient for all registration methods
(as shown in Fig. 7) and the difference between the results of
two fusion methods was not significant. However, considering
the running time, 3D label transfer becomes more efficient
than MAJLF when the atlas number grows larger (as shown
in Fig. 8). The reason is that MAJLF uses an additional step
of solving the inverse of the pairwise dependence matrix to its
algorithm.

T V. The Dice coefficient of multiatlas segmentation results with 20
training images (mean ± standard deviation %).

Registration method Label fusion method DICE coefficient

3D-SIFT-Flow 3D label transfer 94.99±1.56
MAJLF 94.97±2.67
STAPLE (Ref. 49) 91.56±3.86

Major voting 91.64±5.48
ANTS 3D label transfer 94.77±1.53

MAJLF 94.71±2.74
STAPLE (Ref. 49) 92.78±3.35

Major voting 92.25±3.49
ELASTIX 3D label transfer 93.01±5.02

MAJLF 93.88±5.72
STAPLE (Ref. 49) 86.87±5.23
Major Voting 89.09±5.58

Furthermore, we ran all 20 training data from MICCAI
2007 Liver Segmentation Grand Challenge (as shown in
Table V) and submitted the results of 3D-SIFT-Flow/3D label
transfer system on 10 test images.

In the future work, we will investigate extending 3D-SIFT-
Flow to other types of medical images, such as magnetic
resonance (MR) brain images. For example, our system will
be applied to the segmentation of hippocampus (HC) which
plays an important role in the diagnosis of Alzheimers disease.
Classical registration approaches cannot work well due to
the large deformation between abnormal HC and normal HC
(Tables VI–VIII). Our method (3D-SIFT-Flow and 3D label
transfer), which has been proved to be effective for soft tissue
with large deformation in this paper, may perform well in HC
segmentation.

6. CONCLUSION

In this paper, we proposed 3D-SIFT-Flow for liver segmen-
tation in CT images and extended the 2D-based nonparametric
label transfer method to 3D for fusing the multiple registered
atlases. Experimental results showed that 3D-SIFT-Flow is
robust for segmenting the liver from CT images, which has
large tissue deformation and blurry boundary, and 3D label
transfer is effective and efficient for improving the registration
accuracy. The binary file of 3D-SIFT-Flow/3D label transfer
and samples of CT liver images are given in the supplementary
material.57
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APPENDIX: RESULTS OF THREE REGISTRATION METHODS

T VI. The Dice coefficient of ELASTIX (mean ± standard deviation %).

Image 1 2 3 4 5 6 7 8 9 10

1 — 89.88 90.84 86.97 72.81 87.40 87.13 86.78 88.15 86.44
2 86.47 — 89.93 90.02 82.24 90.54 86.37 89.70 91.01 90.08
3 89.92 90.69 — 85.60 81.06 89.49 87.26 82.74 86.90 84.18
4 84.51 88.21 85.29 — 79.03 89.56 80.85 85.75 84.08 83.15
5 75.91 82.32 79.03 81.76 — 84.43 80.70 84.37 78.04 83.14
6 83.85 89.32 88.24 88.44 85.31 — 84.10 88.10 85.34 89.67
7 86.33 90.71 92.27 87.17 84.93 90.05 — 85.98 88.69 91.80
8 84.88 89.84 85.15 87.51 87.97 90.40 84.46 — 80.43 91.10
9 88.92 92.93 90.78 89.27 80.88 89.22 88.80 85.95 — 90.55

10 80.73 87.02 84.69 87.05 81.88 89.40 88.41 82.92 83.81 —

Mean 84.61 88.99 87.36 87.09 81.79 88.94 85.34 85.81 85.16 87.79
Standard deviation 4.25 3.00 4.20 2.40 4.33 1.92 3.03 2.27 4.10 3.56

T VII. The Dice coefficient of ANTS (mean ± standard deviation %).

Image 1 2 3 4 5 6 7 8 9 10

1 — 93.03 92.76 89.78 82.19 91.21 89.46 90.34 91.19 89.70
2 90.71 — 93.84 93.25 87.65 92.51 94.20 92.05 89.83 93.44
3 91.69 95.50 — 89.68 93.24 93.47 94.37 90.80 91.48 93.53
4 87.29 94.27 90.42 — 84.38 89.13 85.90 87.66 86.61 87.04
5 81.16 87.99 93.30 80.93 — 92.28 92.78 90.64 86.16 89.90
6 89.65 92.92 93.40 87.76 92.15 — 90.03 93.06 92.89 94.00
7 88.85 94.95 94.24 85.42 93.61 91.10 — 92.72 92.18 95.05
8 86.71 93.56 92.24 86.68 92.09 91.90 93.13 — 87.82 92.58
9 83.70 92.90 93.08 88.16 89.34 93.64 92.10 88.68 — 91.65

10 90.48 93.20 93.00 86.62 89.53 93.70 94.10 91.46 88.79 —

Mean 87.80 93.15 92.92 87.59 89.35 92.10 91.79 90.82 89.66 91.88
Standard deviation 3.49 2.15 1.10 3.40 3.99 1.48 2.83 1.78 2.45 2.56

T VIII. The Dice coefficient of 3D-SIFT-Flow (mean ± standard deviation %).

Image 1 2 3 4 5 6 7 8 9 10

1 — 93.55 94.14 94.13 91.12 93.44 89.39 93.01 91.36 91.63
2 93.07 — 95.29 93.33 93.51 92.99 94.15 94.72 92.93 90.93
3 94.27 95.01 — 94.00 93.41 93.48 94.04 94.42 92.51 91.70
4 94.15 92.53 91.83 — 91.47 93.02 88.84 91.95 89.59 84.72
5 85.01 90.22 90.53 88.87 — 91.82 87.98 91.98 87.46 89.00
6 91.74 93.61 94.58 92.60 93.42 — 92.61 93.12 92.43 91.34
7 92.23 94.69 94.51 92.27 93.30 92.66 — 93.99 93.24 95.32
8 92.44 93.43 93.78 93.01 93.94 93.26 92.70 — 90.25 93.18
9 93.57 93.29 94.09 93.73 91.88 92.41 93.56 94.33 — 93.33

10 92.76 93.13 94.62 92.86 93.11 90.54 95.56 94.19 92.99 —

Mean 92.14 93.27 93.71 92.75 92.80 92.62 92.09 93.52 91.42 91.24
Standard deviation 2.81 1.37 1.53 1.59 1.02 0.94 2.68 1.05 1.96 3.02
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