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making it more éicient in both, circuit depth and width, when compared wittmpyus constructions.
Our ternary carry lookahead circuit has a circuit depth df dXlog n), while usingO(n) ancillas.
Our approach works on two levels of abstraction: at the fangll descriptions of arithmetic circuits
are given in terms of gates sequences that use various types-Clifford reflections. At the second
level, we break down these reflections further by derivirentteither from the two-qutrit Gliord gates
and the non-Cfford gateC(X) : [i, j) + i, j + 6i2 mod 3 or from the two-qutrit Clfford gates and
the non-Cliford gatePy = diage2"/9, 1, €¥"1/9). The two choices of elementary gate sets correspond
to two possible mappings onto twofidirent prospective quantum computing architectures whigh w
call the metaplectic and the supermetaplectic basis, césply. Finally, we develop a method to
factor diagonal unitaries using multi-variate polynorsialer the ternary finite field which allows to
characterize classes of gates that can be implementedyesaet the supermetaplectic basis.

Keywords Quantum circuits, ternary quantum systems, quantum adder

2alexeib@microsoft.com
bcuixsh@gmail.com
Smartinro@microsoft.com
dksvore@microsoft.com


http://arxiv.org/abs/1512.03824v2

2 Improved Quantum Ternary Arithmetics

1 Introduction

Quantum computation has seen vast progress over the yednsthieoretically and experimentally.
Computations on a programmable and scalable fault-taiepaamtum computer will consist of fully
controlled sequences of primitive operations such as yngates, measurements and state prepara-
tions. Such sequences are caligdntum circuitsIn the most commonly used circuit model, quantum
information is stored in a collection @fubits where each qubit has a two-dimensional Hilbert state
space with the computational ba¢i®), |1)}. A standard universal gate set consists offGid gates
and one non-Cfford gate such as thizgate [1] orV-gate [2]. By design, circuits over a universal set
can be used to approximate arbitrary quantum gates. Thuguamntum algorithm can be processed
given a quantum computer with a universal gate set.

It has been noted by several researchers that architedteestain quantum registers and gates
is more naturally described by multi-valued logic as oppdsebinary logic. History of experiments
with ternary superconducting registers, in particularsgback to 1989[[3].[4]. More recently, in
guantum computation domain, multi-valued logic has beap@sed for linear ion traps|[5], cold
atoms|[[6], entangled photonis [7]. It remains to be seen, at edale it would be possible to balance
out quantum universality and fault-tolerance in these ahdrasimilar architectures.

The research presented here is motivated in part by recegtess in circuit synthesis over uni-
versal quantum bases arising in topological quantum coimguvhere multi-qubit encoding is not
necessarily the most natural choice. Several physicagésystapable of performing topologically-
protected quantum computations have a natural structuregafrit instead of a qubit, where a quitrit
has a three-dimensional Hilbert space with the computatibasis{|0), |1), |2)}. For instance, in the
SU(2) anyon system, anyons with quantum dimensidd are well-suited for encoding quantum
states in qutrits. What is more, it was shownlinh [8] that th€BkJanyon system can be made univer-
sal through braiding and projective measurement of any®dhis anyonic structure is quite far from
physical realization at the moment, yet, iters a promise of comparatively simple quantum uni-
versality combined with native topological protection,i@h in our opinion, makes it a worthwhile
subject of forward-looking research.

In [9], an algorithm is given for approximation of any mutfistrit gate with an asymptotically
optimal circuit over the gate set @tbrd + diag(1, 1, —1). This work also demonstrated the importance
of Householder reflectionfor synthesis of fiicient circuits. Even though the gate set turned out to
be powerful enough for such synthesis, it had certain caneépnd practical limitations. Thus, it
is quite unlikely that all the reversible classical perntiota gates can be implemented exactly over
Clifford + diag(3, 1, —1). This has a dampindlect on implementation of arithmetic-heavy algorithms
such as Shor’s Factorization Algorithm, since the integedutar arithmetic is naturally described by
reversible classical circuits. As a matter of principle lswircuits may be represented exactly in
commonly used multi-qubit circuit model%.

When compared td_[9], the present paper aims at a more abktvet Here we assume that
the entire group of multi-qutrit classical permutationsapresentable at some cost, explof@edent
scenarios of its representation and focus on synthesifiigiest circuits for ternary base arithmetic
in these scenarios. Our thinking at this level remains réfleecentric. Previous research on non-
binary reversible circuit$ [11] mostly focused on provihg tiniversality of the local classical &brd
gates in combination with theontrolled-incremengate|j, k) — |j, k + §j4-1 mod d), whered is the
dimension of the qudit andlis the Kronecker delta. Reversible circuits available terature tend to

€To the extent the three-qubit oli gate may be assumed exactly representable.
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use ancillary qudits fairly liberally.

This paper dterentiates itself from previous work in two ways. First, welere several alternate
methods for synthesizing classical reversible circuitscddid, we strive to minimize both the depth
and the width of arithmetic circuits specifically. For exdepve show in Section 3.1 that implement-
ing of a faithful CARRY gate is not necessary in a correctaeyradder. By using a modified carry
we eliminate the use of ancillary qutrits and reduce the ob#te gate when compared to a faithful
CARRY as used in previous approaches to implement ternary daple adders[12, 13, 14].

Our focus is mainly on two types of ternary quantum addersodified ripple-carry adder and a
carry look-ahead adder. Both adders are generalized fremkimary counterparts, but the general-
izations are somewhat non-trivial. To add twajutrit numbers, the modified ripple-carry adder uses
1 ancilla and has a circuit depth @{n), while the carry look-ahead adder requif@®) ancillas and
has a circuit depth oB(log n). Each of the two adders has an overall circuit siz&@f) elementary
gates. We also study various extensions of quantum addgwsling adder modulo™ comparison,
and subtraction.

We show these arithmetic circuits can be realized exactlyguslassical Cliford gates and one
additional gateC(X), the controlled-incremengate, whose matrix is given in Equatibh C(X) is
a two-qutrit non-Clfford gate and it is universal for reversible classical corapom. This sets the
ternary reversible circuits apart from their binary analoghere at least one three-qubit gate, e.g., the
Toffoli gate, is required for universality.

C(X) = 1)

[cNoNoNoNoNoNoNaly o
cNeoNeoNoNoNoNol el
cNeoNoNoNoNol NelNe]
cNeoNoNoNeol NeoNelNe]
cNeoNeoNeol NeolNeoNeNe]
cNeoNeol NeoloNoNelNe]
el NeolNoNoNoNoNeNe]
POOOOOOO0OOo
L e o = =]

We also introduce a qutrit universal gate setffohd + diag(e‘%, 1, e%), called the supermeta-
plectic basis, which resembles the single-qgpbgate. Some techniques are developed to construct
new quantum gates from old ones. As an application, it wilshewn that all ternary arithmetic
studied in this paper can be implemented exactly over thersugtaplectic basis.

We note that the reflection-centric synthesis of our addeuits is a ternary counterpart of ifoli-
centric binary adder circuits as developed, for examplfl7hand [18]. This analogy is explained in
more detail in corresponding sections throughout the pdper exact representation of t8éX) gate
in supermetaplectic basis parallels the exact representat the three-qubit Tdoli in the Clifford
+ g basis. Quantitative comparison of the ternary and binadeexiwould be beyond the scope of
this work. A major step towards comprehensive comparisahisfkind was made in the upcoming
paper [10] that demonstrates the advantages of emulatiogsSseriod funding function on ternary
guantum computer and especially on the metaplectic topmdbguantum framework.

The paper is organized as follows. In Secfidbn 2, some preéinegs and notations used throughout
the paper are given. In Sectibh 3, we separately discuss thkfied ripple-carry adder and carry
look-ahead adder. Sectibh 4 gives some extensions of quatders, including addition modul8,3
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comparison, and subtraction. Lastly in Secfibn 5, we intoedthe supermetaplectic basis and develop
techniques for the construction of new gates.

2 Preliminaries and Notations

We denote the standard computational basis in a qutri®y|1),|2)}. The terminology “qutrit”
and “ternary” are sometimes used interchangeably. We agllaamtum gate reversible or a classical
permutation gatef it acts as some permutation of the standard basis elemastess otherwise
noted, the arithmetic, e.g., addition, multiplicatior;.etvithin a ket is assumed to be taken modulo
3. Also by default circuits are read from left to right, whdempositions of gates when written as
expressions follow the rule of matrix multiplications,.j.they are read from right to left. Throughout
the paper, the following ternary quantum gates are fredyaséd:

0 01
1. X={1 0 0], namelyX|i) =i + 1).
0 1 0

0 01
So2, S12. This notation is also generalized to multi-qutrit gatesr Fstance Spg22 is a 2-

qutrit gate, which swap®0) with |22), and fixes all other basis elements.

01 0
2. Sp1 = [1 0 0], namely,So1 swaps|0) with |1) and fixes|2). Similarly, one can define

3. Given am-qutrit gateU, there are two versions of “controlldd®. The first version is called
“soft-controlledy,” denoted byA (U), and is defined as tha ¢ 1)-qutrit gateli, j1,-- - jn)
(1 ® Ui, j1,-- - jn), where the first qutrit is called the control qutrit. The setwersion is
the “hard-controlled-U” denoted bg.(U), wherec € {0,1,2}. The gateC.(U) is also an
(n + 1)-qutrit gate. However, in contrast to the soft-contradile, it mapsii, j1,--- jny to (I ®
Ui, jo,--- jn). It is direct to see that th€.(U)’s for differentc’s are equivalent to each
other up to some 1-qutrit reversible gates. Thus we alsdC(@s8 to denote a generél (U).
Moreover, the equality\ (U) = C1(U)(C2(U))? holds.

4. The following is a list of some important controlled gates
SUM = A(X) i, jy = |i,1 + J),

C(X) =Ce(X) 111, J) = i, | + Sie),

Horner= A(A(X)) : i, J, Ky = i, |, i] + k),

C(SUM) = C(SUM) : i, j, k) — i, J, jSic + K).

The Horner gate is a qutrit generalization of the qubitdlbgate. See also [15] for additional
background on the Horner gate.

5. SWAP : i, j) — |j, ).

For graphical representations of the gates defined abow&igard 1.
The qutrit Cliford groupC [16] is generated bgUM, X, H, andQ, whereH andQ are defined as

follows:
111 1 1 0 O
H=—I|1 & &|. Q=0 1 of,

Vil1 2 4 0 0 &



A. Bocharov, S.X. Cui, M.Roetteler, K.M. Svorg

b B D D
AU)  Cc(U) X SUM  C(X) C(Sum)

Fig. 1. Graphical representations of some ternary gates

where we use the notatidf = e forn> 1.

It can be shown that, along with tIf&UJM, all the reversible 1-qutrit gates aisWAP are also
contained inC. Moreover,SUM and all the 1-qutrit reversible gates generate the subgodu
reversible gates il€. Some other Ciford gates ar& and A\(Z), whereZ = diag(1 {3, gg), and
A@Z) = (1 @ H)ISUM(l @ H™Y) : i, ) = g|i,j>. However,C(X), Hornet C(SUM) and Spo22 are
non-Clifford gates.

Consider two pairs of standard basis vectgrs, |ky) and|j.), |kz). It would be useful to note
that the two-way classical reflecti@;,, ,) that swaps th¢j1), ki) and fixes everything else can be
reduced to the corresponding reflecti®n, ,, by applications ofO(n) SUM andSWAP gates (that
are Cliford gates: seé [9], Lemma 16). In particular, the two-wayms&s) 2, is Clifford-equivalent
to any other two-quitrit two-way swap.

We think of Clifford gates as beintheapn the quantum sense. General rationale for this assump-
tion is that such gates can be simulated classically. (Aattht motivation coming from topological
computing: in the context of non-abelian anyons such as R@B/on systeni |8], Cfiord gates can
be obtained by anyon braiding alone.) Thus we define the axitpl(resp. depth) of a circuit as the
number (resp. depth) of non-@brd gates.

The following two identities will be used, wheug(n) is the number of 1s in the binary expansion
of n, and| x| means the maximal integer less than or equat to

2o
i1
Llog n|+1
{%-%J:n—[log nj-1 3
=

See alsd[17] for similar identities.

3 Quantum Ternary Adders

Given two n-trit numbersa = an_1---a189, b = by_1---biby, an adder computes their susn=
S$iS-1--- S = a+ b. The elementary method of adding twerit numbers is illustrated in Figuig 2.
Let cy = 0 be the initial carry trit and for X i < n, let¢; be the carry trit arising froma;_1, bj_1, ¢i_1,
namely,ci = 0if a_1 + b_1 + ¢_1 < 2 andc; = 1 otherwise. For&i<n-1,5 =g +bj+¢mod 3
ands, = cy.

In Sectior 3.1l and Sectign 8.2, we present two methods tceimgiht reversible ternary quantum
adder: a ripple-carry adder and a carry look-ahead adder.tWwh adders are generalized from their
binary counterparts [17, 18], but the generalizations areesvhat nontrivial, as seen later. On one
hand, the modified ripple-carry adder uses only 1 ancillfferhole process and has the circuit depth
in O(n). On the other hand, the carry look-ahead adder req@(esancillas with the advantage of
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a1 -+ a1 Q
bhor - b1 b
Ch Cr1 -+ C C=0
S S S S

Fig. 2. Addition of twon-trit numbers

having circuit depth irD(log n). We will also compare the two adders to other ternary adkieos/n
in literature and show that our adders are mdfieient both space-wise and depth-wise.

To implement the adders, we utilig€ X), C(SUM), C(So.1) andSpo22 as the basic building units.
As shown in Sectioh 5l 1C(SUM), C(So1) andSgg22 can all be constructed exactly fro@(X) and
Clifford operations. Therefore, the circuit of adders can begdesi from Clitord operations and
C(X) alone. The reason that we still tre@(SUM), C(Sq1) andSpq22 as basic units is that it might
be more #icient to synthesize them directly in some basis rather theaking them up int€(X) ’s.
An example is the metaplectic basis [9], wh&g 2, has an #icient approximation by a metaplectic
circuit.

3.1 Modified Ripple-Carry Adder

The binary quantum ripple-carry adder was considered_iff, MBere O(n) ancillas are required to
add twon-qubit numbers. In[17], the method was improved so that drdwyicilla is necessary. Here
we give a ternary generalization of the improved ripplescadder.

Note that in contrast to the binary case, the ternary carmydee complicated: if the inputs to a
binary full adder are denoted layb, ¢ € F;, then the outgoing carry is given lay,; = ab+ ac+ bc,
where all operations are computed modulo 2. In case of arfefathadder with inputsa, b, ¢ € Fs,
the outgoing carry is given bgy: = 2(1+ a+ b + c)(ab+ ac + bc) + abg where all operations are
computed modulo 3. Though directly implementing this polymal using the presented universal
gates is possible, it leads to a relatively large number efmehtary gates. A simple observation
allows to reduce this cost significantly as it turns out thatdoes not have to be implemented for all
27 input triples but rather only 18 of them. Indeed, it can e inductively that—provided there
is no initial incoming carry—for ternary adders, every garit ¢; can only be either 0 or 1, but can
never be 2. This is indicated also in Figliie 3 where the ctbesécase indicates that this can never
occur in an actual addition: the cagg; = 2 is possible only it = 2, which inductively we assume
cannot happen. With this definitioq, 1 becomes a balanced function, i.e., there are the same number
of inputs corresponding to each outcomg.

We sketch the idea of constructing the circuit to compite from a;, b; and ¢ based on this
observation. As illustrated in Figufé 8,1 equalsc; for all but six inputs, the last three inputs in
the columnci,; = 0 and the last three in the colungn, = 1. For each of these six inputs,;
equals 1- ¢. If the gateSpq22 is applied to qutritsy, b, then the six inputs are turned into six new
triples. See Figurgl4 for the transition. Moreover, the newtrgples are exactly equal to the set
{(a,b,c) €{0,1,2)3: a+b = c,c# 2}. Inlight of these observations, a reversible circuit,@aiCarry,
is constructed, which takes, a;, b; as input, and outputs, ; in the last qutrit. See Figufé 5, whefe
andg are some functions daf, bj, ¢;. The exact shape df andg is not important since they will be
reversed at the appropriate step of the adder.

As illustrated in Figurgl5, the circuit Carry is ancilla frée contrast to the carry circuit considered
in [13] where 1 ancilla is required for each round of carrye S&@urd 6 for the comparison. The circuit
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| Cis1 =0 | Ca=1 | Cr=72
a/00011200101122212200011122?2
b|/01201001Q0212012212012012012
G|/000000111111111000Q0222222222
Fig. 3. Ternary carry table
|C|+1=O | Ga=1 |Ci+1=0 | Cr=1
a0 0 1|1 2 2 g, @&|2 0 1|1 2 O
b0 1 02 1 2 = bb|2 1 02 1 O
¢|1 1 1{0 0 O ¢|1 1 1,0 0 O

Fig. 4. Transition of inputs due t8gg22

utilizes oneSgg22, 0NeC(Sp1), two SUM, and twoSWAP gates. TheSUM and SWAP are both
Clifford gates, so only 2 non-@ord gates are needed. The depth of Carry in terms of ndife@li
gates is also 2. Moreover, unlike the binary ripple-carrguit MAJ [17] where the two qubits other
thanc;,1 end up withag; + by, ¢ + by, in our circuit the two qutrits other tham,1 have the final values
f(a, bi, ¢) andg(a;, b;, ¢). This is the reason we call our carry circoibdified However, as will be
seen below, the modified carry circuit works in the same wahasegular one.

LetC : |c,a,b) — |f(a,bi, ), g(&, bi, ¢), cir1) be the Carry gate represented by the circuit in
Figure[5. Similar to the adder circuit ih [17], the modifiegpie-carry adder circuit is designed in
Figure7, which, as an illustration, shows the addition af 8vqutrit numbers.

In FigurelT, the quitrito, initialized with 0, is the only ancilla required. The qtioh the bottom
holds the overflow trit, i.e., the highest trit in the sum. Téfere, to add twa-qutrit numbers, exactly
1 ancilla,n Carry gatesn inverse Carry gates andi2SUM gates are required, and the depth of the
circuit is 4n. In contrast, the adder ih [13] usesncillas and has the complexity @(n).

3.2 Carry Look-ahead Adder

In the ripple-carry adder, the cargy,; is computed only after the value of has been obtained, and
thus the overall depth of the circuit is@(n). One protocol to reduce the depth is the carry look-ahead
adder studied ir_[18] for the binary addition. Here we geliegat to give a ternary carry look-ahead
adder, which computes all the carry trits in defifhog n) by introducing extrad(n) ancillas.

The main idea s that there are relations betwg@mdc;, 1, and more generally betweenandc;
fori # j. Forinstance, ify + bj = 2, thenci;1 = ¢. If g + bj = 1, thenci,; = 0 regardless of the value
of ¢;. See Figurél8 for a summary of the relation betwggnandc;. Note thatcy = 0, thus when
i =0, the columrti,; = ¢ in Figure[8 becomes; = ¢p = 0. Motivated by their relations, we define,
for0 <i < j < n, the carry status indicat@i, j] :

G o So1 f(aj.bj, c)
SWAP
E] — Q —_— | — 1 — 9(a;.bj. )
S00.22 U SWAP
N PAN P -

Fig. 5. the circuit Carry
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|
! B — — G
|
|

Gi — — f@.bi.g) 3 — — &
| Carry

8 —— Carry ——  9@bj.g) ! b —— —— b
|

b — — s | o — —
|
|
|

Fig. 6. (Left) ripple carry in the present paper; (Right)pfipcarry studied ir [13]

Co ] Co
Ao £ ct Ao
bo - ] —@ %
ai c c-1 —_ a1
bl — ] | S
ap c c-1 ap

by 7_?;_ S

Fig. 7. Circuit for ripple-carry adder

0 cj=0regardless of;
Cli, j1 =41 c;j = 1regardless of;
2 ¢j=¢

Since we already know = 0, the case&; = ¢y is then the same as the first cage= 0. Thus we
can treat these two cases as one, and de&3ignj] so that it will never take the value 2, namely, we
will have C[0, j] = c;.

Explicitly, for 0 < i < n, the circuit,AdjC, shown in Figuré€® comput&i, i + 1] from g andb. It
requires 1 non-Cfford gateSopo22, and no ancilla. However, to compu@§0, 1], we need to make use
of 1 ancilla, and 2 non-Ciiord gatesSoq 22, C(X). See FiguréO0 for the circuit, which we callijC,.

Having computed the carry status indicators for any two@ajaindices, we furthermore compute
Cli, j] for arbitraryi # j. For0< i < k < j < n, C[i, j] can be obtained fror€[i, k] andC[k, j] by the
mergingformula in Figurd_TIL.

Note that when = 0, the row corresponding [0, k] = 2 in Figure Tl will never be used. Also
whenC[0, K] takes values iH0, 1}, so will C[0, j]. A circuit, M, realizing themergingformula is
illustrated in Figuré 12, whera takesC[i, k], C[k, j], and an ancilla initialized to 0 as inputs, and
outputsCJi, j] to the ancilla. The circuit requires 1 non-&tird gateC(SUM).

The circuitsAdjC andAd jCy both only depend og; andb;, thus we can compute all tig3fi, i+1]’s
in one time slice. The nature of tmeergingformula enables us to obtain all tlg0, j]’s in O(log n)

| c1=0 | cua=1 | Cu=g¢
|0 0 1|1 2 2|0 1 2

bb|0O 1 0|2 1 2|2 1 O
Fig. 8. Relation betweeq.1 andc;
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g — o
So0.22
b; — e’ So.1 Cli,i +1]

Fig. 9. CircuitAdjC computingC[i,i + 1],0<i <n

0 M
V SWAP

aj -] JE— - -
S00.22 x SWAP
by 0 - co.1

N
Fig. 10. CircuitAdjCy computingCl[o0, 1]

time slices. We elaborate this below.

Fori=0,1,---,n-1, letB; be the working register configured to 6§, i + 1] at the beginning,
and letZ;,1 be the working registers initialized 16), which will end up withC[0,i + 1]. We also
needn — w(n) — |log n| ancillasX; initialized to|0). The circuit consists of three processes, namely,
P-processC-process, an®1-process. Each process roughly contalog n| rounds.

In P-process, we compute all the carry status indicators ofdh@ €[2'm, 2!(m + 1)] and write
all the results into the ancillas, except the oG8, 2¥] which are written taz[2¥]. There ardlog n|

rounds, each = 1,---,|log n| corresponding to one round. In tih round, which we call the
P[t]-round, the status indicato@{2'm, 2'(m+1)],m=0,---, L%J — 1 are computed. By theaerging

formula,C[2!m, 2!(m+ 1)] can be obtained fro@[2-1(2m), 2-1(2m+ 1)] and [271(2m+1), 2" 1(2m+
2)], both of which have been computed Rfit — 1]-round by induction. Moreover, the circuM
producingC[2!m, 2{(m + 1)] for differentm’s in theP[t]-round takes dterent carry status indicators
in P[t — 1]-round as input. Note that tH{1]-round requires the carry status indicat@fs,i + 1]’s in
the registers;. Therefore, in theP[t]-round, all the circuitsM computingC[2'm, 2{(m + 1)] can be
made parallel, and their inputs only depend on the carrysiaticators from th@[t—1]-round. Thus,
the depth of the circuit ifP-process iglog n|, the number of ancillas neededns- w(n) — |log n|,
and the complexity i — w(n).

In C-process, we compu€@{0, j] into the registeZ;, j = 1,--- , n. This is performed irhlog §J+1
rounds. Note that thg[0, 2¢] ’s have already been obtainedsprocess, and are located in the desired
positions. Fort = Llog gj ,--+,0, theC[t]-round consists of computing the carry status indicators
C[0,2'2m+ 1)), m=1,--- [% - %J Again, by themergingformula, we can ge€[0, 2'(2m + 1)]
from C[0, 2**m] andC[2!(2m), 2'(2m + 1)]. By induction,C[0, 2**m] has been obtained in earli€r
rounds ifmis not a power of 2, and in th[t+ 1+log m|-round otherwise. Als€[2!(2m), 2{(2m+ 1)]
has been computed in ti®t]-round. Therefore, we can run all thel circuits in theC[t]-round in a
parallel way. These circuits depend on the carry statusatdis in theP[t]-round andC[k]-rounds,
k> t+1. If mis a power of 2, then the correspondingcircuit also depends a@[0, 2*'m] from the

Clk i1
© ‘ 01 2
0|0 1 O
Cli,k 1]0 1 1
210 1 2
Fig. 11. ThemergingformulaCli, j] = C[i, K] () C[k, j]
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\
Cli,K m m C[i.K
MERANY b o

Fig. 12. CircuitM realizing themergingformula

Cl|log §]]

| Clllogn]-3] C[0]
Pllogn|-1] | --- | P2] | P{1]
Fig. 13. Parallelism betwee® andP~1-process

P[t + 1 + log m]-round. Thus the circuit il€-process has a depth kibg gJ + 1, and the complexity
isn—|log n] - 1.

In P~%-process, we set the ancillas back@p thus we need to reverse all th circuits in P-
process, except for those comput@f, 2¢] ’s which are not stored in the ancillas. TRe*-process
consists oflog n| — 1 rounds. Fot = [log n| -1, -, 1, theP~[t]-round uncompute€[2'm, 2(m +
1],m=1,---, [%J -1 by using the inverse o¥. Note that in this process, all th[0, 2¢]’s will not
be touched. The process has a depifiagf n|—1, and the complexity of the circuit i5-w(n)—|log n|.

We note that most parts @-process an® -process can actually be parallelized. The argument
is as follows. All the inputs to th€[t]-round which are not of the forr€[0, 2™ only depend on
C[K]-roundsk > t + 1, and theP[t]-round. The inputs that are of the for@j0, 2™ were computed in
P[m]-round, but they will not be touched iR*-process. Th& [t + 2]-round only depends on the
outputs inP[t + 1]-round andP[t + 2]-round. Thus theC[t]-round and theP~ [t + 2]-round can be
performed simultaneously. The precise parallelism betv@erocess and~1-process is illustrated
in Figure[13.

To summarize, the whole circuit usas- w(n) — |log n| ancillas, and has a depth gbg n| +
|log §] + 2. The total complexity of the circuit ist8- 2w(n) - 2[log n| - 1.

3.8 Complete Circuit for Carry Look-Ahead Adder

We give two implementations of carry look-ahead adder, arnttee out-of-place adder and the in-
place adder. Recall that the circuits in Figlitd 9, 10, [add ré2denoted byAdjC, AdjC,, and M,
respectively. The complexity of bot#djC and M is 1, and the complexity oAdjC, is 2. The depth
of these circuits is equal to their complexity.

3.3.1 Out-of-place Adder

Let A;, Bj be the registers with initial valua, b;, respectivelyj = 0,--- ,n— 1. LetZ,i =0,---,n
be the registers initialized to be 0, which will hold the sam b at the end of the computation. We
needn — w(n) — |log n] ancillasX; to store intermediate carry status indicators. The folfmpnis a
description of the circuit of our out-of-place adder.

Out-of-place Procedure:

1. For O<i < n-1, run the circuitAdjC on A;, B;, which output<[i,i + 1] to Bj. RunAdjC, on
Ao, Bo, andZy with Zy as the ancilla, which outpu[0, 1] to Bg. CopyCJ[0, 1] to Z; with the
SUM gate. The circuit has a depth of 2, and it consigt efl AdjC, 1 AdjC,, and 1SUM gates.
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;o %

AdiC,  AdiC

Fig. 14. Circuit glyphs foAdjCy, AdjC and M. The inverse gatesdjcal, AdjC™* and M1 are represented by
mirror images of these glyphs.

2. As discussed in Sectidn 8.2, compute all €[, i]’s with the ancillasX;’s and the circuit
ML At the end of this process, the ancillas are returned to @ Zas= C[0,i],i = 1,--- ,n]f
This requires B8 — 2w(n) — 2|log n| — 1 calls to the circuitM*!, and has a circuit depth of

[log n| + {Iog ’—?:J +2.

3. Undo all theAdjC’s andAdjC,. At the end of this step, we ha® = b;, Z = C[0,i] = ¢.. The
circuit has a depth of 2, and it consistrof- 1 AdjC™, 1 AdjC,*, and 1SUM™2.

4, Setzi =Z oA ®B;,0<i<n-1. This requires @ SUM gates.

In summary, the out-of-place adder uses w(n) — |log n] ancillas, and has a circuit depth of
llog n] + |log §] + 6, with the complexity of & - 2w(n) - 2log n| - 1.

We represenddjC,, AdjC and M as shown in Figure“14. Their inverses are represented by the
same circuit with> replaced by<. Also a black rectangle means the content will be changen aft
the application of the relevant gate, while a blank rectamgéans the content remains the same. An
an illustration, we give a complete out-of-place circuitéolding two 10-qutrit numbers in Figurel15,
where we usex to stand for 10, and;; is the carry status indicat@fi, j]. From Figurd1b, it is clear
that theC[0]-round andP~[2]-round can be parallelized since the gates in these twads act on
different wires. One can also verify the cost: the number of lsdn — w(n) — |log n] = 5, the
depth of the circuitiglog n]+|log §|+6 = 10, and the complexity istb- 2w(n) - 2 [log -1 = 39.

3.3.2 In-place Adder

The idea of in-place adder is also generalized from that &). [Let 2 be then-trit number with all
2’s, namelyz = 3" - 1. When no confusion arises, we make no distinction betwemmaber and
its trit representation. For two-trit numbersa, b, denote bya @ b the number obtained by trit-wise
summation modulo 3, and denote &#ythe number obtained by replacing every &iby 2— a;. Thus,
the following equations hold:

a®a =2anda+a =3"-1.

Letc = ¢y -- Cch1 be the sequence of tielow carry trits fora andb, and lets be then low trits
of a+ b. Then we have
s=a+b(mod3d)ands=asbec.

Also notethas +a=3"-1-s+a=3"-1-b="b" (mod 3.
Letd = dy---d,_1 be then low carry trits resulting from adding anda. Then,s @ as® d = b,
and thus we have,

fZ1 = C[0, 1] was obtained in the previous step.
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Fig. 15. Out-of-place carry look-ahead adder
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20aobed = seseaobed
= sobeeb
= 2@adbec

Thereforec = d, i.e., then low carry trits fora, b are the same as those ra. We will use this
property to implement the in-place adder.

ForO0<i < n-1,letA, B be the working registers initialized with, bj, respectively. We will
need 21— w(n) — |log n| ancillas,n of which are denoted by, Z;, - - - , Z,-1 and the rest ar¥; ’s. Let
Z, be the working register which will store the high tritaf b. All ancillas start with 0.

In-place Procedure:

1. As described in Out-of-place Procedure Step 1 throughrBpate all the carry trit€][O0, j] into
Zj,j = 0,---,n. The ancillasX;’s and working registera,, B; are all returned to their initial
configuration at the end of the process. This has a circuithdef] log n| + Llog gJ + 6, with
the complexity of B — 2w(n) — 2|log n] + 1.

2. For0<i<n-1,letB; = By ® A & Z, namely, the registeB; ’s will store then low trits of the
suma+ b. This can be done byr2SUM gates.

3. Now we want to erase thecarry tritsC[0,i] = ¢, i = 0,---,n—1. ForO<i < n-2, let
B; = 2 - B;. This can be achieved by- 1 Sy gates.

4. Apply the inverse of the Out-of-place Procedure Step aufh 3 on the register;, B; for
0 <i < n-2to erase the carry tritg stored inZj, j =0,--- ,n— 1.

5. For0<i <n-2,letB; = 2- B;. Again this can be done hy- 1 Sy, gates.

Tracing the cost of the circuit above, we see that the ingéaitier has a depth [dbg nJ+Llog §J+
llog (n - 1)|+|log "5* |+12, and its complexity is 18-2w(n)-2log n|-2w(n-1)-2log (- 1)|-3.
Moreover, the number of ancillas required is2w(n) — [log n].

Figure[16 gives a complete circuit of in-place adder fioe= 10. See Figur€_14 and the last
paragraph in Sectidn 3.3.1 for the explanations of notatim®ed in the circuit.

4 Extensions

In this section, we give various extensions based on the fraddiipple-carry adder and the carry
look-ahead adder, including addition modulb Subtraction, and comparison.

4.1 Addition Mod 3"

To add twon-qutrit numbers modulo™ we simply do not compute the the high carry &jt

In the ripple-carry adder (see Figlie 7), ifstes to remove the circut, SUM, C~tin the middle,
and the last qutrit on the bottom. Thus in total we need 1 En@n— 1) Carry gates, and2- 1 SUM
gates, and the depth of the circuit is14{ 1).



14

ao

bo

al

by

a2

b2

a3

ag

bg

ag

bg

Improved Quantum Ternary Arithmetics

o ey o _pm - ________ _ g ____ ao
—E}g s0 - {So2} sf -D>-------------- —g - s Soz]- 0
¢

fffffff Cee
fffffffff T
ffffffff

S
ffffffff

Step 2 Step 3 Step 4 Step 5

Fig. 16. In-place carry look-ahead adder
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In the out-of-place carry look-ahead adder, we run the #tisidescribed in Out-of-place Proce-
dure in Sectiof 3.311. However, in the first three steps optieeedure, we restrict the inputs to the
n— 1 low trits ofa andb, namelyay, - - - ,an-2, bo, - - - , bn_2, Since there is no need to compuate Of
course, in the last step we still need to compute the modulorsationa &b @ forall0 <i < n-1.
Thus the out-of-place modulo adder uses 1 — w(n — 1) — |log (n — 1)| ancillas, and has a circuit
depth of|log (n— 1)| + Llog %J + 6, with complexity 50— 1) - 2w(n— 1) - 2|log (n— 1)| + 1.

Similarly, for the in-place carry look-ahead modufb&lder, we run exactly the same circuit as
the In-place Procedure in Section 313.2, except in Step Tewhe again restrict the inputs only to the
n— 1 low trits ofaandb. It is direct to total the cost of the circuit. It has a deptl2dlog(n — 1)| +
Llog %J + 6), with the complexity of 2(5(— 1) - 2w(n - 1) — 2|log (n— 1)| + 1). The number of
ancillas required is 2(— 1) - w(n— 1) — |log (n — 1)].

4.2 Subtraction

To computea — b for two n-trit numbersa, b, first convertato &', then comput@’ + b, and eventually
converta’ + bto (& + b)’. Note thata’ is then-trit number obtained by replacing eaghby 2 — g,
namely,a = 3" - 1 - a. Thus we have,

@+by=3-1-a+by=3"-1-3"-1-a+b)=a-h.

Changinga to & costsn Clifford gateSp,. Therefore, the circuit for subtraction has the same
depth and complexity as the regular the adder.

4.3 Comparison

Given the circuit for subtraction, it is straightforwarddompare two numbegsandb. Actually, there
is a circuit for the comparison & b with smaller complexity than that of subtraction since wéyon
need to know the high trit ci — b. Leta’ = 3" - 1 — a, thena — b > 0 if and only if the high trit of
a +bisO.

In the ripple-carry adder, we converto & and use the Carry ga@to compute all the carry trits
c1, -+ ,Cnfora + b. After copyingc, to the register storing the result of the comparison, we wildo
theC’s and converd’ back toa. The circuit thus requires 1 ancillanZarry gateC, 1 SUM gate, 21
So2, and has a depth of¥

In the carry look-ahead adder, again we first congetd a’. To computea’ + b, the circuit
sequentially generates all the carry status indica®rsj] ’s. However, since we only care about the
high trit c, = C[0, n], we can design a mordfeient circuit to implement the comparison.

Recall from Sectiof 3]2 that iR process we have obtained all the carry status indicatonseof t
form C[2'm, 2/(m + 1)], and in particular, ang[0, 2] is of this form. Therefore, i = 2X for some
k, thenc, is obtained at the end & process. At this moment, there is no need to go througiCthe
process. Instead, we copyinto the register storing the result, and undofherocess. In general, let
k = [log n], then we can just paa andb by adding zeros in the front to make theft#it numbers,
and use the circuit described above to compeaadb. We still call the 2-trit numbersa andb. For
0<i<n-1,letA = g, B; = b be the working registers, and IBtthe register which will store the
result of the comparison. We also neéd-2(2 - n) ancillas, among which 2(2- n) are used to hold
the extra zeros in from af andb, one is denoted b¥, as the ancilla to thadjC, circuit, and the rest
are denoted by ’s.

Note that after padding andb with zeros, the carry status indicat@F, j]’s,n<i < j < 2%, are
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known before the compilation, thus we can store their vaiaelse registers and there is no need to
recompute them later.

Carry Look-ahead Comparison:

1. Converiato &. This requires S, gates.

2. For0< i < n-1, run the circuitAdjC on A;, B;, which output<C[i,i + 1] to B;. RunAdjC, on
Ao, Bo, andZy with Zy as the ancilla, which outpu€0, 1] to By. The circuit has a depth of 2,
and it consist oh — 1 AdjC and 1AdjC,.

3. Perform theP process in Sectidn 3.2 to compute all BR!m, 2{(m + 1)] that are not known
before compilation into the ancillary registexs Note that here since we don’t have tBe
registers, all th€[0, 2™ ’s are also written to th¥; registers. The depth of the circuitksand
the complexity is 2— w(2) - (2 - n- w(2*-n)) = n+ w(2¢ - n) - 1.

. Copycx to the result register.
. Undo Step 3.
. Undo Step 2.

N~ o o b~

. Undo Step 1.

Therefore, the total depth of the circuit above kis+24 = 2[log n] + 4, and it has the complexity
of 4n + 2w(2X — n) = 4n + 2w(2"°9 "1 — n). The number of ancillas used is 3'°9 " — 2n,

5 Techniques for Constructing Quantum Gate Decompositions

In previous sections, we developed a system of ternarynaetic with the focus on two types of
guantum ternary adders. The building blocks of these dséaclude the Carry circuit, the circuits
AdjC, AdjC, computing carry status indicators, and timergingformula M. Moreover, the non-
Clifford gates used in these four circuits &g 22, C(So.1), C(X), andC(SUM).

In this section, we show that it fiices to hav€C(X) along with Cliford gates to produce the other
three non-Cliford gates exactly. The key technique involved is to anallieeatgebraic expressions
of these gates. In Sectibn b.1, it is proven @éX) and Horner are equivalent up to {tird gates,
and that all other non-Gtliord gates can be obtained froG(X). In Section 5.2, we introduce a
universal gate set called supermetaplectic basis, whiehgstrit analog of the qubit Gliord + -
gate. We then illustrate in Sectibn b.3 tl&(X) and Horner can both be implemented exactly over
supermetaplectic basis. Therefore, with the supermettipleasis, the ternary circuits for arithmetic
can be realized exactly.

5.1 Construction of Reversible Gates from Polynomial Expressions

LetF3 be the field with three elemen, 1, 2}. Then anyn-qutrit reversible gate can be represented as
a mapFj — Fj, or a sequence affunctionsF; — Fs, if one identifies each) with i, i = 0,1,2. We
will see that reversible gates have polynomial represiemziand these polynomial representations
provide hints to construct one reversible gate from another

Note that 6 = 0, 1% = 22 = 1 (mod 3), and thus; o = 1—i?(mod 3). By default, arithmetic within
a ket is taken modulo 3. The following is a list of polynomiapeessions of some non-@lrd gates.
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Fig. 17. A circuit forSoz10

o SUM = A(X) i, ) = fi 1+ )3

o Co(X) i )i j+6i0) =i j—i%+1);
o Horner= A(A(X)) : 1i, K = i, J i + K3
o Co(SUM) : i, j.ky = i, j.k+ (1= i?)]).

The above list shows that if a qutrit works as a soft conth@ntit contributes a linear factor in the
expression of the target qutrit, while a hard control quimittributes a quadratic factor.

DefineC’(X) : [i, j) = [i, j +i%). Thus,C’(X) = (I ® X)Co(X)* is equivalent taC(X). We will use
C’(X) below for the construction of other gates.

The relation between the expressions of Horner@ifl) resembles that of a bilinear form and a
guadratic form, which are equivalent. This suggests thabklcandC’ (X) are also equivalent. Indeed,
the following diagrams give a construction of one from aeath

sum;i
e implementation ofHorner gate interms(bf(x) li, j, k) || i+, k) || i+jk=0G0+)? 3
li,jk—i%-j? +IJ> S k- 2 +IJ> S k.
° |mplementat|on oft’/(X)12 gate in terms of Horner {i, j, k) || 1+ K T{&z li, j+i%+ik,i+k)
SUM orne
=0, j+i2+ik, k) —> |i,j+i2,k).

Note that in the construction of 2-qutfl (X), we made use of a third qutrit, but that qutrit does
not have to be clean, namely it could have arbitrary state.

Similarly, C’(X) is enough to construﬂ(SUM)
Co05 (05,
Co(SUM): [i, J,k> i i2 +J,k> N N (L ) o W [ N S L Y . ey

li, jk+ j? —IJ> II Bk 2y 257, ok + (1= 12))).
To implementC(Sp 1) andSgo22, Notice that the circuit in Figufe 17 realiz8g, 10, and moreover
we have:

e Spo22 = SUM (X1 ® 1)Sp110(X ® 1)SUM.

. CO(SO,l) = SUME!Ji(X_l ® x_l)SQ()’zz(X ® X)SUMZYl.

5.2 Supermetaplectic Basis

Recall from Sectiofl2 that is the qutrit Cliford group generated iy, Q, X, andSUM. Some other
gates inC areZ and A\ (Z), whereZ = diag(1 ¢3,£3), and A(Z) = (I ® H)SUM(I ® H™Y). It can be
directly verified that/\ (Z) has the following expression:

A@ i, iy - i .
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In [8], it has been established that the multi-quingtaplecticgate setC + diag(2, 1, —1) or equiv-
alently C + diag(1 s, (é) was universal for guantum computation in the sense thanaui-qutrit
unitary operator can be approximated to any given preclsjoacircuit over that gate set. We conjec-
ture that the metaplectic gate set is not universagf@rctreversible computation, i.e. it seems that the
subgroup of reversible classical gates that can be repgesberactly by metaplectic circuits is rather
thin. In order to ensure exact representation of the rebvlergates over a relatively simple multi-qutrit
basis, we expand the basis by adding essentially the “cobit of the Z gate to it. To this end we
increase the order of the root of unity used in defining the-@bfford diagonal gate, and defirig

as the 1-qutrit diagonal gate diggt, 1, {g)]g

Definition 1 The gate se€ + Py is called supermetaplectic basis.

Since thePg gate is non-Ciford, this basis is universal for quantum computation. Thpesmeta-
plectic basis resembles the qubitftlird + T basis in several aspects. Firstly, we show in Se¢tigh 5.3
that all the reversible gates can be constructed exactlytheesupermetaplectic basis. Secondly, the
Py gate is a fundamental diagonal gate in the third level of th&ded hierarchyl([20]. Lastly, it was
shown in [21] thafPy can be obtained by magic state distillation.

5.3 Construction of Diagonal Gates from Polynomial Expressions

We continue exploring the use of polynomial expression®imstructing new quantum gates.
The group of reversible gatesdhis generated bgUM, X, S; 2. More precisely, it is described by
the following proposition.

Proposition 2 {S1,, X, SUM} generate a maximal subgroup, which is isomorphie tBL(n, F3) < Fg,
of the group of reversible gates for any number n of quitrits.

Proof: See Appendiklod

The statement in Propositiéh 2 for the caise 2 was also proved in [9].

By the proof of Propositionl2, the correspondence betwegm@k) =< [F] and the group generated
by {S12, X, SUM} is as follows:

Given a pair A, v) € GL(n, F3)=<F3, whereA = (&) 1<i j<n. V = (Vi)1<i<n, then the reversible-quitrit
gate corresponding to it mapsg, for any computational basis eleméxit =[xy, - - - , X,), tO|A.X + V).
Moreover, any reversible gate of this form is generatef®y, X, SUM}.

A function f : F} ~ Fs is called dfine linear if f(x1, -+, X)) = aiXy + --- + anX, + b, where
a, - ,an, b € F3. A reversiblen-qutrit gate can be viewed as amtuple of functions:|x)
[f2(X), - - -, fa(X)), where we callf; the coordinates of the gate. Then the above argument shaivs th
a reversiblen-qutrit gate is generated H$1,, X, SUM} if and only if all of its coordinates areffine
linear functions. Lef, be the set of all fline linear functions fron} to Fs.

Let D be the group generated by the reversible gat&s together with the diagonal gatgqZ)
andPy. We give a technique to characterize all the diagonal gaté i

By Propositiori 2 and the argument above, the reversiblesgat® can change the basis element
Ix) to any element of the forrffy(x), - - -, fa(X)), wheref; is an dfine linear functiorf} to Fs. The
action of A(Z) and Py will contribute a scalar to the basis element. Thus the mesegain-quitrit
diagonal gate irD has the form:

9This is the the distillable gate denot&gT in [21].
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2 Arf(inin) X Brgf(inin)g(ia..in)
fefn f.geFr

|i1’i2,' o ,in> [and 49 4’3' ! |i1,i2" o ,in>, (4)

whereAs, Bt g are integer parameters. Notice that tiigne linear functiond andg take values in
F3, while A, Bt g take values irZ. We have to evaluatg g first in {0, 1, 2}, then multiply byAs, B g
insideZ. This is critical for the terngg.

As an application, we show th#t(/\(Z)) andC;,(Z) are both contained i®. The expressions of
relevant gates are given below.

o A@)Ii, 1) = i, ), Paliy = 2,

o X|iy =i + 1), S12liy = 12i), SUMIi, j) = |i,i + j).

o NA@) i, 1 K = &K,

o Co(2) 1 li, ) > 2301 ).

Forn = 3, the codficient in Formuld¥ can be written as:

2
Y Aspcd@ithj+cked)
L(i, j, k) — {gb,c,d:o §|]+Cjk+D|k’ i, j, ke ]FS, (5)
whereAapcd, B, C, D are integer paramepeﬂ“rs!\gain ai+bj+ck+dis assumed to be taken modulo 3.
To constructA (A (2)), setL(i, j, k) = gk. Sincelg = gg, we get the equation:

Equ(, j,K) : Z Aapca(@ai+bj+ck+d)+3Bij+Cjk+ Dik) =3ijk (mod9) i,j,keFs (6)
ab,cd
The set{Equ, j,K) : i, j, k € F3} is a system of 27 linear equations in the variatdgg 4, B, C,
andD. Thus there is anfBcient way to find the solutions, if any.
By direct calculations, one solution to the above systengaggdons is:

b}

é,ijk _ L4204 JHK)+2(14 21+ J+ 2K)+6(2+ 2+ |+ 2K) +2(1+ 21+ 2] +K)+6(2+ 21+ 2] +K)+4(1+2i +2 [+ 2K) +6(2+ 21 + 2]+ 2K) (7)
3 759

where the terms on the exponent within each parenthesikaa taodulo 3.

In light of the solution in Equatidn] 7, it is not hard to createircuit realizingA (A(2)). Explicitly,
this is given in Figuré18.

Similarly, with the same method, we construct a circuit@a(Z). See Figuré19.

Note that A (A(2)), C2(2) are related with Horne€,(X), respectively, by the Qfiord gateH,
namely, we have,

e (1®H)C(X)(I ® H) = Cx(2)
e (I®1®H)Horner( ® 1 @ HY) = A(A(2)).

Therefore, both Horner ar@,(X) can be implemented exactly over supermetaplectic basis.

hActually there are also termid, j2, k2 on the exponent afs, but it is direct to see tha;t; = (Zmed3-Emedd) s 19 4 global
phase, so the square terms can be absorbed intf teems.
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Fig. 18. A circuit for A(A(2))
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Fig. 19. A circuit forC,(2)

Remark3 1. The paperd[22, 23] developed a similar framework for theaky case.

2. If one uses the similar technique for the qubifféid + T gates, namely replacindy, {3) with
(s, —1), one obtains a circuit for the Joli gate with T-dept!8, which is optimal in the ancilla
free scenario.

6 Conclusion

We developed improved ternary circuits for reversibleaeyradders of two types: the modified ripple-
carry and the carry look-ahead adder. We have also derivetists for a modulo 3adder, subtrac-
tion and comparison in ternary encoding. We hatfered two levels of abstraction for describing the
corresponding ternary circuits: one in terms of revergibflections of certain types and one in a more
uniform language that allows only one non{&ird gate: either th€(X) : |i, j) + |i, j + §i2 mod 3

or thePg = diage >"/°, 1, €”'/9) gate.

Future circuit synthesis work should entail the design d§fonodular adders, circuits for singly-
and doubly-controlled adders, as well as optimized cisdait singly- and doubly-controlled additive
shifts that would be essential parts of Shor’s integer faation algorithm.

An important theoretical direction of future work would b&tablishing lower complexity bound
for the arithmetic circuits and evaluating th@eency of designs presented here versus these bounds.
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Appendix A
9 Reversible gates generated b§5;,, X, SUM}

Proposition A.1 {S12, X, SUM} generate a maximal subgroup, which is isomorphiet@L(n, F3) =

F

, of the group of reversible gatéthe permutation groupfor any number n of qutrits.
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Proof. Let [F] be then-dimensional vector space over the finite figlgl Then there is a one-to-
one correspondence between the element&aind the computational basis of thequtrit space
(C3)®". Thatis, any elemenk(, - - - , X,) € [F] corresponds to the basis elempat- - -, xn). Thus any
automorphism ofi] induces a permutation on timequtrit basis, which is a reversibfequtrit gate.

Let G = GL(n, F3) =< F2, the semidirect product of Gh(F3) andF3, and letSz be the symmetric
group on 3 elements, or equivalently the group of reversible gates gutrits. We first prove the
group generated b§S1,, X, SUM} is isomorphic toG. As a corollary of applying the O’Nan-Scott
Theorem to the classification of maximal subgroups of thersgiric groupl[24][[25], it follows that
G is a maximal subgroup @z-.

The groupG is the dfine linear group of degragoverFs, namely, it consists of all the paird,(v),
whereAis ann x ninvertible group with entries i3, andv is a vector inf. The groupG acts onF
as follows:

(Av).x=AXx+Vv, (AV)eG,xeF;

Therefore, we get a map : G — U(3"), such thatp(A,Vv)|X) = |AX + V), where|x) is any
computational basis vector. This mafis apparently a group homomorphism and injective.

For 1<i # j <n, defineA;j, Mi € GL(n, Fa),v; € F} as follows.
1

A|] = |n+E]| = .'. b} M| = Iﬂd'_EII = dlag(l"' 91, 27 1,"' 71), VI =

1
(0,---,0,1,0,---,0).

It is straightforward to check thai(Aj;,0) = SUM;ij, ¢(M;,0) = (S12)i, ¢(0,vi) = Xi, where
the subscript of the gate on the right hand side of each esipredenotes the quitrits it acts on. For
instance X; is the X gate acting on theth qutrit. Therefore, the group generated®iyM, X, S12 is
isomorphic to the group generated By, M;, vi, for L <i# j <n.

Clearly all thev; ’s generat&2 as an additive group. We next prove tigt M; generate the group
GL(n, Fg).

LetBjj = MiA”AﬁlA”- = In— Ei — Ej; + Ej + Eji, thusB;j swaps the two basis elemegfsinde;.
Now given any matrixA € GL(n, F3), multiplying A on the left byA;j, Bjj, andM; constitutes the three
types of row operations ofi, and sincéA is invertible, it can always be reduced to the identity nxatri
by row operations. This proves that any matrix in GlKz) can be written as a product 8f;, B;;, and
Mi. Therefore, GLif, F3) is generated by, M;, and henc& is generated by, M;, andv;.

Combining the above argument, we showed that the group geadrySUM, S1,, X is isomorphic
toG = GL(n,F3) = F3. O
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