
ar
X

iv
:1

51
2.

03
82

4v
2

 [q
ua

nt
-p

h]
 9

 J
un

 2
01

6

Improved Quantum Ternary Arithmetics

Alex Bocharova

Quantum Architectures and Computations Group, Microsoft Research
Redmond, Washington, 98052, USA

Shawn X. Cuib

University of California
Santa Barbara, California, 93106, USA

Martin Roettelerc

Quantum Architectures and Computations Group, Microsoft Research
Redmond, Washington, 98052, USA

Krysta M. Svored

Quantum Architectures and Computations Group, Microsoft Research
Redmond, Washington, 98052, USA

Qutrit (or ternary) structures arise naturally in many quantum systems, notably in certain non-abelian
anyon systems. We present efficient circuits for ternary reversible and quantum arithmetics. Our main
result is the derivation of circuits for two families of ternary quantum adders. The main distinction from
the binary adders is a richer ternary carry which leads potentially to higher resource counts in universal
ternary bases. Our ternary ripple adder circuit has a circuit depth ofO(n) and uses only 1 ancilla,
making it more efficient in both, circuit depth and width, when compared with previous constructions.
Our ternary carry lookahead circuit has a circuit depth of only O(log n), while usingO(n) ancillas.
Our approach works on two levels of abstraction: at the first level, descriptions of arithmetic circuits
are given in terms of gates sequences that use various types of non-Clifford reflections. At the second
level, we break down these reflections further by deriving them either from the two-qutrit Clifford gates
and the non-Clifford gateC(X) : |i, j〉 7→ |i, j + δi,2 mod 3〉 or from the two-qutrit Clifford gates and
the non-Clifford gateP9 = diag(e−2π i/9, 1, e2π i/9). The two choices of elementary gate sets correspond
to two possible mappings onto two different prospective quantum computing architectures which we
call the metaplectic and the supermetaplectic basis, respectively. Finally, we develop a method to
factor diagonal unitaries using multi-variate polynomials over the ternary finite field which allows to
characterize classes of gates that can be implemented exactly over the supermetaplectic basis.

Keywords: Quantum circuits, ternary quantum systems, quantum adders

aalexeib@microsoft.com
bcuixsh@gmail.com
c martinro@microsoft.com
dksvore@microsoft.com

1

http://arxiv.org/abs/1512.03824v2

2 Improved Quantum Ternary Arithmetics

1 Introduction

Quantum computation has seen vast progress over the years, both theoretically and experimentally.
Computations on a programmable and scalable fault-tolerant quantum computer will consist of fully
controlled sequences of primitive operations such as unitary gates, measurements and state prepara-
tions. Such sequences are calledquantum circuits. In the most commonly used circuit model, quantum
information is stored in a collection ofqubits, where each qubit has a two-dimensional Hilbert state
space with the computational basis{|0〉, |1〉}. A standard universal gate set consists of Clifford gates
and one non-Clifford gate such as theπ8-gate [1] orV-gate [2]. By design, circuits over a universal set
can be used to approximate arbitrary quantum gates. Thus anyquantum algorithm can be processed
given a quantum computer with a universal gate set.

It has been noted by several researchers that architecture of certain quantum registers and gates
is more naturally described by multi-valued logic as opposed to binary logic. History of experiments
with ternary superconducting registers, in particular goes back to 1989 [3],[4]. More recently, in
quantum computation domain, multi-valued logic has been proposed for linear ion traps [5], cold
atoms [6], entangled photons [7]. It remains to be seen, at what scale it would be possible to balance
out quantum universality and fault-tolerance in these and other similar architectures.

The research presented here is motivated in part by recent progress in circuit synthesis over uni-
versal quantum bases arising in topological quantum computing, where multi-qubit encoding is not
necessarily the most natural choice. Several physical systems capable of performing topologically-
protected quantum computations have a natural structure ofa qutrit instead of a qubit, where a qutrit
has a three-dimensional Hilbert space with the computational basis{|0〉, |1〉, |2〉}. For instance, in the
SU(2)4 anyon system, anyons with quantum dimension

√
3 are well-suited for encoding quantum

states in qutrits. What is more, it was shown in [8] that the SU(2)4 anyon system can be made univer-
sal through braiding and projective measurement of anyons.This anyonic structure is quite far from
physical realization at the moment, yet, it offers a promise of comparatively simple quantum uni-
versality combined with native topological protection, which, in our opinion, makes it a worthwhile
subject of forward-looking research.

In [9], an algorithm is given for approximation of any multi-qutrit gate with an asymptotically
optimal circuit over the gate set Clifford+ diag(1, 1,−1). This work also demonstrated the importance
of Householder reflectionsfor synthesis of efficient circuits. Even though the gate set turned out to
be powerful enough for such synthesis, it had certain conceptual and practical limitations. Thus, it
is quite unlikely that all the reversible classical permutation gates can be implemented exactly over
Clifford+ diag(1, 1,−1). This has a damping effect on implementation of arithmetic-heavy algorithms
such as Shor’s Factorization Algorithm, since the integer modular arithmetic is naturally described by
reversible classical circuits. As a matter of principle such circuits may be represented exactly in
commonly used multi-qubit circuit models.e

When compared to [9], the present paper aims at a more abstract level. Here we assume that
the entire group of multi-qutrit classical permutations isrepresentable at some cost, explore different
scenarios of its representation and focus on synthesizing efficient circuits for ternary base arithmetic
in these scenarios. Our thinking at this level remains reflection-centric. Previous research on non-
binary reversible circuits [11] mostly focused on proving the universality of the local classical Clifford
gates in combination with thecontrolled-incrementgate| j, k〉 7→ | j, k + δ j,d−1 mod d〉, whered is the
dimension of the qudit andδ is the Kronecker delta. Reversible circuits available in literature tend to

eTo the extent the three-qubit Toffoli gate may be assumed exactly representable.

A. Bocharov, S.X. Cui, M.Roetteler, K.M. Svore3

use ancillary qudits fairly liberally.

This paper differentiates itself from previous work in two ways. First, we explore several alternate
methods for synthesizing classical reversible circuits. Second, we strive to minimize both the depth
and the width of arithmetic circuits specifically. For example, we show in Section 3.1 that implement-
ing of a faithful CARRY gate is not necessary in a correct ternary adder. By using a modified carry
we eliminate the use of ancillary qutrits and reduce the costof the gate when compared to a faithful
CARRY as used in previous approaches to implement ternary carry ripple adders [12, 13, 14].

Our focus is mainly on two types of ternary quantum adders, a modified ripple-carry adder and a
carry look-ahead adder. Both adders are generalized from their binary counterparts, but the general-
izations are somewhat non-trivial. To add twon-qutrit numbers, the modified ripple-carry adder uses
1 ancilla and has a circuit depth ofO(n), while the carry look-ahead adder requiresO(n) ancillas and
has a circuit depth ofO(log n). Each of the two adders has an overall circuit size ofO(n) elementary
gates. We also study various extensions of quantum adders including adder modulo 3n, comparison,
and subtraction.

We show these arithmetic circuits can be realized exactly using classical Clifford gates and one
additional gateC(X), the controlled-incrementgate, whose matrix is given in Equation 1.C(X) is
a two-qutrit non-Clifford gate and it is universal for reversible classical computation. This sets the
ternary reversible circuits apart from their binary analogs, where at least one three-qubit gate, e.g., the
Toffoli gate, is required for universality.

C(X) =

















































































1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0

















































































(1)

We also introduce a qutrit universal gate set Clifford + diag(e−
2πi
9 , 1, e

2πi
9), called the supermeta-

plectic basis, which resembles the single-qubitπ
8-gate. Some techniques are developed to construct

new quantum gates from old ones. As an application, it will beshown that all ternary arithmetic
studied in this paper can be implemented exactly over the supermetaplectic basis.

We note that the reflection-centric synthesis of our adder circuits is a ternary counterpart of Toffoli-
centric binary adder circuits as developed, for example, in[17] and [18]. This analogy is explained in
more detail in corresponding sections throughout the paper. The exact representation of theC(X) gate
in supermetaplectic basis parallels the exact representation of the three-qubit Toffoli in the Clifford
+ π8 basis. Quantitative comparison of the ternary and binary adders would be beyond the scope of
this work. A major step towards comprehensive comparison ofthis kind was made in the upcoming
paper [10] that demonstrates the advantages of emulating Shor’s period funding function on ternary
quantum computer and especially on the metaplectic topological quantum framework.

The paper is organized as follows. In Section 2, some preliminaries and notations used throughout
the paper are given. In Section 3, we separately discuss the modified ripple-carry adder and carry
look-ahead adder. Section 4 gives some extensions of quantum adders, including addition modulo 3n,

4 Improved Quantum Ternary Arithmetics

comparison, and subtraction. Lastly in Section 5, we introduce the supermetaplectic basis and develop
techniques for the construction of new gates.

2 Preliminaries and Notations

We denote the standard computational basis in a qutrit by{|0〉, |1〉, |2〉}. The terminology “qutrit”
and “ternary” are sometimes used interchangeably. We call aquantum gate reversible or a classical
permutation gateif it acts as some permutation of the standard basis elements. Unless otherwise
noted, the arithmetic, e.g., addition, multiplication, etc., within a ket is assumed to be taken modulo
3. Also by default circuits are read from left to right, whilecompositions of gates when written as
expressions follow the rule of matrix multiplications, i.e., they are read from right to left. Throughout
the paper, the following ternary quantum gates are frequently used:

1. X =





















0 0 1
1 0 0
0 1 0





















, namely,X|i〉 = |i + 1〉.

2. S0,1 =





















0 1 0
1 0 0
0 0 1





















, namely,S0,1 swaps|0〉 with |1〉 and fixes|2〉. Similarly, one can define

S0,2,S1,2. This notation is also generalized to multi-qutrit gates. For instance,S00,22 is a 2-
qutrit gate, which swaps|00〉 with |22〉, and fixes all other basis elements.

3. Given ann-qutrit gateU, there are two versions of “controlled-U”. The first version is called
“soft-controlled-U,” denoted by

∧

(U), and is defined as the (n+ 1)-qutrit gate:|i, j1, · · · jn〉 7→
(I ⊗ U i)|i, j1, · · · jn〉, where the first qutrit is called the control qutrit. The second version is
the “hard-controlled-U” denoted byCc(U), wherec ∈ {0, 1, 2}. The gateCc(U) is also an
(n + 1)-qutrit gate. However, in contrast to the soft-controlled-U, it maps|i, j1, · · · jn〉 to (I ⊗
Uδi,c)|i, j1, · · · jn〉. It is direct to see that theCc(U) ′s for differentc ′s are equivalent to each
other up to some 1-qutrit reversible gates. Thus we also useC(U) to denote a generalCc(U).
Moreover, the equality

∧

(U) = C1(U)(C2(U))2 holds.

4. The following is a list of some important controlled gates:

• SUM =
∧

(X) : |i, j〉 7→ |i, i + j〉,
• C(X) = Cc(X) : |i, j〉 7→ |i, j + δi,c〉,
• Horner=

∧

(
∧

(X)) : |i, j, k〉 7→ |i, j, i j + k〉,
• C(SUM) = Cc(SUM) : |i, j, k〉 7→ |i, j, jδi,c + k〉.

The Horner gate is a qutrit generalization of the qubit Toffoli gate. See also [15] for additional
background on the Horner gate.

5. SWAP : |i, j〉 7→ | j, i〉.

For graphical representations of the gates defined above, see Figure 1.
The qutrit Clifford groupC [16] is generated bySUM,X,H, andQ, whereH andQ are defined as

follows:

H =
1
√

3





















1 1 1
1 ζ3 ζ23
1 ζ23 ζ3





















, Q =





















1 0 0
0 1 0
0 0 ζ3





















,

A. Bocharov, S.X. Cui, M.Roetteler, K.M. Svore5

∧

(U)

U

Cc(U)

U

c

X SUM C(X)

c

C(SUM)

c

Fig. 1. Graphical representations of some ternary gates

where we use the notationζn = e
2πi
n for n ≥ 1.

It can be shown that, along with theSUM, all the reversible 1-qutrit gates andSWAP are also
contained inC. Moreover,SUM and all the 1-qutrit reversible gates generate the subgroupof all
reversible gates inC. Some other Clifford gates areZ and

∧

(Z), whereZ = diag(1, ζ3, ζ23), and
∧

(Z) = (I ⊗ H)SUM(I ⊗ H−1) : |i, j〉 7→ ζ i j3 |i, j〉. However,C(X),Horner,C(SUM) andS00,22 are
non-Clifford gates.

Consider two pairs of standard basis vectors| j1〉, |k1〉 and | j2〉, |k2〉. It would be useful to note
that the two-way classical reflectionS| j1〉,|k1〉 that swaps the| j1〉, |k1〉 and fixes everything else can be
reduced to the corresponding reflectionS| j2〉,|k2〉 by applications ofO(n) SUM andSWAP gates (that
are Clifford gates: see [9], Lemma 16). In particular, the two-way swap S00,22 is Clifford-equivalent
to any other two-qutrit two-way swap.

We think of Clifford gates as beingcheapin the quantum sense. General rationale for this assump-
tion is that such gates can be simulated classically. (Additional motivation coming from topological
computing: in the context of non-abelian anyons such as SU(2)4 anyon system [8], Clifford gates can
be obtained by anyon braiding alone.) Thus we define the complexity (resp. depth) of a circuit as the
number (resp. depth) of non-Clifford gates.

The following two identities will be used, whereω(n) is the number of 1′s in the binary expansion
of n, and⌊x⌋ means the maximal integer less than or equal tox:

∞
∑

i=1

⌊ n
2i

⌋

= n− ω(n), (2)

⌊log n⌋+1
∑

i=1

⌊

n
2i
− 1

2

⌋

= n− ⌊log n
⌋ − 1. (3)

See also [17] for similar identities.

3 Quantum Ternary Adders

Given two n-trit numbersa = an−1 · · ·a1a0, b = bn−1 · · ·b1b0, an adder computes their sums =
snsn−1 · · · s0 = a+ b. The elementary method of adding twon-trit numbers is illustrated in Figure 2.
Let c0 = 0 be the initial carry trit and for 1≤ i ≤ n, let ci be the carry trit arising fromai−1, bi−1, ci−1,
namely,ci = 0 if ai−1 + bi−1 + ci−1 ≤ 2 andci = 1 otherwise. For 0≤ i ≤ n− 1, si = ai + bi + ci mod 3
andsn = cn.

In Section 3.1 and Section 3.2, we present two methods to implement reversible ternary quantum
adder: a ripple-carry adder and a carry look-ahead adder. The two adders are generalized from their
binary counterparts [17, 18], but the generalizations are somewhat nontrivial, as seen later. On one
hand, the modified ripple-carry adder uses only 1 ancilla forthe whole process and has the circuit depth
in O(n). On the other hand, the carry look-ahead adder requiresO(n) ancillas with the advantage of

6 Improved Quantum Ternary Arithmetics

an−1 · · · a1 a0

bn−1 · · · b1 b0

cn cn−1 · · · c1 c0 = 0
sn sn−1 · · · s1 s0
Fig. 2. Addition of twon-trit numbers

having circuit depth inO(log n). We will also compare the two adders to other ternary addersknown
in literature and show that our adders are more efficient both space-wise and depth-wise.

To implement the adders, we utilizeC(X), C(SUM), C(S0,1) andS00,22 as the basic building units.
As shown in Section 5.1,C(SUM), C(S0,1) andS00,22 can all be constructed exactly fromC(X) and
Clifford operations. Therefore, the circuit of adders can be designed from Clifford operations and
C(X) alone. The reason that we still treatC(SUM), C(S0,1) andS00,22 as basic units is that it might
be more efficient to synthesize them directly in some basis rather than breaking them up intoC(X) ′s.
An example is the metaplectic basis [9], whereS00,22 has an efficient approximation by a metaplectic
circuit.

3.1 Modified Ripple-Carry Adder

The binary quantum ripple-carry adder was considered in [19], whereO(n) ancillas are required to
add twon-qubit numbers. In [17], the method was improved so that only1 ancilla is necessary. Here
we give a ternary generalization of the improved ripple-carry adder.

Note that in contrast to the binary case, the ternary carry ismore complicated: if the inputs to a
binary full adder are denoted bya, b, c ∈ F2, then the outgoing carry is given bycout = ab+ ac+ bc,
where all operations are computed modulo 2. In case of a ternary full adder with inputsa, b, c ∈ F3,
the outgoing carry is given bycout = 2(1+ a + b + c)(ab+ ac+ bc) + abc, where all operations are
computed modulo 3. Though directly implementing this polynomial using the presented universal
gates is possible, it leads to a relatively large number of elementary gates. A simple observation
allows to reduce this cost significantly as it turns out thatcout does not have to be implemented for all
27 input triples but rather only 18 of them. Indeed, it can be shown inductively that—provided there
is no initial incoming carry—for ternary adders, every carry trit ci can only be either 0 or 1, but can
never be 2. This is indicated also in Figure 3 where the crossed out case indicates that this can never
occur in an actual addition: the caseci+1 = 2 is possible only ifci = 2, which inductively we assume
cannot happen. With this definition,ci+1 becomes a balanced function, i.e., there are the same number
of inputs corresponding to each outcomeci+1.

We sketch the idea of constructing the circuit to computeci+1 from ai, bi and ci based on this
observation. As illustrated in Figure 3,ci+1 equalsci for all but six inputs, the last three inputs in
the columnci+1 = 0 and the last three in the columnci+1 = 1. For each of these six inputs,ci+1

equals 1− ci . If the gateS00,22 is applied to qutritsai , bi , then the six inputs are turned into six new
triples. See Figure 4 for the transition. Moreover, the new six triples are exactly equal to the set
{(a, b, c) ∈ {0, 1, 2}3 : a+b = c, c , 2}. In light of these observations, a reversible circuit, called Carry,
is constructed, which takesci , ai, bi as input, and outputsci+1 in the last qutrit. See Figure 5, wheref
andg are some functions ofai , bi, ci . The exact shape off andg is not important since they will be
reversed at the appropriate step of the adder.

As illustrated in Figure 5, the circuit Carry is ancilla free, in contrast to the carry circuit considered
in [13] where 1 ancilla is required for each round of carry. See Figure 6 for the comparison. The circuit

A. Bocharov, S.X. Cui, M.Roetteler, K.M. Svore7

ci+1 = 0 ci+1 = 1
✘
✘
✘✘ci+1 = 2

ai 0 0 0 1 1 2 0 0 1 0 1 1 2 2 2 1 2 2 0 0 0 1 1 1 2 2 2
bi 0 1 2 0 1 0 0 1 0 2 1 2 0 1 2 2 1 2 0 1 2 0 1 2 0 1 2
ci 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 2 2 2 2 2 2 2 2 2

Fig. 3. Ternary carry table

ci+1 = 0 ci+1 = 1
ai 0 0 1 1 2 2
bi 0 1 0 2 1 2
ci 1 1 1 0 0 0

ci+1 = 0 ci+1 = 1
ai 2 0 1 1 2 0
bi 2 1 0 2 1 0
ci 1 1 1 0 0 0

S00,22

=⇒

Fig. 4. Transition of inputs due toS00,22

utilizes oneS00,22, oneC(S0,1), two SUM, and twoSWAP gates. TheSUM andSWAP are both
Clifford gates, so only 2 non-Clifford gates are needed. The depth of Carry in terms of non-Clifford
gates is also 2. Moreover, unlike the binary ripple-carry circuit MAJ [17] where the two qubits other
thanci+1 end up withai + bi , ci + bi , in our circuit the two qutrits other thanci+1 have the final values
f (ai , bi, ci) andg(ai, bi, ci). This is the reason we call our carry circuitmodified. However, as will be
seen below, the modified carry circuit works in the same way asthe regular one.

Let C : |ci , ai , bi〉 → | f (ai , bi, ci), g(ai, bi , ci), ci+1〉 be the Carry gate represented by the circuit in
Figure 5. Similar to the adder circuit in [17], the modified ripple-carry adder circuit is designed in
Figure 7, which, as an illustration, shows the addition of two 3-qutrit numbers.

In Figure 7, the qutritc0, initialized with 0, is the only ancilla required. The qutrit on the bottom
holds the overflow trit, i.e., the highest trit in the sum. Therefore, to add twon-qutrit numbers, exactly
1 ancilla,n Carry gates,n inverse Carry gates and 2n SUM gates are required, and the depth of the
circuit is 4n. In contrast, the adder in [13] usesn ancillas and has the complexity inO(n).

3.2 Carry Look-ahead Adder

In the ripple-carry adder, the carryci+1 is computed only after the value ofci has been obtained, and
thus the overall depth of the circuit is inO(n). One protocol to reduce the depth is the carry look-ahead
adder studied in [18] for the binary addition. Here we generalize it to give a ternary carry look-ahead
adder, which computes all the carry trits in depthO(log n) by introducing extraO(n) ancillas.

The main idea is that there are relations betweenci andci+1, and more generally betweenci andc j

for i , j. For instance, ifai + bi = 2, thenci+1 = ci . If ai + bi = 1, thenci+1 = 0 regardless of the value
of ci . See Figure 8 for a summary of the relation betweenci+1 andci . Note thatc0 = 0, thus when
i = 0, the columnci+1 = ci in Figure 8 becomesc1 = c0 = 0. Motivated by their relations, we define,
for 0 ≤ i < j ≤ n, the carry status indicatorC[i, j] :

ci

bi

ai
S00,22 †

S0,1

0

SWAP

SWAP
ci+1

g(ai ,bi , ci)

f (ai ,bi , ci)

Fig. 5. the circuit Carry

8 Improved Quantum Ternary Arithmetics

ci

bi

ai

ci+1

g(ai ,bi , ci)

f (ai ,bi , ci)

Carry

0

ci

bi

ai

ci+1

ci

bi

ai
Carry

Fig. 6. (Left) ripple carry in the present paper; (Right) ripple carry studied in [13]

0

b2

a2

b1

a1

b0

a0

c0

C

C

C C−1

C−1

C−1

s3

s2

a2

s1

a1

s0

a0

c0

Fig. 7. Circuit for ripple-carry adder

C[i, j] =



























0 c j = 0 regardless ofci

1 c j = 1 regardless ofci

2 c j = ci

Since we already knowc0 = 0, the casec j = c0 is then the same as the first casec j = 0. Thus we
can treat these two cases as one, and designC[0, j] so that it will never take the value 2, namely, we
will haveC[0, j] = c j .

Explicitly, for 0 < i < n, the circuit,AdjC, shown in Figure 9 computesC[i, i+1] from ai andbi. It
requires 1 non-Clifford gateS00,22, and no ancilla. However, to computeC[0, 1], we need to make use
of 1 ancilla, and 2 non-Clifford gatesS00,22,C(X). See Figure 10 for the circuit, which we callAdjC0.

Having computed the carry status indicators for any two adjacent indices, we furthermore compute
C[i, j] for arbitraryi , j. For 0≤ i < k < j ≤ n, C[i, j] can be obtained fromC[i, k] andC[k, j] by the
mergingformula in Figure 11.

Note that wheni = 0, the row corresponding toC[0, k] = 2 in Figure 11 will never be used. Also
whenC[0, k] takes values in{0, 1}, so will C[0, j]. A circuit, M, realizing themergingformula is
illustrated in Figure 12, whereM takesC[i, k],C[k, j], and an ancilla initialized to 0 as inputs, and
outputsC[i, j] to the ancilla. The circuit requires 1 non-Clifford gateC(SUM).

The circuitsAdjC andAd jC0 both only depend onai andbi, thus we can compute all theC[i, i+1] ′s
in one time slice. The nature of themergingformula enables us to obtain all theC[0, j] ′s inO(log n)

ci+1 = 0 ci+1 = 1 ci+1 = ci

ai 0 0 1 1 2 2 0 1 2
bi 0 1 0 2 1 2 2 1 0

Fig. 8. Relation betweenci+1 andci

A. Bocharov, S.X. Cui, M.Roetteler, K.M. Svore9

bi

ai
S00,22

S0,1 C[i, i + 1]

Fig. 9. CircuitAdjC computingC[i, i + 1], 0 < i < n

bi

ai

0

S00,22
0

SWAP

SWAP
C[0,1]

Fig. 10. CircuitAdjC0 computingC[0, 1]

time slices. We elaborate this below.

For i = 0, 1, · · · , n− 1, let Bi be the working register configured to beC[i, i + 1] at the beginning,
and letZi+1 be the working registers initialized to|0〉, which will end up withC[0, i + 1]. We also
needn− ω(n) − ⌊log n

⌋

ancillasXi initialized to |0〉. The circuit consists of three processes, namely,
P-process,C-process, andP−1-process. Each process roughly contains

⌊

log n
⌋

rounds.

In P-process, we compute all the carry status indicators of the form C[2tm, 2t(m+ 1)] and write
all the results into the ancillas, except the onesC[0, 2k] which are written toZ[2k]. There are

⌊

log n
⌋

rounds, eacht = 1, · · · , ⌊log n
⌋

corresponding to one round. In thet-th round, which we call the
P[t]-round, the status indicatorsC[2tm, 2t(m+ 1)], m= 0, · · · ,

⌊

n
2t

⌋

− 1 are computed. By themerging

formula,C[2tm, 2t(m+1)] can be obtained fromC[2t−1(2m), 2t−1(2m+1)] and [2t−1(2m+1), 2t−1(2m+
2)], both of which have been computed inP[t − 1]-round by induction. Moreover, the circuitM
producingC[2tm, 2t(m+ 1)] for differentm′s in theP[t]-round takes different carry status indicators
in P[t − 1]-round as input. Note that theP[1]-round requires the carry status indicatorsC[i, i + 1] ′s in
the registersBi. Therefore, in theP[t]-round, all the circuitsM computingC[2tm, 2t(m+ 1)] can be
made parallel, and their inputs only depend on the carry status indicators from theP[t−1]-round. Thus,
the depth of the circuit inP-process is

⌊

log n
⌋

, the number of ancillas needed isn − ω(n) − ⌊log n
⌋

,
and the complexity isn− ω(n).

In C-process, we computeC[0, j] into the registerZ j , j = 1, · · · , n. This is performed in
⌊

log n
3

⌋

+1

rounds. Note that theC[0, 2k] ′s have already been obtained inP-process, and are located in the desired
positions. Fort =

⌊

log n
3

⌋

, · · · , 0, theC[t]-round consists of computing the carry status indicators

C[0, 2t(2m+ 1)], m = 1, · · · ,
⌊

n
2t+1 − 1

2

⌋

. Again, by themergingformula, we can getC[0, 2t(2m+ 1)]

from C[0, 2t+1m] andC[2t(2m), 2t(2m+ 1)]. By induction,C[0, 2t+1m] has been obtained in earlierC-
rounds ifm is not a power of 2, and in theP[t+1+ log m]-round otherwise. AlsoC[2t(2m), 2t(2m+1)]
has been computed in theP[t]-round. Therefore, we can run all theM circuits in theC[t]-round in a
parallel way. These circuits depend on the carry status indicators in theP[t]-round andC[k]-rounds,
k ≥ t + 1. If m is a power of 2, then the correspondingM circuit also depends onC[0, 2t+1m] from the

⊙ C[k, j]
0 1 2

C[i, k]
0 0 1 0
1 0 1 1
2 0 1 2

Fig. 11. ThemergingformulaC[i, j] = C[i, k]
⊙

C[k, j]

10 Improved Quantum Ternary Arithmetics

0

C[k, j]

C[i, k]

†

2

C[i, j]

C[k, j]

C[i, k]

Fig. 12. CircuitM realizing themergingformula

C[
⌊

log n
3

⌋

] · · · C[
⌊

log n
⌋ − 3] · · · C[0]

P−1[
⌊

log n
⌋ − 1] · · · P−1[2] P−1[1]

Fig. 13. Parallelism betweenC- andP−1-process

P[t + 1+ log m]-round. Thus the circuit inC-process has a depth of
⌊

log n
3

⌋

+ 1, and the complexity
is n− ⌊log n

⌋ − 1.
In P−1-process, we set the ancillas back to|0〉, thus we need to reverse all theM circuits in P-

process, except for those computingC[0, 2k] ′s which are not stored in the ancillas. TheP−1-process
consists of

⌊

log n
⌋− 1 rounds. Fort =

⌊

log n
⌋− 1, · · · , 1, theP−1[t]-round uncomputesC[2tm, 2t(m+

1)], m= 1, · · · ,
⌊

n
2t

⌋

−1 by using the inverse ofM. Note that in this process, all theC[0, 2k]′s will not
be touched. The process has a depth of

⌊

log n
⌋−1, and the complexity of the circuit isn−ω(n)−⌊log n

⌋

.
We note that most parts ofC-process andP−1-process can actually be parallelized. The argument

is as follows. All the inputs to theC[t]-round which are not of the formC[0, 2m] only depend on
C[k]-rounds,k ≥ t + 1, and theP[t]-round. The inputs that are of the formC[0, 2m] were computed in
P[m]-round, but they will not be touched inP−1-process. TheP−1[t + 2]-round only depends on the
outputs inP[t + 1]-round andP[t + 2]-round. Thus theC[t]-round and theP−1[t + 2]-round can be
performed simultaneously. The precise parallelism between C-process andP−1-process is illustrated
in Figure 13.

To summarize, the whole circuit usesn − ω(n) − ⌊log n
⌋

ancillas, and has a depth of
⌊

log n
⌋

+
⌊

log n
3

⌋

+ 2. The total complexity of the circuit is 3n− 2ω(n) − 2
⌊

log n
⌋ − 1.

3.3 Complete Circuit for Carry Look-Ahead Adder

We give two implementations of carry look-ahead adder, namely, the out-of-place adder and the in-
place adder. Recall that the circuits in Figure 9, 10, and 12 are denoted byAdjC, AdjC0, andM,
respectively. The complexity of bothAdjC andM is 1, and the complexity ofAdjC0 is 2. The depth
of these circuits is equal to their complexity.

3.3.1 Out-of-place Adder

Let Ai , Bi be the registers with initial valueai , bi, respectively,i = 0, · · · , n − 1. Let Zi , i = 0, · · · , n
be the registers initialized to be 0, which will hold the suma+ b at the end of the computation. We
needn − ω(n) − ⌊log n

⌋

ancillasXi to store intermediate carry status indicators. The following is a
description of the circuit of our out-of-place adder.

Out-of-place Procedure:

1. For 0< i ≤ n− 1, run the circuitAdjC on Ai , Bi, which outputsC[i, i + 1] to Bi. RunAdjC0 on
A0, B0, andZ0 with Z0 as the ancilla, which outputsC[0, 1] to B0. CopyC[0, 1] to Z1 with the
SUM gate. The circuit has a depth of 2, and it consist ofn− 1 AdjC, 1 AdjC0, and 1SUM gates.

A. Bocharov, S.X. Cui, M.Roetteler, K.M. Svore11

AdjC0 AdjC M
Fig. 14. Circuit glyphs forAdjC0, AdjC andM. The inverse gatesAdjC−1

0 , AdjC−1 andM−1 are represented by
mirror images of these glyphs.

2. As discussed in Section 3.2, compute all theC[0, i] ′s with the ancillasXi
′s and the circuit

M±1. At the end of this process, the ancillas are returned to 0, and Zi = C[0, i], i = 1, · · · , n. f

This requires 3n − 2ω(n) − 2
⌊

log n
⌋ − 1 calls to the circuitM±1, and has a circuit depth of

⌊

log n
⌋

+
⌊

log n
3

⌋

+ 2.

3. Undo all theAdjC ′s andAdjC0. At the end of this step, we haveBi = bi ,Zi = C[0, i] = ci . The
circuit has a depth of 2, and it consist ofn− 1 AdjC−1, 1 AdjC−1

0 , and 1SUM−1.

4. SetZi = Zi ⊕ Ai ⊕ Bi, 0 ≤ i ≤ n− 1. This requires 2n SUM gates.

In summary, the out-of-place adder usesn − ω(n) − ⌊log n
⌋

ancillas, and has a circuit depth of
⌊

log n
⌋

+
⌊

log n
3

⌋

+ 6, with the complexity of 5n− 2ω(n) − 2
⌊

log n
⌋ − 1.

We representAdjC0, AdjC andM as shown in Figure 14. Their inverses are represented by the
same circuit with replaced by . Also a black rectangle means the content will be changed after
the application of the relevant gate, while a blank rectangle means the content remains the same. An
an illustration, we give a complete out-of-place circuit for adding two 10-qutrit numbers in Figure 15,
where we usex to stand for 10, andci j is the carry status indicatorC[i, j]. From Figure 15, it is clear
that theC[0]-round andP−1[2]-round can be parallelized since the gates in these two rounds act on
different wires. One can also verify the cost: the number of ancillas isn − ω(n) − ⌊log n

⌋

= 5, the
depth of the circuit is

⌊

log n
⌋

+
⌊

log n
3

⌋

+6 = 10, and the complexity is 5n−2ω(n)−2
⌊

log n
⌋−1 = 39.

3.3.2 In-place Adder

The idea of in-place adder is also generalized from that in [18]. Let 2̄ be then-trit number with all
2 ′s, namely2̄ = 3n − 1. When no confusion arises, we make no distinction between anumber and
its trit representation. For twon-trit numbersa, b, denote bya ⊕ b the number obtained by trit-wise
summation modulo 3, and denote bya′ the number obtained by replacing every tritai by 2− ai . Thus,
the following equations hold:

a⊕ a′ = 2̄ anda+ a′ = 3n − 1.

Let c = c0 · · · cn−1 be the sequence of then low carry trits fora andb, and lets be then low trits
of a+ b. Then we have

s= a+ b (mod 3n) ands= a⊕ b⊕ c.

Also note thats′ + a = 3n − 1− s+ a = 3n − 1− b = b′ (mod 3n).
Let d = d0 · · ·dn−1 be then low carry trits resulting from addings′ anda. Then,s′ ⊕ a⊕ d = b′,

and thus we have,

f Z1 = C[0, 1] was obtained in the previous step.

12 Improved Quantum Ternary Arithmetics

0

0

b9

a9

0

b8

a8

0

0

0

b7

a7

0

b6

a6

0

0

b5

a5

0

b4

a4

0

0

b3

a3

0

b2

a2

0

b1

a1

0

b0

a0

0

c9x

c89

c78

c67

c56

c45

c34

c23

c12

c01

P [1] P [2] P [3]

c8x

c68

c46

c24

c02

c48

c04

c08

C[1] C[0]

c0x

c06

c09

c07

c05

c03

c01

P
−1[2] P−1[1]

0

0

0

0

0

b9

b8

b7

b6

b5

b4

b3

b2

b1

b0

sx

0

b9

a9

s9

b8

a8

s8

0

0

b7

a7

s7

b6

a6

s6

0

b5

a5

s5

b4

a4

s4

0

b3

a3

s3

b2

a2

s2

b1

a1

s1

b0

a0

s0

Step 1 Step 2 Step 3 Step 4

Fig. 15. Out-of-place carry look-ahead adder

A. Bocharov, S.X. Cui, M.Roetteler, K.M. Svore13

2̄⊕ a⊕ b⊕ d = s⊕ s′ ⊕ a⊕ b⊕ d

= s⊕ b′ ⊕ b

= 2̄⊕ a⊕ b⊕ c.

Therefore,c = d, i.e., then low carry trits fora, b are the same as those fors′, a. We will use this
property to implement the in-place adder.

For 0≤ i ≤ n− 1, let Ai , Bi be the working registers initialized withai , bi, respectively. We will
need 2n−ω(n)− ⌊log n

⌋

ancillas,n of which are denoted byZ0,Z1, · · · ,Zn−1 and the rest areXi
′s. Let

Zn be the working register which will store the high trit ofa+ b. All ancillas start with 0.

In-place Procedure:

1. As described in Out-of-place Procedure Step 1 through 3, compute all the carry tritsC[0, j] into
Z j , j = 0, · · · , n. The ancillasXi

′s and working registersAi , Bi are all returned to their initial
configuration at the end of the process. This has a circuit depth of

⌊

log n
⌋

+
⌊

log n
3

⌋

+ 6, with
the complexity of 5n− 2ω(n) − 2

⌊

log n
⌋

+ 1.

2. For 0≤ i ≤ n− 1, letBi = Bi ⊕ Ai ⊕ Zi , namely, the registerBi
′s will store then low trits of the

suma+ b. This can be done by 2n SUM gates.

3. Now we want to erase then carry tritsC[0, i] = ci , i = 0, · · · , n − 1. For 0≤ i ≤ n − 2, let
Bi = 2− Bi. This can be achieved byn− 1 S0,2 gates.

4. Apply the inverse of the Out-of-place Procedure Step 1 through 3 on the registersAi , Bi for
0 ≤ i ≤ n− 2 to erase the carry tritsc j stored inZ j , j = 0, · · · , n− 1.

5. For 0≤ i ≤ n− 2, let Bi = 2− Bi. Again this can be done byn− 1 S0,2 gates.

Tracing the cost of the circuit above, we see that the in-place adder has a depth of
⌊

log n
⌋

+
⌊

log n
3

⌋

+
⌊

log (n− 1)
⌋

+
⌊

log n−1
3

⌋

+12, and its complexity is 10n−2ω(n)−2
⌊

log n
⌋−2ω(n−1)−2

⌊

log (n− 1)
⌋−3.

Moreover, the number of ancillas required is 2n− ω(n) − ⌊log n
⌋

.
Figure 16 gives a complete circuit of in-place adder forn = 10. See Figure 14 and the last

paragraph in Section 3.3.1 for the explanations of notations used in the circuit.

4 Extensions

In this section, we give various extensions based on the modified ripple-carry adder and the carry
look-ahead adder, including addition modulo 3n, subtraction, and comparison.

4.1 Addition Mod 3n

To add twon-qutrit numbers modulo 3n, we simply do not compute the the high carry tritcn.
In the ripple-carry adder (see Figure 7), it suffices to remove the circuitC, SUM, C−1 in the middle,

and the last qutrit on the bottom. Thus in total we need 1 ancilla, 2(n−1) Carry gates, and 2n−1 SUM
gates, and the depth of the circuit is 4(n− 1).

14 Improved Quantum Ternary Arithmetics

0

0

b9

a9

0

b8

a8

0

0

0

b7

a7

0

b6

a6

0

0

b5

a5

0

b4

a4

0

0

b3

a3

0

b2

a2

0

b1

a1

0

b0

a0

0

sx

0

s9

a9

c9

s8

a8

c8

0

0

s7

a7

c7

s6

a6

c6

0

s5

a5

c5

s4

a4

c4

0

s3

a3

c3

s2

a2

c2

s1

a1

c1

s0

a0

c0

S02

S02

S02

S02

S02

S02

S02

S02

S02

s
′
8

s
′
7

s
′
6

s
′
5

s
′
4

s
′
3

s
′
2

s
′
1

s
′
0

†

s
′
8

s
′
7

s
′
6

s
′
5

s
′
4

s
′
3

s
′
2

s
′
1

s
′
0

S02

S02

S02

S02

S02

S02

S02

S02

S02

sx

0

s9

a9

0

s8

a8

0

0

0

s7

a7

0

s6

a6

0

0

s5

a5

0

s4

a4

0

0

s3

a3

0

s2

a2

0

s1

a1

0

s0

a0

0

Step 1 Step 2 Step 3 Step 4 Step 5

Fig. 16. In-place carry look-ahead adder

A. Bocharov, S.X. Cui, M.Roetteler, K.M. Svore15

In the out-of-place carry look-ahead adder, we run the circuit as described in Out-of-place Proce-
dure in Section 3.3.1. However, in the first three steps of theprocedure, we restrict the inputs to the
n− 1 low trits of a andb, namely,a0, · · · , an−2, b0, · · · , bn−2, since there is no need to computecn. Of
course, in the last step we still need to compute the modulo summationai ⊕bi ⊕ci for all 0 ≤ i ≤ n−1.
Thus the out-of-place modulo adder usesn − 1 − ω(n − 1) − ⌊log (n− 1)

⌋

ancillas, and has a circuit
depth of

⌊

log (n− 1)
⌋

+
⌊

log n−1
3

⌋

+ 6, with complexity 5(n− 1)− 2ω(n− 1)− 2
⌊

log (n− 1)
⌋

+ 1.
Similarly, for the in-place carry look-ahead modulo 3n adder, we run exactly the same circuit as

the In-place Procedure in Section 3.3.2, except in Step 1 where we again restrict the inputs only to the
n− 1 low trits of a andb. It is direct to total the cost of the circuit. It has a depth of2(

⌊

log(n− 1)
⌋

+
⌊

log n−1
3

⌋

+ 6), with the complexity of 2(5(n− 1)− 2ω(n− 1)− 2
⌊

log (n− 1)
⌋

+ 1). The number of
ancillas required is 2(n− 1)− ω(n− 1)− ⌊log (n− 1)

⌋

.

4.2 Subtraction

To computea− b for two n-trit numbersa, b, first converta to a′, then computea′ + b, and eventually
converta′ + b to (a′ + b)′. Note thata′ is then-trit number obtained by replacing eachai by 2− ai ,
namely,a′ = 3n − 1− a. Thus we have,

(a′ + b)′ = (3n − 1− a+ b)′ = 3n − 1− (3n − 1− a+ b) = a− b.

Changinga to a′ costsn Clifford gateS0,2. Therefore, the circuit for subtraction has the same
depth and complexity as the regular the adder.

4.3 Comparison

Given the circuit for subtraction, it is straightforward tocompare two numbersa andb. Actually, there
is a circuit for the comparison ofa, b with smaller complexity than that of subtraction since we only
need to know the high trit ofa− b. Let a′ = 3n − 1− a, thena− b ≥ 0 if and only if the high trit of
a′ + b is 0.

In the ripple-carry adder, we converta to a′ and use the Carry gateC to compute all the carry trits
c1, · · · , cn for a′ + b. After copyingcn to the register storing the result of the comparison, we undoall
theC ′s and converta′ back toa. The circuit thus requires 1 ancilla, 2n Carry gateC, 1 SUM gate, 2n
S0,2, and has a depth of 4n.

In the carry look-ahead adder, again we first converta to a′. To computea′ + b, the circuit
sequentially generates all the carry status indicatorsC[i, j] ′s. However, since we only care about the
high trit cn = C[0, n], we can design a more efficient circuit to implement the comparison.

Recall from Section 3.2 that inP process we have obtained all the carry status indicators of the
form C[2tm, 2t(m+ 1)], and in particular, anyC[0, 2k] is of this form. Therefore, ifn = 2k for some
k, thencn is obtained at the end ofP process. At this moment, there is no need to go through theC
process. Instead, we copycn into the register storing the result, and undo theP process. In general, let
k =
⌈

log n
⌉

, then we can just pada andb by adding zeros in the front to make them 2k-trit numbers,
and use the circuit described above to comparea andb. We still call the 2k-trit numbersa andb. For
0 ≤ i ≤ n− 1, let Ai = ai , Bi = bi be the working registers, and letR the register which will store the
result of the comparison. We also need 2k+2(2k−n) ancillas, among which 2(2k−n) are used to hold
the extra zeros in from ofa andb, one is denoted byZ0 as the ancilla to theAdjC0 circuit, and the rest
are denoted byXi

′s.
Note that after paddinga andb with zeros, the carry status indicatorsC[i, j] ′s,n ≤ i < j ≤ 2k, are

16 Improved Quantum Ternary Arithmetics

known before the compilation, thus we can store their valuesin the registers and there is no need to
recompute them later.

Carry Look-ahead Comparison:

1. Converta to a′. This requires 2k S0,2 gates.

2. For 0< i ≤ n− 1, run the circuitAdjC on Ai , Bi, which outputsC[i, i + 1] to Bi. RunAdjC0 on
A0, B0, andZ0 with Z0 as the ancilla, which outputsC[0, 1] to B0. The circuit has a depth of 2,
and it consist ofn− 1 AdjC and 1AdjC0.

3. Perform theP process in Section 3.2 to compute all theC[2tm, 2t(m+ 1)] that are not known
before compilation into the ancillary registersXi . Note that here since we don’t have theZi

registers, all theC[0, 2m] ′s are also written to theXi registers. The depth of the circuit isk, and
the complexity is 2k − ω(2k) − (2k − n− ω(2k − n)) = n+ ω(2k − n) − 1.

4. Copyc2k to the result registerR.

5. Undo Step 3.

6. Undo Step 2.

7. Undo Step 1.

Therefore, the total depth of the circuit above is 2k + 4 = 2
⌈

log n
⌉

+ 4, and it has the complexity
of 4n+ 2ω(2k − n) = 4n+ 2ω(2⌈log n⌉ − n). The number of ancillas used is 3· 2⌈log n⌉ − 2n.

5 Techniques for Constructing Quantum Gate Decompositions

In previous sections, we developed a system of ternary arithmetic with the focus on two types of
quantum ternary adders. The building blocks of these circuits include the Carry circuitC, the circuits
AdjC,AdjC0 computing carry status indicators, and themerging formulaM. Moreover, the non-
Clifford gates used in these four circuits areS00,22,C(S0,1),C(X), andC(SUM).

In this section, we show that it suffices to haveC(X) along with Clifford gates to produce the other
three non-Clifford gates exactly. The key technique involved is to analyze the algebraic expressions
of these gates. In Section 5.1, it is proven thatC(X) and Horner are equivalent up to Clifford gates,
and that all other non-Clifford gates can be obtained fromC(X). In Section 5.2, we introduce a
universal gate set called supermetaplectic basis, which isa qutrit analog of the qubit Clifford + π8-
gate. We then illustrate in Section 5.3 thatC(X) and Horner can both be implemented exactly over
supermetaplectic basis. Therefore, with the supermetaplectic basis, the ternary circuits for arithmetic
can be realized exactly.

5.1 Construction of Reversible Gates from Polynomial Expressions

LetF3 be the field with three elements{0, 1, 2}. Then anyn-qutrit reversible gate can be represented as
a mapFn

3 7→ Fn
3, or a sequence ofn functionsFn

3 7→ F3, if one identifies each|i〉 with i, i = 0, 1, 2. We
will see that reversible gates have polynomial representations and these polynomial representations
provide hints to construct one reversible gate from another.

Note that 02 = 0, 12 = 22 = 1 (mod 3), and thusδi,0 = 1− i2 (mod 3). By default, arithmetic within
a ket is taken modulo 3. The following is a list of polynomial expressions of some non-Clifford gates.

A. Bocharov, S.X. Cui, M.Roetteler, K.M. Svore17

2

2

2

2

2
SWAP

Fig. 17. A circuit forS01,10

• SUM =
∧

(X) : |i, j〉 7→ |i, i + j〉;

• C0(X) : |i, j〉 7→ |i, j + δi,0〉 = |i, j − i2 + 1〉;

• Horner:=
∧

(
∧

(X)) : |i, j, k〉 7→ |i, j, i j + k〉;

• C0(SUM) : |i, j, k〉 7→ |i, j, k+ (1− i2) j〉.

The above list shows that if a qutrit works as a soft control, then it contributes a linear factor in the
expression of the target qutrit, while a hard control qutritcontributes a quadratic factor.

DefineC′(X) : |i, j〉 7→ |i, j + i2〉. Thus,C′(X) = (I ⊗X)C0(X)−1 is equivalent toC(X). We will use
C′(X) below for the construction of other gates.

The relation between the expressions of Horner andC′(X) resembles that of a bilinear form and a
quadratic form, which are equivalent. This suggests that Horner andC′(X) are also equivalent. Indeed,
the following diagrams give a construction of one from another.

• implementation of Horner gate in terms ofC′(X) : |i, j, k〉
SUM1,2−→ |i, i + j, k〉

C′ (X)−1
2,3−→ |i, i + j, k− (i + j)2〉

SUM−1
1,2−→

|i, j, k− i2 − j2 + i j 〉
C′ (X)1,3−→ |i, j, k− j2 + i j 〉

C′ (X)2,3−→ |i, j, k+ i j 〉.

• implementation ofC′(X)1,2 gate in terms of Horner :|i, j, k〉
SUM1,3−→ |i, j, i + k〉

Horner1,3,2−→ |i, j + i2 + ik, i + k〉
SUM−1

1,3−→ |i, j + i2 + ik, k〉
Horner−1

1,3,2−→ |i, j + i2, k〉.

Note that in the construction of 2-qutritC′(X), we made use of a third qutrit, but that qutrit does
not have to be clean, namely it could have arbitrary state.

Similarly,C′(X) is enough to constructC(SUM):

C0(SUM): |i, j, k〉
C′(X)1,2−→ |i, i2 + j, k〉

C′(X)2,3−→ |i, i2 + j, k+ (i2 + j)2〉
C′(X)−1

1,2−→ |i, j, k+ i2 + j2 − i2 j〉
C′(X)−1

1,3−→

|i, j, k+ j2 − i2 j〉
C′(X)−1

2,3−→ |i, j, k− i2 j〉
SUM2,3−→ |i, j, k+ (1− i2) j〉.

To implementC(S0,1) andS00,22, notice that the circuit in Figure 17 realizesS01,10, and moreover
we have:

• S00,22 = SUM−1(X−1 ⊗ I)S01,10(X ⊗ I)SUM.

• C0(S0,1) = SUM−1
2,1(X−1 ⊗ X−1)S00,22(X ⊗ X)SUM2,1.

5.2 Supermetaplectic Basis

Recall from Section 2 thatC is the qutrit Clifford group generated byH,Q,X, andSUM. Some other
gates inC areZ and

∧

(Z), whereZ = diag(1, ζ3, ζ23), and
∧

(Z) = (I ⊗ H)SUM(I ⊗ H−1). It can be
directly verified that

∧

(Z) has the following expression:
∧

(Z) : |i, j〉 7→ ζ i j3 |i, j〉.

18 Improved Quantum Ternary Arithmetics

In [8], it has been established that the multi-qutritmetaplecticgate setC + diag(1, 1,−1) or equiv-
alentlyC + diag(1, ζ6, ζ26) was universal for quantum computation in the sense that anymulti-qutrit
unitary operator can be approximated to any given precisionby a circuit over that gate set. We conjec-
ture that the metaplectic gate set is not universal forexactreversible computation, i.e. it seems that the
subgroup of reversible classical gates that can be represented exactly by metaplectic circuits is rather
thin. In order to ensure exact representation of the reversible gates over a relatively simple multi-qutrit
basis, we expand the basis by adding essentially the “cubic root” of theZ gate to it. To this end we
increase the order of the root of unity used in defining the non-Clifford diagonal gate, and defineP9

as the 1-qutrit diagonal gate diag(ζ−1
9 , 1, ζ9).

g

Definition 1 The gate setC + P9 is called supermetaplectic basis.

Since theP9 gate is non-Clifford, this basis is universal for quantum computation. The supermeta-
plectic basis resembles the qubit Clifford+ T basis in several aspects. Firstly, we show in Section 5.3
that all the reversible gates can be constructed exactly over the supermetaplectic basis. Secondly, the
P9 gate is a fundamental diagonal gate in the third level of the Clifford hierarchy [20]. Lastly, it was
shown in [21] thatP9 can be obtained by magic state distillation.

5.3 Construction of Diagonal Gates from Polynomial Expressions

We continue exploring the use of polynomial expressions in constructing new quantum gates.

The group of reversible gates inC is generated bySUM,X,S1,2. More precisely, it is described by
the following proposition.

Proposition 2 {S12,X,SUM} generate a maximal subgroup, which is isomorphic to≃ GL(n, F3)⋊Fn
3,

of the group of reversible gates for any number n of qutrits.

Proof: See Appendix 9.

The statement in Proposition 2 for the casen = 2 was also proved in [9].

By the proof of Proposition 2, the correspondence between GL(n, F3)⋊Fn
3 and the group generated

by {S12,X,SUM} is as follows:

Given a pair (A, v) ∈ GL(n, F3)⋊Fn
3, whereA = (ai j)1≤i, j≤n, v = (vi)1≤i≤n, then the reversiblen-qutrit

gate corresponding to it maps|x〉, for any computational basis element|x〉 = |x1, · · · , xn〉, to |A.x+ v〉.
Moreover, any reversible gate of this form is generated by{S12,X,SUM}.

A function f : Fn
3 7→ F3 is called affine linear if f (x1, · · · , xn) = a1x1 + · · · + anxn + b, where

a1, · · · , an, b ∈ F3. A reversiblen-qutrit gate can be viewed as ann-tuple of functions: |x〉 7→
| f1(x), · · · , fn(x)〉, where we callfi the coordinates of the gate. Then the above argument shows that
a reversiblen-qutrit gate is generated by{S12,X,SUM} if and only if all of its coordinates are affine
linear functions. LetFn be the set of all affine linear functions fromFn

3 to F3.

LetD be the group generated by the reversible gates inC, together with the diagonal gates
∧

(Z)
andP9. We give a technique to characterize all the diagonal gates inD.

By Proposition 2 and the argument above, the reversible gates inD can change the basis element
|x〉 to any element of the form| f1(x), · · · , fn(x)〉, where fi is an affine linear functionFn

3 to F3. The
action of

∧

(Z) andP9 will contribute a scalar to the basis element. Thus the most generaln-qutrit
diagonal gate inD has the form:

gThis is the the distillable gate denotedM†3 in [21].

A. Bocharov, S.X. Cui, M.Roetteler, K.M. Svore19

|i1, i2, · · · , in〉 7→ ζ
∑

f∈Fn
Af f (i1,··· ,in)

9 ζ

∑

f ,g∈Fn
Bf ,g f (i1,··· ,in)g(i1,··· ,in)

3 |i1, i2, · · · , in〉, (4)

whereAf , Bf ,g are integer parameters. Notice that the affine linear functionsf andg take values in
F3, while Af , Bf ,g take values inZ. We have to evaluatef , g first in {0, 1, 2}, then multiply byAf , Bf ,g

insideZ. This is critical for the termζ9.
As an application, we show that

∧

(
∧

(Z)) andC2(Z) are both contained inD. The expressions of
relevant gates are given below.

• ∧(Z)|i, j〉 = ζ i j3 |i, j〉,P9|i〉 = ζ i9|i〉,

• X|i〉 = |i + 1〉,S1,2|i〉 = |2i〉,SUM|i, j〉 = |i, i + j〉.

• ∧(
∧

(Z)) : |i, j, k〉 7→ ζ i jk3 |i, j, k〉.

• C2(Z) : |i, j〉 7→ ζ jδi,2
3 |i, j〉.

Forn = 3, the coefficient in Formula 4 can be written as:

L(i, j, k) = ζ

2
∑

a,b,c,d=0
Aa,b,c,d(ai+b j+ck+d)

9 ζ
Bi j+C jk+Dik
3 , i, j, k ∈ F3, (5)

whereAa,b,c,d, B,C,D are integer parametersh. Againai+b j+ ck+d is assumed to be taken modulo 3.
To construct

∧

(
∧

(Z)), setL(i, j, k) = ζ i jk3 . Sinceζ9 = ζ33, we get the equation:

Equ(i, j, k) :
∑

a,b,c,d

Aa,b,c,d(ai + b j + ck+ d) + 3(Bi j +C jk+ Dik) = 3i jk (mod 9), i, j, k ∈ F3. (6)

The set{Equ(i, j, k) : i, j, k ∈ F3} is a system of 27 linear equations in the variablesAa,b,c,d, B,C,
andD. Thus there is an efficient way to find the solutions, if any.

By direct calculations, one solution to the above system of equations is:

ζ
i jk
3 = ζ

(1+2i+ j+k)+2(1+2i+ j+2k)+6(2+2i+ j+2k)+2(1+2i+2 j+k)+6(2+2i+2 j+k)+4(1+2i+2 j+2k)+6(2+2i+2 j+2k)
9 , (7)

where the terms on the exponent within each parenthesis is taken modulo 3.
In light of the solution in Equation 7, it is not hard to createa circuit realizing

∧

(
∧

(Z)). Explicitly,
this is given in Figure 18.

Similarly, with the same method, we construct a circuit forC2(Z). See Figure 19.
Note that

∧

(
∧

(Z)),C2(Z) are related with Horner,C2(X), respectively, by the Clifford gateH,
namely, we have,

• (I ⊗ H)C2(X)(I ⊗ H†) = C2(Z)

• (I ⊗ I ⊗ H)Horner(I ⊗ I ⊗ H†) =
∧

(
∧

(Z)).

Therefore, both Horner andC2(X) can be implemented exactly over supermetaplectic basis.

hActually there are also termsi2, j2, k2 on the exponent ofζ3, but it is direct to see thatζ i
2

3 = ζ
(2i mod 3)−((2−i) mod 3)
9 up to a global

phase, so the square terms can be absorbed into theζ9 terms.

20 Improved Quantum Ternary Arithmetics

S1,2 X ❥

s❝

❥

s❝ ❥

s❝

❥

s❝ P9

P†9

P†9

❥†

s❝

❥

s❝

P9 X S1,2

❥†

❝s ❥†

s❝

❥†

❝s

X†

Fig. 18. A circuit for
∧

(
∧

(Z))

P9

Q S0,2

P9 P9

S0,2

Fig. 19. A circuit forC2(Z)

Remark 3 1. The papers [22, 23] developed a similar framework for the binary case.

2. If one uses the similar technique for the qubit Clifford+ T gates, namely replacing(ζ9, ζ3) with
(ζ8,−1), one obtains a circuit for the Toffoli gate with T-depth3, which is optimal in the ancilla
free scenario.

6 Conclusion

We developed improved ternary circuits for reversible ternary adders of two types: the modified ripple-
carry and the carry look-ahead adder. We have also derived solutions for a modulo 3n adder, subtrac-
tion and comparison in ternary encoding. We have offered two levels of abstraction for describing the
corresponding ternary circuits: one in terms of reversiblereflections of certain types and one in a more
uniform language that allows only one non-Clifford gate: either theC(X) : |i, j〉 7→ |i, j + δi,2 mod 3〉
or theP9 = diag(e−2π i/9, 1, e2π i/9) gate.

Future circuit synthesis work should entail the design of fully modular adders, circuits for singly-
and doubly-controlled adders, as well as optimized circuits for singly- and doubly-controlled additive
shifts that would be essential parts of Shor’s integer factorization algorithm.

An important theoretical direction of future work would be establishing lower complexity bound
for the arithmetic circuits and evaluating the efficiency of designs presented here versus these bounds.

7 Acknowledgment

Most of the work in the present paper was done during Summer 2015 when the second author was
interning with Microsoft QuArC Group.

8 References

1. Boykin, P Oscar and Mor, Tal and Pulver, Matthew and Roychowdhury, Vwani and Vatan, Farrokh: A new
universal and fault-tolerant quantum basis. Information Processing Letters,75(3):101–107, 2000

2. Harrow, Aram W and Recht, Benjamin and Chuang, Isaac L: Efficient discrete approximations of quantum
gates. Journal of Mathematical Physics, 43(9), 4445–4451,2002

3. Morisue, Mititada and Oochi, Kiyoshi and Nishizawa, Mitsuhiro: A novel ternary logic circuit using Joseph-
son junction. IEEE Trans. Magn., 25(2), 1989

4. Morisue, Mititada and Endo, Jun and Morooka, Toshimitu and Shimizu, Nobuhiro and Sakamoto, Masahiro: A
Josephson ternary memory circuit. Multiple-Valued Logic,1998. Proceedings. 1998 28th IEEE International
Symposium on, 19 – 24, 1998

A. Bocharov, S.X. Cui, M.Roetteler, K.M. Svore21

5. Muthukrishnan, Ashok and Stroud, Carlos R, Jr.: Multivalued logic gates for quantum computation. Phys.
Rev. A., 62(5), 051309, 2000

6. Smith, Aaron and Anderson, Brian E and Sosa-Martinez, Hector and Riofrio, Carlos A and Deutsch, Ivan H
and Jessen, Poul S: Quantum control in the Cs 6S1/2 ground manifold using rf andµw magnetic fields. Phys.
Rev. Lett., 111(170502), 2013

7. Malik, Mehul and Erhard, Manuel and Huber, Marcus and Krenn, Mario and Fickler, Robert, Zeilinger, Anton:
Multi-photon entanglement in high dimensions, Nature Photonics 10, 248–252, 2016

8. Cui, Shawn X and Wang, Zhenghan: Universal quantum computation with metaplectic anyons. Journal of
Mathematical Physics, 56(3), 032202, 2015

9. Bocharov, Alex and Cui, Xingshan and Kliuchnikov, Vadym and Wang, Zhenghan: Efficient topological com-
pilation for weakly-integral anyon model. Phys. Rev. A 93, 012313, 2016

10. Bocharov, Alex and Roetteler, Martin and Svore, Krysta M.: Factoring with Qutrits: Shor’s Algorithm on
Ternary and Metaplectic Quantum Architectures. (In preparation)

11. Brennen, Gavin K and Bullock, Stephen S and O’Leary, Dianne P: Efficient circuits for exact-universal com-
putations with qudits. Quantum Information and Computation, 6, 436, 2006

12. Miller, D Michael and Dueck, Gerhard W and Maslov, Dmitri: A synthesis method for MVL reversible logic.
34th IEEE International Symposium on Multiple-Valued Logic (ISMVL), 74–80, 2004

13. Satoh, Takahiko and Nagayama, Shota and Van Meter, Rodney: A reversible ternary adder for quantum com-
putation. Asian Conf. on Quantum Information Science, 2007

14. Khan, Mozammel HA and Perkowski, Marek A: Quantum ternary parallel adder/subtractor with partially-
look-ahead carry. Journal of Systems Architecture, 53(7),453–464, 2007

15. Grassl, Markus and Roetteler, Martin and Beth, Thomas: Efficient quantum circuits for non-qubit quantum
error-correcting codes. International Journal of Foundations of Computer Science, 14(5), 757–775, 2003

16. Gottesman, Daniel: Fault-tolerant quantum computation with higher-dimensional systems. Quantum Com-
puting and Quantum Communications, Springer, 302–313, 1999

17. Cuccaro, Steven A and Draper, Thomas G and Kutin, Samuel Aand Moulton, David Petrie: A new quantum
ripple-carry addition circuit. arXiv:quant-ph/0410184, 2004

18. Draper, Thomas G and Kutin, Samuel A and Rains, Eric M and Svore, Krysta M: A logarithmic-depth quan-
tum carry-lookahead adder. Quantum Information and Computation, 6(4), 351–369, 2006

19. Vedral, Vlatko and Barenco, Adriano and Ekert, Artur: Quantum networks for elementary arithmetic opera-
tions. Phys. Rev. A, 54(1), 147, 1996

20. Howard, Mark and Vala, Jiri: Qudit versions of the qubitπ/8 gate. Phys. Rev. A, 86(2), 022316, 2012
21. Campbell, Earl T and Anwar, Hussain and Browne, Dan E: Magic-state distillation in all prime dimensions

using quantum reed-muller codes. Phys. Rev. X, 2(4), 041021, 2012
22. Amy, Matthew and Maslov, Dmitri and Mosca, Michele and Roetteler, Martin: A meet-in-the-middle algo-

rithm for fast synthesis of depth-optimal quantum circuits. Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on, 32(6), 818–830, 2013

23. Amy, Matthew and Maslov, Dmitri and Mosca, Michele: Polynomial-timeT-depth optimization of Clifford+T
circuits via matroid partitioning. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 33(10), 1476–1489, 2014

24. Scott, Leonard L: Representations in characteristic p.The Santa Cruz Conference on Finite Groups (Univ.
California, Santa Cruz, Calif., 1979, 37, 319–331, 1980

25. Liebeck, Martin W and Praeger, Cheryl E and Saxl, Jan: On the O’Nan-Scott theorem for finite primitive
permutation groups. Journal of the Australian Mathematical Society (Series A), 44(03), 389–396, 1988

Appendix A

9 Reversible gates generated by{S12,X,SUM}

Proposition A.1 {S12,X,SUM} generate a maximal subgroup, which is isomorphic to≃ GL(n, F3) ⋊
F

n
3, of the group of reversible gates(the permutation group) for any number n of qutrits.

http://arxiv.org/abs/quant-ph/0410184

22 Improved Quantum Ternary Arithmetics

Proof: Let Fn
3 be then-dimensional vector space over the finite fieldF3. Then there is a one-to-

one correspondence between the elements ofF
n
3 and the computational basis of then-qutrit space

(C3)⊗n. That is, any element (x1, · · · , xn) ∈ Fn
3 corresponds to the basis element|x1, · · · , xn〉. Thus any

automorphism onFn
3 induces a permutation on then-qutrit basis, which is a reversiblen-qutrit gate.

Let G = GL(n, F3) ⋊ Fn
3, the semidirect product of GL(n, F3) andFn

3, and letS3n be the symmetric
group on 3n elements, or equivalently the group of reversible gates onn qutrits. We first prove the
group generated by{S12,X,SUM} is isomorphic toG. As a corollary of applying the O’Nan-Scott
Theorem to the classification of maximal subgroups of the symmetric group [24] [25], it follows that
G is a maximal subgroup ofS3n.

The groupG is the affine linear group of degreen overF3, namely, it consists of all the pairs (A, v),
whereA is ann× n invertible group with entries inF3, andv is a vector inFn

3. The groupG acts onFn
3

as follows:
(A, v).x = A.x+ v, (A, v) ∈ G, x ∈ Fn

3

Therefore, we get a mapϕ : G −→ U(3n), such thatϕ(A, v)|x〉 = |Ax+ v〉, where|x〉 is any
computational basis vector. This mapϕ is apparently a group homomorphism and injective.

For 1≤ i , j ≤ n, defineAi j ,Mi ∈ GL(n, F3), vi ∈ Fn
3 as follows.

Ai j = In+E ji =















































































1
. . .

1
. . .

1 1
. . .

1















































































, Mi = In+Eii = diag(1, · · · , 1, 2, 1, · · · , 1), vi =

(0, · · · , 0, 1, 0, · · · , 0).
It is straightforward to check thatϕ(Ai j , 0) = SUMi j , ϕ(Mi , 0) = (S1,2)i , ϕ(0, vi) = Xi , where

the subscript of the gate on the right hand side of each expression denotes the qutrits it acts on. For
instance,Xi is theX gate acting on thei-th qutrit. Therefore, the group generated bySUM,X,S1,2 is
isomorphic to the group generated byAi j ,Mi , vi, for 1 ≤ i , j ≤ n.

Clearly all thevi
′s generateF3

n as an additive group. We next prove thatAi j ,Mi generate the group
GL(n, F3).

Let Bi j = MiAi j A−1
ji Ai j = In−Eii −E j j + Ei j +E ji , thusBi j swaps the two basis elementsei andej .

Now given any matrixA ∈ GL(n, F3), multiplyingA on the left byAi j , Bi j , andMi constitutes the three
types of row operations onA, and sinceA is invertible, it can always be reduced to the identity matrix
by row operations. This proves that any matrix in GL(n, F3) can be written as a product ofAi j , Bi j , and
Mi . Therefore, GL(n, F3) is generated byAi j ,Mi , and henceG is generated byAi j ,Mi , andvi .

Combining the above argument, we showed that the group generated bySUM,S12,X is isomorphic
to G = GL(n, F3) ⋊ Fn

3.

	1 Introduction
	2 Preliminaries and Notations
	3 Quantum Ternary Adders
	3.1 Modified Ripple-Carry Adder
	3.2 Carry Look-ahead Adder
	3.3 Complete Circuit for Carry Look-Ahead Adder
	3.3.1 Out-of-place Adder
	3.3.2 In-place Adder

	4 Extensions
	4.1 Addition Mod 3n
	4.2 Subtraction
	4.3 Comparison

	5 Techniques for Constructing Quantum Gate Decompositions
	5.1 Construction of Reversible Gates from Polynomial Expressions
	5.2 Supermetaplectic Basis
	5.3 Construction of Diagonal Gates from Polynomial Expressions

	6 Conclusion
	7 Acknowledgment
	8 References
	9 Reversible gates generated by {S12, X,SUM}

