
Sketch Recognition with Natural Correction and Editing

Jie Wu1,∗ , Changhu Wang2, Liqing Zhang1, Yong Rui2
1Brain-Like Computing Lab, Shanghai Jiao Tong University, P. R. China

2Microsoft Research, Beijing, P. R. China

Abstract

In this paper, we target at the problem of sketch recognition.
We systematically study how to incorporate users’ correction
and editing into isolated and full sketch recognition. This is a
natural and necessary interaction in real systems such as Vi-
sio where very similar shapes exist. First, a novel algorithm
is proposed to mine the prior shape knowledge for three edit-
ing modes. Second, to differentiate visually similar shapes, a
novel symbol recognition algorithm is introduced by leverag-
ing the learnt shape knowledge. Then, a novel editing detec-
tion algorithm is proposed to facilitate symbol recognition.
Furthermore, both of the symbol recognizer and the editing
detector are systematically incorporated into the full sketch
recognition. Finally, based on the proposed algorithms, a real-
time sketch recognition system is built to recognize hand-
drawn flowcharts and diagrams with flexible interactions. Ex-
tensive experiments show the effectiveness of the proposed
algorithms.

Introduction
Sketching is a natural way for human to create flowchart-
s and diagrams in the early design process. It provides
an informal environment, where we can use a pen to ex-
plore and refine our rough ideas through natural corrections
and editing from time to time. Nowadays, as the increas-
ing popularity of touch-screen devices, it is highly desired
if we have a practical system to recognize sketched sym-
bols and then convert to formal shapes, which will make
flowchart/diagram creation more natural and easier.

Sketch recognition has been studied for more than twen-
ty years. Researchers tried to recognize diverse hand-drawn
shapes, such as symbols, flowcharts, diagrams (Peterson et
al. 2010), or general objects (Sun et al. 2012b). From the
view of sketch complexity, it can be classified to two cat-
egories, i.e., isolated hand-drawn symbol recognition, and
full hand-drawn sketch recognition. The former one has the
assumption that there is only one shape in the sketch, while
the latter one is not based on this assumption and thus needs
to segment and recognize the strokes at the same time.

Typical methods to recognize isolated hand-drawn
symbols include gesture-based, appearance-based, and

∗This work was performed at Microsoft Research Asia.
Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Correction and Editing

Recognition

Figure 1: Example results of the SmartVisio system. User-
s can draw various shapes and connectors in this system,
which can be automatically segmented, recognized, and re-
placed by formal shapes. Users are also able to add strokes to
correct or edit any part of the diagram, which will be refined
in real time. (Best view in color for all figures.)

geometric-based methods. Gesture-based approaches (Ru-
bine 1991) consider the input as a time-evolving tra-
jectory and mainly focus on stroke gesture recognition.
Appearance-based approaches (Ouyang and Davis 2009b;
Kara and Stahovich 2004) rely on the visual appearance of a
sketched shape and are of high robustness to drawing varia-
tions. Geometric-based approaches (Paulson and Hammond
2008) attempt to describe objects as geometric primitives
and convert it to a constraint satisfaction problem.

Full sketch recognition (Ouyang and Davis 2009a;
Bresler, Prua, and Hlavác 2013; Shilman and Viola 2004;
Hammond and Davis 2005; Hammond and Paulson 2011;
Stevens, Blagojevic, and Plimmer 2013) is more challeng-
ing. It tries to segment a sketch into individual objects, and
then recognize each of them by leveraging isolated sym-
bol recognizers. A mainstream class of approaches is to first
generate candidate stroke groups, and then leverage certain
learning framework to find optimal groups.

In spite of continuous research efforts, we still cannot see
much technology transfer of sketch recognition in real prod-
ucts, even in the current era of touch screens. For example,



Figure 2: Visually similar shapes in Visio. Top row: similar
shapes with local difference. Middle row: globally similar
shapes. Bottom row: shapes with inclusion relation.

the leading software for flowchart/diagram creation, Visio,
still relies on the traditional point-click-drag style of interac-
tion. This gap mainly comes from the following two aspects,
i.e., the challenges from shape data in real systems, and the
interaction needs from common users.

• The challenges from shape data. In most public data set-
s for flowchart/diagram recognition, the number of shapes
are relatively small and shapes usually have obvious ap-
pearance difference, e.g., about 10-25 shapes that differ in
a global way in data sets in (Delaye and Anquetil 2012).
However, in Visio, there are about 70 shapes only in s-
tencil ‘basic shapes’ and ‘arrow shapes’, and thousands
of shapes in total, in which some shapes are quite similar,
such as the rectangles with different corner types in stencil
‘basic shapes’, as shown in Fig. 2. It is difficult to distin-
guish these sketched shapes using existing symbol recog-
nizers, considering the drawing variability of sketches.

• The interaction needs from common users. It is ob-
served that users often make corrections or editing by sim-
ply adding strokes to an existing symbol (or a full dia-
gram) without erasing the original shapes (Hammond and
Paulson 2011; Ouyang 2012), as shown in Fig. 3. In a
real system such as Visio where very similar shapes ex-
ists, it will be more natural for a user to change a shape
(e.g. rectangle) to a related shape (e.g. ‘single snip cor-
ner rectangle’), because of a correction or mind changing.
However, most existing approaches do not explicitly han-
dle this kind of interaction in the recognition process.

In this paper, we systematically study how to handle very
similar shapes, and how to incorporate users’ natural cor-
rection and editing on existing sketches/shapes in isolated
and full sketch recognition. First, to discover and leverage
the shape relationship in a data set, three editing modes
are defined according to visual similarity between shapes,
i.e., local correction for similar shapes with local differ-
ence, replacement for globally similar shapes, and enhance-
ment for shapes with inclusion relation, as shown in Fig. 2.
Then, an algorithm is proposed to discover the prior shape
knowledge for these modes. Second, by leveraging the learn-
t shape knowledge, a novel symbol recognition algorith-
m is proposed, which has potential to differentiate shapes
with abovementioned shape relationships. Besides the sym-
bol recognizer, we also propose an algorithm to detect a us-

Figure 3: Examples of online correction and editing. Top:
correction and editing on sketched symbols in real-world
hand-drawn diagrams. Bottom: correction and editing on
formal shapes.

er’s correction and editing during drawing, and then recog-
nize the symbol in real time. This will speed up the recogni-
tion process, and thus make the full sketch recognition more
efficient. Third, both of the symbol recognizer and the edit-
ing detection algorithm are systematically incorporated into
a general framework for full diagram recognition. Finally,
based on the proposed algorithms and framework, we build a
real-time sketch recognition system based on Visio, called S-
martVisio, to recognize hand-drawn flowchart/diagram with
flexible interactions, as shown in Fig. 1. To the best of our
knowledge, this is the first work to systematically model,
detect, and recognize users’ correction and editing in sketch
recognition. Extensive experiments show the effectiveness
of the proposed algorithms on sketch recognition.

Editing Modes and Shape Knowledge Graph
In this section, we first introduce three editing modes in
sketch recognition, and corresponding shape relationships.
Then, a method is presented to discover these relationships.

Editing Modes and Shape Relationships
It is natural and necessary for users to add additional strokes
on existing sketches/shapes to modify them when drawing
a flowchart or a diagram (Hammond and Paulson 2011;
Ouyang 2012), especially when basic shapes are visually re-
lated. For example, as shown in Fig. 4, it is quite convenient
for users to directly add a short stroke at the right corner of
a ‘rectangle’ to convert it to ‘single snip corner rectangle’,
or draw a ‘circle’ to overwrite an ‘octagon’, or add some
strokes to change a ‘rectangle’ to a ‘cube’.

Thus, in this work, we take into account three editing
modes users probably adopt during their drawing, i.e., local
correction, replacement, and enhancement, each of which
represents a type of shape relationship1.

1In this work, we only consider these three editing modes which
correspond to different shape relationships, and leave other poten-
tial interactions such as deleting to future work.



Shape Knowledge Graph:

shapes with inclusion relation

globally similar shapes

similar shapes with local difference

…

…

Enhancement:

Replacement:

Local Correction:

…

Figure 4: Three editing modes and corresponding shape
knowledge graph segments.

• Local Correction: adding strokes to correct some local
parts of an existing sketch/shape (top row in Fig. 4). This
mode corresponds to similar shapes with local difference.

• Replacement: overlapping an entire sketched shape on an
existing similar sketch/shape (middle row in Fig. 4). This
mode corresponds to two globally similar shapes.

• Enhancement: adding strokes to an existing sketch/shape
to get a new shape (bottom row in Fig. 4). This mode cor-
responds to two shapes with inclusion relation.
Since these three editing modes correspond to differen-

t shape relationships with unique characteristics, we need
to design an algorithm to discover these relationships in a
shape set and build a shape knowledge graph, which will be
introduced next.

The discovered shape knowledge graph plays an impor-
tant role in the proposed sketch recognition and editing de-
tection algorithms. By leveraging the shape knowledge, on
the one hand, we can focus on the locally different parts to d-
ifferentiate very similar shapes during sketch recognition; on
the other hand, we can reduce the search space to the shapes
that have relations with the original shape if a correction or
editing is detected.

Shape Knowledge Graph Construction
Here we present a method to mine the shape relationships for
the following editing modes: local correction, replacement,
and enhancement.

First, for each shape pair S1 and S2 in the formal shape
collection, we find the correspondences between densely
sampled points on the two shapes by context shape match-
ing (Belongie, Malik, and Puzicha 2002), a widely used
point set matching algorithm. It can handle partial match,
robust to noisy or missing points in shape matching. We skip
the details of this algorithm due to space limitation.

The outputs of shape matching for S1 and S2 include: 1)
average shape matching distance D(S1, S2), 2) the missing

Classifier

(IDM Visual Features)

Classifier

Stage 1 Stage 2

Shape Knowledge

(Visual + Geometric 
Features)

Input

Figure 5: Illustration of the proposed symbol recognition al-
gorithm. In Stage 1, we use IDM recognizer to get the initial
results for the input sketch. In Stage 2, first, based on the re-
sults of Stage 1, shape knowledge is utilized to detect locally
different areas (labeled by red rectangles of dashes). Second,
we use a fine-grained recognizer to get the final results, by
extracting features only on locally different areas.

point number between S1 and S2, i.e., Dm(S1 → S2) and
Dm(S2 → S1), and 3) the point correspondences and dis-
tances between S1 and S2.

Based on the shape matching results, we construct the
shape knowledge graph with each shape as a node and each
relationship as a directed edge. Each edge represents one
of three modes, i.e., local correction, replacement, and en-
hancement. We judge whether there is a directed edge from
one node S1 to another node S2 with certain mode by the
following algorithm:

• Local Correction. An edge with mode local correction
is added if 1) average distance D(S1, S2) < Td1, and 2)
the missing point numbers Dm(S1 → S2) < Tm1 and
Dm(S2 → S1) < Tm1.

• Replacement. An edge with mode replacement is added
if D(S1, S2) < Td2.

• Enhancement. An edge with mode enhancement is added
if D(S1, S2) < Td3 and Dm(S1 → S2) > Tm3.

The parameters {Tdi} and {Tmi} are set empirically. If
an edge has multiple modes, only the mode with smallest
threshold Td∗ is reserved. Note that although this algorith-
m can automatically construct the shape knowledge graph,
in real systems, it also supports manually adding edges or
removing edges in the graph.

Isolated Sketch Recognition
In this section, we introduce how to leverage the shape
knowledge graph in isolated sketch recognition. First, a nov-
el symbol recognizer is proposed, followed by an editing de-
tection algorithm to handle online correction and editing.

Hierarchical Symbol Recognition Algorithm
To differentiate visually similar shapes, we introduce a two-
stage algorithm for symbol recognition by leveraging the
shape knowledge graph. As shown in Fig. 5, in the first stage,



we use an isolated symbol recognizer to get the initial shape
label. As mentioned, in a real system where different shape
relationships exist, it is not easy to differentiate visually sim-
ilar shapes, especially for imprecise hand-drawn strokes. To
alleviate this problem, in the second stage, we perform a
fine-grained comparison on the locally different parts (areas)
of visually similar shapes in the knowledge graph.

Any well-performed symbol recognizer can be used as the
initial recognizer in the first stage. In this work, we adopt-
ed the Image Deformable Model (IDM) recognizer (Ouyang
and Davis 2009b), which used 720-dimension visual fea-
tures, and achieved state-of-the-art performance in bench-
mark data sets. Using this recognizer, we can get the initial
shape label C for the hand-drawn sketch S. In the second
stage, we first get all the shape nodes {Ck} if there is an
edge from C to Ck. We discard the nodes whose labels do
not exist in top (e.g. 10) results of the initial recognizer. Then
for each Ck, we use a fine-grained recognizer to get a refined
label C∗

k = C or Ck with a score Score(C∗
k).

In this work, we performed two-class 1NN on locally d-
ifferent areas between C and Ck as the fine-grained rec-
ognizer to get C∗

k and Score(C∗
k) for sketch S. The dis-

tance between C and Ck is defined as the average L2
distance between the features (at each locally differen-
t area) of the query sketch and its nearest neighbor, de-
noted by avgDist(C,Ck). Then the score is given by
Score(C,Ck) = exp−avgDist(C,Ck).

Different shape relationships (editing modes) will result
in different feature extraction areas (locally different areas)
and features for C and Ck:

• Local Correction. An algorithm is conducted to discover
locally different regions for two similar shapes with lo-
cal correction mode. The basic idea is to cluster near-
by points with large matching differences obtained dur-
ing shape knowledge graph construction. The features for
classification are the IDM visual features. The details will
be omitted due to space limitation.

• Replacement. Different from local correction mode, we
extract features on the whole symbol instead of different
areas. In this mode, we use only one geometric feature for
classification: the number of segments after segmenting
the symbol into lines and arcs, in order to focus more on
the geometric property to differentiate similar symbols.

• Enhancement. In this mode, we focus on the parts
with missing point correspondences. A simple clustering
method is used to get significant parts with trivial parts
removed. The features for classification are IDM visual
features.

After fine-grained recognition for each shape pair C
and Ck, we can obtain the final shape label by C∗ =
argmaxC∗

k
Score(C∗

k).

Correction/Editing Detection and Recognition
The shape knowledge graph is not only useful for differen-
tiating similar shapes in symbol recognition, but also very
natural to help handle users’ online correction and editing
on existing sketches or formal shapes.

As shown in Fig. 3, a user can draw additional strokes
on an existing sketched symbol or formal shape, meaning to
correct or update the original shape to a new shape. Let us
denote the existing sketch or shape as Sold, its label Cold,
and the newly drawn strokes Snew. We present an algorithm
to automatically classify it to one of the four labels: three
editing modes and “none”, and predict a new label C.

The basic idea is to calculate a matching score f(mode)
for every editing mode. If the highest score is lower than a
threshold, we classify it to “none”, otherwise we select the
mode with the highest score.

First, based on the isolated sketch recognizer introduced
in the last subsection, we can obtain both the predicted shape
label and corresponding score for Sold, denoted by Cold and
Pold respectively. Similarly, we can also get {Cnew, Pnew}
and {Cboth, Pboth}.

For each editing mode, the matching score f(mode) and
corresponding shape label C(mode) are determined in a d-
ifferent way:

• Local Correction. In this mode, users want to use newly
drawn stokes Snew to replace the old sketch/shape Sold at
the same region, with other parts unchanged, resulting in
a new shape denoted by Scorrect. Then, we use the isolat-
ed sketch recognizer to get Pcorrect and Ccorrect. Thus,
C(correct) = Ccorrect, and the final score is defined as

f(correct) = PcorrectPoldEdgelocal(Cold → Ccorrect),
(1)

where Edgelocal(Cx → Cy) is set to 1 if there is an edge
from Cx to Cy with editing mode local correction on the
shape knowledge graph, and 0 otherwise.

• Replacement. In this mode, only the newly drawn strokes
are useful to users. Thus, we have C(replace) = Cnew,
and f(replace) is defined as

f(replace) =PnewPoldEdgereplace(Cold → Cnew)

(1− CM(Snew, Sold)/TCM ),
(2)

where CM(∗, ∗) is the two-way chamfer distance(Borge-
fors 1988) between two shapes, to punish the score if new
strokes and old strokes are not similar enough. TCM is a
constant.

• Enhancement. In this mode, users care about both the old
and new strokes. Thus, we have C(enhance) = Cboth,
and f(enhance) is given by

f(enhance) = PbothPoldEdgeenhance(Cold → Cboth).
(3)

• None. This mode means there is no correction or editing,
and thus the old and new strokes will be used together
for recognition. Thus, we have C(none) = Cboth, and
f(none) is a constant value learnt from the training data.

Finally, the editing detection and recognition algorithm
will output the predicted editing mode and shape label by

{mode,Cmode} = EditDetector(Snew, Sold)

= argmax
mode

f(mode). (4)



Full Sketch Recognition
In this section, we incorporate the proposed isolated sketch
recognition and editing mode detection algorithms into the
full sketch recognition framework. As shown in Fig. 1, in our
SmartVisio system, a user can flexibly add strokes to change
existing (sketched or formal) diagrams and flowcharts.

We will first introduce a general framework for full sketch
recognition, followed by the brief algorithm to deal with on-
line correction and editing.

Full Sketch Recognition Framework
Full sketch recognition needs to simultaneously segmen-
t and recognize shapes, and thus is more challenging. A
mainstream framework is to first generate a large number
of candidate groups of temporally and/or spatially neighbor-
ing strokes, and then select and recognize meaningful ones
by learning and optimization technologies.

In the second step, different formulations and optimiza-
tion methods were proposed, e.g., formulating the problem
to segment-labeling problem and solving it by belief propa-
gation inference (Ouyang and Davis 2009a), formulating it
to max-sum problem and solving it by ILP, a powerful opti-
mization algorithm (Bresler, Prua, and Hlavác 2013), or con-
verting the group selecting problem to an optimization prob-
lem solved by an A-star search (Shilman and Viola 2004).

Thus, we study how to incorporate users’ correc-
tion/editing to this framework. In the implementation, we
conduct candidate group selection and optimization us-
ing (Ouyang and Davis 2009a). The unit is ‘stroke’ instead
of ‘segment’, because the data set we evaluate is labeled in
stroke level. For simplicity, we also ignore the Joint Context
Potential in (Ouyang and Davis 2009a). The proposed iso-
lated symbol recognizer can be used to label each candidate
group for better distinctiveness. For more details, please re-
fer to (Ouyang and Davis 2009a).

Handling Correction and Editing
As mentioned before, the users can add strokes to edit the
hand-drawn sketch before conducting recognition, or inter-
actively edit the formal diagram/flowchart after recognition
when strokes have been replaced by formal shapes. Thus, we
briefly introduce the ideas for both scenarios.

Editing on Hand-Drawn Sketch The basic idea is to
compare nearby candidate stroke groups, and then merge
and recognize them using the proposed editing detection and
recognition algorithm. Specifically, we conduct editing de-
tection in Eqn. 4 for every pair of candidate groups, if their
distance is less than a threshold, e.g., half of the maximum
diagonal of the bounding box of them. Then, a new group is
obtained if an editing is detected, and all other groups over-
lapping with the new group will be removed.

There are two advantages to use this algorithm. First, it
enables users to flexibly make corrections or editing, and
can detect and recognize it, avoiding the recognition error
brought by additional editing strokes. Second, the number
of invalid candidate groups can be reduced a lot, which not
only can speed up the optimization step, but also make the
recognition more robust.

Editing on Formal Diagram/Flowchart In this case, al-
l the symbols on the full sketch have been recognized and
replaced by formal shapes. Denote the newly added strokes
as Stnew. We only need to update the formal shapes near
Stnew, denoted as Stold. Then, two candidate stroke group
collection can be generated for these two types of data, de-
noted as Gnew and Gold. Note that in Gold, the number of
candidate groups is larger than that of formal shapes and
thus more possibilities are provided, since we enable users
to correct, merge, or split existing formal shapes. Then, we
conduct editing detection and recognition in Eqn. 4 for each
pair of (gold ∈ Gold, gnew ∈ Gnew), followed by the group
selection (Ouyang and Davis 2009a) on the small candidate
group set.

Experiments
We evaluated the proposed algorithms on three tasks: 1)
isolated symbol recognition, 2) editing detection on formal
shapes, and 3) recognizing full diagrams with correction and
editing.

Isolated Symbol Recognition. To evaluate the algorithms
on differentiating visually similar shapes in real systems, we
collected a new dataset of 68 commonly used shapes in Vi-
sio, i.e., all shapes in the ‘arrow’ and ‘basic’ stencils, which
are two most widely used stencils in Visio. The dataset con-
tains 1520 samples with 25 examples for each shape. It con-
sists of very similar shapes. As shown in Fig. 2, the shapes
in the star point family, rectangle family, arrow family, or
polygon family are quite similar.

Since the proposed hierarchical symbol recognizer was
built based on IDM (Ouyang and Davis 2009b), the state-
of-the-art symbol recognizer, we compared it with ID-
M (Ouyang and Davis 2009b) and another variant IDM(no
rotation) which removes the rotation normalization in pre-
processing from IDM. The leave-one-out cross validation
was performed. As shown in Table 1, after adding the step
of fine-grained recognition, our method correctly recognized
95.92%, outperforming the other methods. It is mainly be-
cause that our method can better differentiate the similar
shape families, such as the Point Star Family and the Rect-
angle Family, as shown in Table 2.

We also tested the proposed method in a public bench-
mark dataset HHReco (Hse and Newton 2004). User inde-
pendent cross validation is performed. As shown in Table 1,
our method performed slightly better than IDM, the best ex-
ternal benchmark, but only with small improvement2. This
is because HHReco dataset only contains 13 shape classes,
which are not very similar. However, if we only look at ‘Pen-
tagon’ and ‘Hexagon’ classes, two classes with visually very
similar shapes, the accuracies of our method and IDM are
95.97% and 92.19%. The improvement is more significant.

2Although it was reported 98.20% using IDM, in our imple-
mentation, we only achieved 97.67%. That might result from im-
plementation difference. Since it is the first stage of our algorithm,
we think the performance of our algorithm will be improved if we
have a better implementation for IDM.



Method Visio HHReco
IDM 94.67% 98.20% (97.67%)
IDM(no rotation) 94.00% 95.20%
Ours 95.92% 98.43%

Table 1: Results of isolated symbol recognition.

Method Star Point Family Rectangle Family All
IDM 86.50% 76.47% 94.67%
Ours 98.78% 80.88% 95.92%

Table 2: Comparison of star point and rectangle families.

Editing Detection on Formal Shapes. In this task, we
test the performance of editing detection on formal shapes.
We performed this task using the interface of our SmartVi-
sio system, where users can conveniently get various formal
shapes. The formal shapes in this test are restricted to the
68 shapes in ‘arrow’ and ‘basic’ stencils. Each subject was
asked to add additional strokes to make correction or edit-
ing on one formal shape in the interface. Each formal shape
can be obtained either by dragging the shape from the sten-
cils, or by drawing the symbol in the interface (our system
can return the formal shape using our symbol recognition al-
gorithm). Then, the subjects were asked to label the editing
mode and shape label {mode,Cmode}, where editing mode
is from: Local Correction, Enhancement, Replacement, and
None. Our algorithm predicts {mode,Cmode}, and the ac-
curacy of Cmode is evaluated. Finally, we collected 140 cor-
rection/editing events with labeled editing modes and shape
labels from three subjects.

Besides the final editing detection algorithm (‘Complete’
in Table 3), a baseline algorithm was also evaluated. The
baseline algorithm (‘Baseline’) simply combines the old and
new strokes and gets the shape label from the proposed iso-
lated symbol recognition algorithm. Table 3 summarizes the
accuracies of the detection results of the two algorithms,
from which we can see the effectiveness of shape knowledge
and the proposed editing detection algorithm.

Recognizing Full Diagrams with Editing and Correction.
In this task, we added correction/editing into hand-drawn
full diagrams in the public benchmark dataset (Lemaitre
et al. 2013), and generated more challenging synthetic di-
agrams with natural correction and editing. We used the
same setting in (Lemaitre et al. 2013), i.e., 248 flowchart-
s for training and 171 for testing. We excluded text in the
flowchart, since it is out of the scope of this work. We ran-
domly chose some symbols in the flowchart and added cor-
rections on them. Because there are only six shape classes in
the flowcharts, we restricted our correction/editing to switch
inside the 6 classes. The following editing types were adopt-
ed: 1) replace ‘Rectangle’/‘Parallelogram’/‘Diamond’ with
‘Circle’, 2) change ‘Rectangle’ to ‘Parallelogram’ (or ‘Par-
allelogram’ to ‘Rectangle’) by adding strokes.

We compared our method (‘EnableEditing’) with two
baseline methods. The first one (‘FullFramework’) is the full
sketch recognition framework without ‘handling correction

Method Correctly detected types
SymbolRecognizer 60.71%
Complete 80.71%

Table 3: Results of editing detection on formal shapes.

Method Correctly labeled stroke
GreedyBackward 58.91%
FullFramework 65.62%
EnableEditing 74.12%

Table 4: Results of full diagram recognition with editing.

and editing’. The second one (‘GreedyBackward’) is the s-
ketch segmentation framework for general objects (Sun et
al. 2012a), in which the sketch entropy is replaced with our
isolated symbol recognizer to adapt it to this domain.

Table 4 shows the comparison results. The performances
of two baseline methods are not that good, because this kind
of correction is very hard to detect, resulting in the perfor-
mance drop. The proposed approach achieved the best per-
formance, showing the effectiveness of our framework to
handle users’ correction or editing.

Time Cost. In the SmartVisio system, the isolated symbol
recognizer cost 15 milliseconds on average to recognize a
sketch or an editing within 68 shape classes, on a PC with
an Intel Core i7-2600 CPU. For the full sketch recognizer,
we used the efficient belief propagation inference described
in (Ouyang and Davis 2009a). It cost about 0.5 second for a
flowchart with 20 symbols.

Conclusions
In this paper, we systematically studied how to model, de-
tect, and recognize users’ natural correction and editing in
sketch recognition, which is the first work to the best of
our knowledge. An algorithm was presented to construct the
shape knowledge graph that encodes three typical editing
modes, based on which, a novel isolated sketch recogniz-
er was proposed for similar symbol differentiation. We al-
so proposed an editing detection and recognition algorith-
m, and then incorporated it into the full sketch recognition
framework, enabling users to flexibly correct or edit existing
sketch or recognized formal shapes. Based on the presented
technology, we built a real-time sketch recognition system
based on Visio, i.e., SmartVisio, to enable users to create
diagrams/flowcharts by flexibly drawing. Extensive experi-
ments have shown the effectiveness of the proposed algo-
rithms.

Acknowledgements
The work of Jie Wu and Liqing Zhang was partially sup-
ported by the national natural science foundation of China
(Grant Nos 61272251,91120305).



References
Belongie, S.; Malik, J.; and Puzicha, J. 2002. Shape match-
ing and object recognition using shape contexts. Pattern
Analysis and Machine Intelligence, IEEE Transactions on
24(4):509–522.
Borgefors, G. 1988. Hierarchical chamfer matching: A para-
metric edge matching algorithm. Pattern Analysis and Ma-
chine Intelligence, IEEE Transactions on 10(6):849–865.
Bresler, M.; Prua, D.; and Hlavác, V. 2013. Modeling
flowchart structure recognition as a max-sum problem. In
Document Analysis and Recognition (ICDAR), 2013 12th In-
ternational Conference on, 1215–1219. IEEE.
Delaye, A., and Anquetil, E. 2012. Hbf49 feature set: A
first unified baseline for online symbol recognition. Pattern
Recognition.
Hammond, T., and Davis, R. 2005. Ladder, a sketching lan-
guage for user interface developers. Computers & Graphics
29(4):518–532.
Hammond, T., and Paulson, B. 2011. Recognizing sketched
multistroke primitives. ACM Transactions on Interactive In-
telligent Systems (TiiS) 1(1):4.
Hse, H., and Newton, A. R. 2004. Sketched symbol recogni-
tion using zernike moments. In Pattern Recognition, 2004.
ICPR 2004. Proceedings of the 17th International Confer-
ence on, volume 1, 367–370. IEEE.
Kara, L. B., and Stahovich, T. F. 2004. An image-based
trainable symbol recognizer for sketch-based interfaces. In
AAAI Fall Symposium, 99–105.
Lemaitre, A.; Mouchère, H.; Camillerapp, J.; and Coüasnon,
B. 2013. Interest of syntactic knowledge for on-line
flowchart recognition. In Graphics Recognition. New Trends
and Challenges. Springer. 89–98.
Ouyang, T., and Davis, R. 2009a. Learning from neigh-
boring strokes: combining appearance and context for multi-
domain sketch recognition. In Advances in Neural Informa-
tion Processing Systems, 1401–1409.
Ouyang, T. Y., and Davis, R. 2009b. A visual approach to
sketched symbol recognition. In Proceedings of the 2009
International Joint Conference on Artificial Intelligence (IJ-
CAI), 1463–1468.
Ouyang, T. Y. 2012. Understanding freehand diagrams:
combining appearance and context for multi-domain sketch
recognition. Ph.D. Dissertation, Massachusetts Institute of
Technology.
Paulson, B., and Hammond, T. 2008. Paleosketch: accurate
primitive sketch recognition and beautification. In Proceed-
ings of the 13th international conference on Intelligent user
interfaces, 1–10. ACM.
Peterson, E. J.; Stahovich, T. F.; Doi, E.; and Alvarado, C.
2010. Grouping strokes into shapes in hand-drawn diagram-
s. In Proceedings of the 24th AAAI Conference on Artificial
Intelligence (AAAI- 10), 974–979.
Rubine, D. 1991. Specifying gestures by example. In
Proceedings of the 18th Annual Conference on Comput-
er Graphics and Interactive Techniques, SIGGRAPH ’91,
329–337. New York, NY, USA: ACM.

Shilman, M., and Viola, P. 2004. Spatial recognition and
grouping of text and graphics. In Proceedings of the First
Eurographics conference on Sketch-Based Interfaces and
Modeling, 91–95. Eurographics Association.
Stevens, P. C.; Blagojevic, R.; and Plimmer, B. 2013. Super-
vised machine learning for grouping sketch diagram strokes.
In Proceedings of the International Symposium on Sketch-
Based Interfaces and Modeling, 43–50. ACM.
Sun, Z.; Wang, C.; Zhang, L.; and Zhang, L. 2012a. Free
hand-drawn sketch segmentation. In Computer Vision–
ECCV 2012. Springer. 626–639.
Sun, Z.; Wang, C.; Zhang, L.; and Zhang, L. 2012b. Query-
adaptive shape topic mining for hand-drawn sketch recogni-
tion. In Proceedings of the 20th ACM international confer-
ence on Multimedia, 519–528. ACM.


