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Abstract

As the popularity of touch-screen devices, understand-
ing a user’s hand-drawn sketch has become an increas-
ingly important research topic in artificial intelligence
and computer vision. However, different from natural
images, the hand-drawn sketches are often highly ab-
stract, with sparse visual information and large intra-
class variance, making the problem more challenging.
In this work, we study how to build effective rep-
resentations for sketch recognition. First, to capture
saliency patterns of different scales and spatial arrange-
ments, a Gabor-based low-level representation is pro-
posed. Then, based on this representation, to discovery
more complex patterns in a sketch, a Hybrid Multilayer
Sparse Coding (HMSC) model is proposed to learn mid-
level representations. An improved dictionary learning
algorithm is also leveraged in HMSC to reduce over-
fitting to common but trivial patterns. Extensive experi-
ments show that the proposed representations are highly
discriminative and lead to large improvements over the
state of the arts.

Introduction

Sketching is a natural way for users to record, express, and
communicate. Compared with texts, it provides a more ex-
pressive way to render users’ rough ideas via natural draw-
ing. Thus, in the era of touch screens, how a computer can
recognize a user’s hand-drawn sketch, as a basic problem
in artificial intelligence, has attracted more and more atten-
tions.

Although sketch recognition has been studied for more
than twenty years, most of existing work was limited to
some narrow domains, such as chemical drawings (Ouyang
and Davis 2011), diagrams (Peterson et al. 2010), or sim-
ple hand-drawn shapes such as circles and rectangles (Paul-
son and Hammond 2008; Jie et al. 2014). In recent years,
some algorithms (Eitz, Hays, and Alexa 2012; Sun et al.
2012) were developed to recognize sketches of general ob-
jects without any domain knowledge, as shown in Fig. 1. We
will also focus on recognizing general sketches in this work.

Different from natural images, the hand-drawn sketches
are often highly abstract and lack of color and textures. Thus,
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Figure 1: Examples of hand-drawn sketches.

existing algorithms for natural images cannot be directly ap-
plied to this problem. The sparsity of visual information and
complexity of internal structures make the problem more
challenging. In fact, even humans can only achieve a recog-
nition accuracy of 73.1% (Eitz, Hays, and Alexa 2012).
Some prior research on sketch-based retrieval favors non-
vector-based representations. (Cao et al. 2011) and (Sun
et al. 2012) employed a global sketch matching approach
to measure similarity between two sketches via the im-
proved Chamfer distance, and proved to work well in web-
scale databases. However, such methods are more appro-
priate for retrieval rather than recognition, since lots of
widely-used classifiers require vector-based input. On the
other hand, existing vector-based representations on sketch
recognition usually rely on dense sampling and large lo-
cal patches to deal with the sparsity problem in sketches.
(Eitz et al. 2011) provided a detailed comparison of these
representations including Shape Context (Belongie, Malik,
and Puzicha 2002), Histogram of Oriented Gradients (Dalal
and Triggs 2005) and their variants. The comparison result
showed that HOG-like representations by summing up gra-
dients of strokes in a grid generally outperform others in
sketch-related tasks. (Hu and Collomosse 2013) also con-
ducted experiments on SIFT (Lowe 2004) and Self Simi-
larities (Shechtman and Irani 2007), and obtained consis-
tent results. Based on these conclusions, (Eitz, Hays, and
Alexa 2012) designed robust gradient-based visual descrip-
tors to form a low-level representation, and fed them into
the Bag-of-Words (BoW) framework with soft assignment
(van Gemert et al. 2008) to build a mid-level representa-
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Figure 2: Processing stages for building our local descriptors. For a clearer view, we don’t show the min-pooling step of the
pre-processing stage. That is, the initial input of the shown pipeline is a min-pooled sketch image.

tion, which achieved the state-of-the-art performance. Jaya-
sumana (Jayasumana et al. 2014) got slightly better results
by using an improved Kernel SVM classifier, keeping the
representations unchanged.

In spite of the success of Eitz’s representation (Eitz, Hays,
and Alexa 2012), there are still two main problems to restrict
its performance. First, its visual descriptors are built upon
fixed-size patches, with each patch uniformly divided into
square cells. Such neglect in scales and spatial arrangements
of local patterns cannot be compensated in higher-level rep-
resentations, and thus limit the discriminability of the whole
model. The other disadvantage is from the over-simplified
mid-level representation. The BoW framework employed by
Eitz et al. used simple k-means algorithm to learn the mid-
level representation, which is far from enough to further dis-
cover abstract and discriminative patterns.

To overcome these two problems, in this paper, we pro-
pose a novel model to represent hand-drawn sketches, in-
cluding a Gabor-based low-level representation followed by
a sophisticated mid-level representation named Hybrid Mul-
tilayer Sparse Coding (HMSC). To solve the first problem,
in the low-level representation we first pre-processes the in-
put sketch to reduce scale and translation variances. Then
patches of multiple sizes are extracted and Gabor transforms
are applied to decouple stroke orientations. Furthermore,
multiple pooling strategies are exploited to produce descrip-
tors varying in scales and spatial arrangements, which are
further normalized and fed into HMSC. In order to fully
take use of these descriptors and discover more abstract
and discriminative sketch patterns, so as to solve the sec-
ond problem, the HMSC representation is constructed with
sparse coding as the basic building block. First, in each Mul-
tilayer Sparse Coding (MSC) model, input features are pro-
cessed through multiple layers of convolutional sparse cod-
ing, pooling and normalization sequentially. Then, multi-
ple MSC models with different input descriptor types are
merged to result in the HMSC model, which encodes de-
scriptors of various scales and spatial arrangements sepa-
rately, and combines outputs from various layers. Moreover,
a mutual incoherence constraint is introduced to HMSC to

avoid overfitting to trivial patterns with little discriminabil-
ity. Based on the proposed representations, the recognition
accuracy on the benchmark dataset is improved to 68.5%
from the state-of-the-art 57.9%.

Building Local Descriptors

The proposed low-level representation represents a sketch
by local descriptors. There are three processing stages to
build such a descriptor. The initial input is a local patch of
the sketch and the final output is a vector of N dimensions.
Before these three stages, a pre-processing stage for gener-
ating local patches is also involved. The whole pipeline is
shown in Fig. 2. We now describe each stage sequentially.

Pre-processing Stage

Each sketch image (zero pixel value for strokes and ones for
background) is rescaled via min pooling to guarantee that
the longer side is 224 pixels. Then, it is put in the center of
a blank image with an area of 256 x 256 to produce a blank
border with at least 16-pixel width. Such borders can reduce
the boundary effect that may occur during the execution of
some operations like filtering.

After that, sketch patches are extracted at points generated
by uniformly dense sampling on sketch images. To discover
patterns of different scales, multiple types of patches are ex-
tracted. In this work, we sample 32 x 32 points and utilize
square patches with sizes of 64 and 92 plus circular patches
with radii of 32 and 46.

Stage 1: Transformation

The transformation stage maps a local patch to multiple
channels, each of which has the same resolution as the input
patch. More precisely, we apply real Gabor filters at each
patch pixels using R orientations and compute the magni-
tude response to generate R response channels. Note that
the wavelength of a real Gabor filter should not be too large
compared with its scale, so that the filter can provide narrow
orientation tuning. We have tried filters which give broader
orientation tuning, e.g., Eitz’s Gaussian’s first order deriva-
tive (Eitz, Hays, and Alexa 2012), but observed worse per-
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Figure 3: Two different pooling strategies used in our work.
Black spots in the image represent pooling centers.

formance. This might because that sketch patches are com-
posed of thin strokes, so that filters with narrow orienta-
tion tuning can better decouple multiple orientations at each
pixel, especially near the junctions of strokes.

In this work R is set to 9. The other parameters of Gabor
filters, i.e., the scale, the wavelength of the sinusoidal factor,
and the spatial aspect ratio are set to 5, 9, 1 respectively.

Stage 2: Pooling

Given R channels, the pooling stage spatially accumulates
pixel values in each channel, so that each channel is trans-
formed into a vector of length C'. All R resulting vectors are
concatenated to form a unnormalized descriptor of R x C'
dimensions. Two pooling strategies are applied, hoping to
capture patterns of different spatial arrangements.

[Square Grid] We use a 4 x 4 square grid of pooling cen-
ters (Fig. 3(a)). Pixel values within a square channel are
summed spatially by bilinearly weighting them according to
their distances from the pooling centers. That is, the output
for each channel is a (C' = 16)-dimension histogram con-
sisting of 4 x 4 spatial bins.

[Polar Grid] A polar arrangement is adopted (Fig. 3(b)).
A circular channel is first divided into 2 distance intervals
and further uniformly split into 8 polar sectors. Then a his-
togram of (C'= 8 x 2) dimensions is generated by sum-
ming up pixel values bilinearly weighted in polar coordi-
nates. Besides, inspired by (Roman-Rangel et al. 2011), dis-
tance intervals are L2-normalized independently to balance
their contributions when building histograms.

Stage 3: Normalization

The unnormalized descriptors from the previous stage are
combinations of histograms generated by summing up pixel
values, whose magnitudes vary over a wide range due to
the variations in stroke length. Thus, an effective normaliza-
tion is needed to improve the performance. We experimented
with L1-norm and L2-norm normalizations, and found that
the latter was consistently better. Therefor, a descriptor X
from the previous stage is normalized by:

X= )
VIX[Z +€

where € is a small positive number.

Hybrid Multilayer Sparse Coding (HMSC)

In this section we introduce the proposed mid-level rep-
resentation, i.e., the Hybrid Multilayer Sparse Coding
(HMSC) model. First, the standard sparse coding algorithm
is briefly introduced, which is the building block of the
HMSC model. Then, an improved dictionary learning algo-
rithm is presented to avoid overfitting to trivial sketch pat-
terns. Finally, we discuss how to build the mid-level rep-
resentation via the improved sparse coding algorithm in a
hybrid and multilayer manner.

Standard Sparse Coding

We need a more powerful model to encode the proposed lo-
cal descriptors to a mid-level representation. Sparse coding
is adopted here as a building block of HMSC, since exist-
ing research has shown its encouraging performance com-
pared with other encoding schemes like BoW (Boureau et
al. 2010). It tries to reconstruct all inputs using parsimonious
representations, the sparsity constraint of which makes it
possible to discover salient patterns that are hard to be manu-
ally explored and thus improve the discriminability. We first
briefly introduce the standard sparse coding in this section.

Let X be M local descriptors in an N-dimension vec-
tor space, i.e. X = [x1,...,Xym] € RNXM  The key
idea of sparse coding is to represent vectors in X as linear
combinations of codewords taken from a learned dictionary
D = [dy,...,dg] € RV*X with sparse constraint. It can
be formulated as a matrix factorization problem with an L1-
norm penalty:

M

: 2
ip 2 loen ~ Dyl + Ml

st |dilla <1, Vk=1,2,...,K,

where Y = [y1,...,yu] € REXM is a matrix containing
the associated sparse combinations (a.k.a. sparse codes), and
A is the sparsity level.

The above optimization problem is convex for D (with
Y fixed) and Y (with D fixed) respectively, which can
be solved by alternatively optimizing D and Y (Lee et al.
2006).

Improved Dictionary Learning

Since sketch images are visually sparse and only consist of
several strokes, most local patches of sketches belong to
some simple but trivial patterns, e.g., a horizontal line, a
right angle, and so forth. Complex but discriminative pat-
terns, such as a face which strongly suggests the existence
of a human-like sketched object, are infrequently observed.
Considering that the initial inputs of the sparse coding al-
gorithm are descriptors extracted from local patches, the
learned dictionary might overfit to those frequent but unim-
portant patterns. To promote importance of less frequently
observed patterns so as to enrich codewords, we try to learn
a dictionary within which codewords are of highly mutual
incoherence. This idea is inspired by parts of works like



(Tropp 2004), (Daubechies, Defrise, and De Mol 2004),
(Elad 2007) and (Eldar and Mishali 2009) which showed
that both the speed and accuracy of sparse coding depend on
the incoherence between codewords.

To achieve the above goal, we add a mutual incoherence
constraint in the standard sparse coding algorithm:

M
mig Zlﬂxm — Dy + N[yl
m=

3)
S.t. Hdk”Q <1, Vk=12,...,K,

Hd,irdj”1<7]7 VZ,]:].,Q,,K,Z?A],

where 7 is the mutual incoherence threshold. This opti-
mization objective is somewhat similar to (Ramirez, Sprech-
mann, and Sapiro 2010), (Barchiesi and Plumbley 2013) and
(Bo, Ren, and Fox 2013), but the first one tried to promote
mutual incoherence of dictionaries rather than codewords
via an L2-norm penalty. The latter two ones focused on ac-
curacy optimization algorithms. To accelerate the optimiza-
tion process they required an LO-norm sparsity constraint to
strictly limit the number of nonzero elements, and thus are
not suitable here.

For efficiency, here we introduce an approximate algo-
rithm to solve Eq. (3). We keep the learning phase and the
coding phase unchanged, but plug in a dictionary sweeping
phase between them.

More detailedly, in each iteration, after the learning phase
we sequentially scan each learned codeword. For a code-
word d;, if there exists another codeword d;(j > ) having
Hddej||1 > n, i.e., violating the mutual incoherence con-
straint, d; will be marked as obsolete. At the end of scan-
ning, the swept dictionary may be composed of less than K
valid codewords and thus requires a supplement. In this case,
we simply go back to the input dataset X, sample some vec-
tors from it, multiply their corresponding sparse codes and
the current dictionary so as to obtain their sparse approxi-
mations, and then compute the approximation errors. Sam-
pled vectors with highest errors imply high independence of
the current codewords. Thus, we replace obsolete codewords
with these vectors. And the coding phase follows.

This simple algorithm proves to work very well according
to experiments.

Multilayer Sparse Coding (MSC)

In this section we introduce the Multilayer Sparse Coding
(MSC) model, a simplified version of our HMSC. We will
introduce the architechture of HMSC in the next section.

MSC builds a representation layer by layer, with each
layer consisting of two stages. In the first layer, the input is
a set of local descriptors built upon one type of patch (e.g.,
square patches with an area of 642). In a higher layer, the
input is a set of pooled-and-normalized codes from its pre-
vious layer. We now describe each stage sequentially.

[Stage 1: Convolutional Sparse Coding] To consider the
spatial information and also to achieve local translation in-
variance, we perform convolutional coding. Given H x W
input vectors of N dimensions belonging to a sketch, every

h x w adjacent vectors are concatenated in order to produce
(H—h+1)x (W —w+ 1) vectors of hwN dimensions.
These hwN-dimension vectors are then sparsely encoded,
while the dictionary is learned over sketches with a mutual
incoherence constraint (as discussed in the previous section).

[Stage 2: Pooling and Normalization] To further achieve
the property of translation-invariance and also reduce data
size, spatial max pooling is applied to aggregate sparse codes
from the previous stage.

For H x W sparse codes generated by Stage 1 of all layers
except the final one, they are spatially divided into groups of
h x w vectors with an overlap ratio of 0.5!. Codes within

each group are max-pooled, resulting in {i/_zh + 1J X
VYJQ“J + lJ pooled codes.

For sparse codes coming from Stage 1 of the final layer,
Spatial Pyramid Pooling (Lazebnik, Schmid, and Ponce
2006) is applied.

Pooled codes are then L2-norm normalized individually.
We have experimented with L1-norm normalization but did
not observe better results.

Architecture of HMSC

A single MSC has the ability of learning mid-level repre-
sentations in an unsupervised way. What’s more, by spa-
tial pooling, the learned representations achieve the prop-
erty of local translation invariance and are very stable. How-
ever, it only builds on one type of sketch patch, which limits
its power to discover patterns of different scales and spa-
tial arrangements. Besides, although outputs produced by
the highest layers are robust and abstract, they miss some
local details which may be useful to distinguish highly sim-
ilar sketch categories like armchair and chair. Therefore, the
proposed Hybrid Multilayer Sparse Coding (HMSC) model
further organizes multiple MSCs in a hybrid way, hoping to
exploit the advantages of MSC with its limitations reduced.
The whole pipeline of HMSC is shown in Fig. 4.

Generally speaking, HMSC encodes patches of various
scales and spatial arrangements, and combines outputs from
various layers. First, four types of patches, i.e., square
patches with an area of 642 and 922, circular patches with
an area of 3227 and 4627, are generated, from which de-
scriptors are extracted. Descriptors from different types of
patches go through different one-layer MSCs and the out-
puts (named as S1.1, S1.2, C1.1 and C1.2 respectively) are
concatenated. To improve robustness to local deformations
and capture more abstract patterns, two-layer MSCs are also
exploited. Considering that the input for the second layer
has dropped lots of local details, to better render local struc-
tures, instead of building four two-layer MSCs individually,
pooled codes belonging to 64 x 64 and 92 x 92 square
patches are merged to be the input of the second layer. Sim-
ilarly, pooled codes related to circular patches are concate-
nated and fed into the second layer. Outputs from these two

'For an easy explanation, we again use H, W, h and w to rep-
resent the number of input vectors and the number of adjacent vec-
tors. We hope this slight overuse does not bring any ambiguity.
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Figure 4: Architecture of HMSC. Sketch patches of different types (including 64 x 64 / 92 x 92 square patches and 32 x 32 x 7 /
46 x 46 x 7 circular patches) are generated from a min-pooled sketch and then encoded as local descriptors. These descriptors are
further fed into multiple layers of convolutional sparse coding (indicated as SC), with a pooling-and-normalization operation
(indicated as PN) inserted between SC layers. All sparse codes are finally transformed by a spatial-pyramid-pooling-and-
normalization operation (indicated as SPN), and then concatenated to build the final representation, which is classified by a
linear SVM. For a clearer view, we only show 8 x 8 descriptors for the sketch.

two-layer MSCs (named as S2 and C2 individually) are also
combined with those from one-layer MSCs.

In our work, all one-layer MSCs learn dictionaries of
2000 codewords. For a two-layer MSC, the first layer learns
a 1000-codeword dictionary and its output is max-pooled
with the group size of 4 x 4, followed by the L2-norm nor-
malization. Then comes the second layer which learns a dic-
tionary of 2000 codewords. The final stage of each MSC ap-
plies a three-level Spatial Pyramid Max-Pooling with each
level generating 1 x 1,2 X 2 and 3 x 3 pooled codes respec-
tively. Note that although the final (concatenated) outputs are
indeed vectors of a high dimension, owning to the sparsity
they only require a small amount of memory and operating
them is usually efficient. We use the Liblinear package (Fan
et al. 2008) to learn a linear SVM for classification.

Hyper-parameters not mentioned, e.g. A and 7 of sparse
coding, are automatically chosen via cross-validation.

Experiments

In this section, we evaluate the proposed representations on
the largest sketch dataset collected by Eitz (Eitz, Hays, and
Alexa 2012), which contains 20, 000 sketches in 250 cate-
gories. This dataset is quite challenging as sketches in each
category are very diverse. Even humans can only achieve a
recognition rate of 73.1%. Following Eitz’s evaluation pro-
tocol, we partition the dataset into three parts and perform
three-fold cross-test: each time two parts are used for train-
ing and the remaining part for testing. The mean classifica-
tion accuracy of three folds is reported.

Table 1: Mean classification accuracy and learning time of
different encoding schemes. Experiments were performed
on a laptop equipped with an Intel Core i7. BoW-Soft: Bag-
of-Words with soft assignment; SC-Std: standard sparse
coding; SC-Const: sparse coding with an L1-norm mutual
incoherence constraint, i.e., our approach.

Algorithm Mean Accuracy Learning Time

BoW-Soft 58.2% 18 min
SC-Std 61.7% 30 min
SC-Const 64.6% 32 min

Mutual Incoherence Constraint & Low-level
Representation

We investigated the effectiveness of the added mutual in-
coherence constraint on a one-layer MSC (including a 3 x
3 convolutional sparse coding operation, a spatial pyra-
mid max-pooling operation, and a normalization operation)
in terms of classification accuracy and learning time. We
learned a 2000-codeword dictionary on descriptors built
upon 64 x 64 square patches. To reduce experiment time, we
only sampled 1, 000, 000 descriptors for learning (no signifi-
cant improvement was observed when using all descriptors).
As abaseline, we also encoded the proposed low-level repre-
sentations using BoW with soft assignment (BoW-Soft) (van
Gemert et al. 2008). The results are shown in Table 1.

[Dictionary Learning] We can see that, standard sparse
coding performed much better than Bag-of-Words (BoW)
with an acceptable time overhead, consistent with existing
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Figure 5: Classification accuracy of components of HMSC.
For the definition of S1.1, S1.2, S2, C1.1, C1.2 and C2,
please refer to previous sections and Fig. 4. Here we intro-
duce several new symbols. S1: the combination of S1.1 and
S1.2; S1 + C1: the combination of S1 and C1; C1 and S2 +
C2 are defined similarly to S1 and S1 + C1 respectively; All:
SI1+Cl1+S2+C2.

research. What’s more, it greatly outperformed Eitz’s model
(56.0%). Moreover, with the mutual incoherence constraint,
sparse coding achieved higher accuracy with comparable
learning time, verifying the effectiveness of learning a rich
dictionary with diverse codewords.

[Low-level Representation] Notice that here we adopted
a simplified version (single scale, single spatial arrange-
ment) of our low-level representation. Nevertheless, directly
applying BoW on it has exceeded Eitz’s reported accuracy
(which also used BoW), indicating the effectiveness of our
low-level representation.

The rest experiments are based on the improved sparse
coding algorithm.

Mid-Level Representation

To verify the effectiveness of components of HMSC, we list
the recognition rate of each component in Fig. 5.

[Scale] By concatenating the outputs of S1.1 and S1.2, S1
performed better than both of them. Compared with C1.1 or
C1.2, C1 also brought large improvement. These two com-
parison results indicate that, by learning representations at
multiple scales, we can capture different nontrivial patterns,
resulting in performance improvement.

[Spatial Arrangement] Similarly, higher accuracy can be
obtained after merging the outputs of S1 and C1, or merg-
ing the outputs of S2 and C2. This shows that representa-
tions built on various spatial arrangements are complemen-
tary and can discover more discriminative patterns.

[Layer] Now we further investigate the effect of layers of
HMSC. As shown in Fig. 5, four one-layer MSCs (S1.1,
S1.2, C1.1, C1.2) performed surprisingly well, all of which
outperformed the state of the arts. Although the two-layer
MSCs (S2, C2) performed worse than one-layer ones, merg-
ing all MSCs (S1, S2, C1, C2) achieved the highest accu-
racy of 68.5%. This result confirms that outputs from differ-
ent layers are good at modeling sketch structures at different
level of abstraction, and they can work together to make up
a better model.
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Figure 6: Classification accuracy on the benchmark dataset.
SHC: shape context (Belongie, Malik, and Puzicha 2002);
HOOSC: histogram of orientation shape context (Roman-
Rangel et al. 2011); HOG: histogram of oriented gra-
dient (Dalal and Triggs 2005); Eitz: Eitz’s model (Eitz,
Hays, and Alexa 2012), Jay: Jayasumana’s improved model
(Jayasumana et al. 2014); Fisher: Fisher kernel (Perronnin,
Sénchez, and Mensink 2010); HSC: Hierarchical Sparse
Coding (Yu, Lin, and Lafferty 2011); M-HMP: Multipath
Hierarchical Matching Pursuit (Bo, Ren, and Fox 2013).

In short, the above three subsections have verified the use-
fulness of building representations at various scales, spatial
arrangements, and layers.

Compared with State of the Arts

To the best of our knowledge, the state of the arts in sketch
recognition on this benchmark dataset achieved the accu-
racies of 56.0% (Eitz, Hays, and Alexa 2012) and 57.9%
(Jayasumana et al. 2014). We also implemented some typ-
ical works in natural image recognition and shape analysis
(see Fig. 6), but did not observe better results.

As shown in Fig. 6, the performance of our proposed
model (68.5%) greatly outperformed the state of the arts.
It should be noted that, both Eitz’s and Jayasumana’s works
used a Kernel SVM for classification, while we applied a
linear one. By carefully selecting a more effective classifier,
our model has potential to reach a higher recognition rate. In
addition, recalling that humans can only reach an accuracy
of 73.1% on this dataset, our result is quite promising.

Conclusion

In this paper, we systematically studied how to build ef-
fective representations for sketch recognition. We designed
a Gabor-based low-level representation, based on which a
mid-level representation named Hybrid Multilayer Sparse
Coding was proposed. By learning sparse codes with an
additional constraint on various scales and spatial arrange-
ments, and performing encoding through a varying number
of layers, the proposed representations achieved a promising
accuracy 68.5% (human’s accuracy being 73.1%), leading to
a large improvement over the state of arts 57.9%.
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