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Abstract
Job scheduling in Big Data clusters is crucial both for clus-
ter operators’ return on investment and for overall user ex-
perience. In this context, we observe several anomalies in
how modern cluster schedulers manage queues, and argue
that maintaining queues of tasks at worker nodes has sig-
nificant benefits. On one hand, centralized approaches do
not use worker-side queues. Given the inherent feedback de-
lays that these systems incur, they achieve suboptimal clus-
ter utilization, particularly for workloads dominated by short
tasks. On the other hand, distributed schedulers typically do
employ worker-side queuing, and achieve higher cluster uti-
lization. However, they fail to place tasks at the best possi-
ble machine, since they lack cluster-wide information, lead-
ing to worse job completion time, especially for heteroge-
neous workloads. To the best of our knowledge, this is the
first work to provide principled solutions to the above prob-
lems by introducing queue management techniques, such
as appropriate queue sizing, prioritization of task execution
via queue reordering, starvation freedom, and careful place-
ment of tasks to queues. We instantiate our techniques by ex-
tending both a centralized (YARN) and a distributed (Mer-
cury) scheduler, and evaluate their performance on a wide
variety of synthetic and production workloads derived from
Microsoft clusters. Our centralized implementation, Yaq-c,
achieves 1.7× improvement on median job completion time
compared to YARN, and our distributed one, Yaq-d, achieves
9.3× improvement over an implementation of Sparrow’s
batch sampling on Mercury.

1. Introduction
Data-parallel frameworks [7, 27, 32] and scale-out commod-
ity clusters are being increasingly used to store and extract
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Figure 1. Job and task durations for production workloads.

value from data. While some enterprises have large clus-
ters, many others use public cloud providers. Such clusters
run a wide variety of applications including batch data an-
alytics jobs, machine learning jobs and interactive queries.
To reduce operational costs, and, therefore, improve return
on investment, there is a trend toward consolidating diverse
workloads onto shared clusters. However, doing so places
considerable strain in the cluster scheduler, which has to deal
with vastly heterogeneous jobs, while maintaining high clus-
ter utilization, fast and predictable job completion times, and
offering expressive sharing policies among users.

To showcase the job heterogeneity in production clusters,
we provide task and job durations for two production work-
loads of Microsoft (see Figure 1).1 Task durations vary from
a few milliseconds to tens of thousands of seconds. More-
over, a significant fraction of tasks are short-lived (∼50%
last less than 10s), which illustrates a generally observed
shift towards smaller tasks [20–22].

Cluster schedulers such as YARN [27] and Borg [28]
have a logically centralized service, often called the resource
manager (RM), which serves as a matchmaker between the
resource needs of various jobs and the available resources
on worker machines. Typically, machines exchange heart-
beat messages with the RM once every few seconds,2 and

1 Durations only for successful (non-failed) tasks are included in the figure.
2 YARN clusters with ∼4K nodes use a heartbeat interval of 3sec [27]; the
Borg RM polls each machine every few secs with the 95th percentile being
below 10sec in a ∼10K-node cluster [28].



are initiated either by worker machines (in YARN) or by the
RM (in Borg). Through heartbeats, worker machines report
resource availability to the RM, which in turn determines the
allocation of tasks to machines. This design has two main
problems: first, the RM is in the critical path of all schedul-
ing decisions; second, whenever a task finishes, resources
can remain fallow between heartbeats. These aspects slow
down job completion: a job with a handful of short tasks can
take tens of seconds to finish. Worse, they affect cluster uti-
lization especially when tasks are short-lived. Table 1 shows
the average cluster utilization (i.e., the percentage of occu-
pied slots) with tasks of different durations for an 80-node
YARN cluster. The label X sec denotes a synthetic workload
wherein every task lasts X seconds. The label Mixed-5-50 is
an even mix of 5 and 50 sec tasks. Workload 1 is the pro-
duction workload shown in Figure 1. We see that as task
durations get shorter, cluster utilization drastically degrades,
and can be as low as 61%.

A few schedulers avoid logical centralization. Apollo [8],
Sparrow [22] and others allow job managers to indepen-
dently decide where to execute their tasks, either to improve
scalability (in terms of cluster size or scheduling decisions
rate) or to reduce allocation latency. The above problem with
short-lived tasks becomes less prevalent, because tasks can
be pushed onto queues at worker machines by each job man-
ager. However, these schedulers are vulnerable to other prob-
lems: (a) each job manager achieves a local optimum alloca-
tion, but coordination across various job managers to achieve
globally optimal allocations is not possible;3 (b) worse, the
distributed schedulers do not always pick appropriate ma-
chines since they fail to account for the pending work in
each queue; (c) the assignments are vulnerable to head-of-
line blocking when tasks have heterogeneous resource de-
mands and durations. These aspects affect job completion
times, leading to increased tail latency and unpredictability
in job run times.

To illustrate these aspects, Figure 2 presents a CDF of job
completion times for Workload 2 with YARN and an imple-
mentation of Sparrow’s batch sampling on Mercury [20, 22].
We see that the latter improves some very short jobs, but
has a long tail of jobs that exhibit longer completion times.
As we will see later, this happens because batch sampling
fails to make globally optimal task placement decisions, and
because FIFO queues at worker nodes suffer from head-of-
line blocking. Moreover, to address the utilization problems
mentioned above for centralized schedulers, we extended
YARN by allowing tasks to be queued at each node, thus
masking task allocation delays. In this case, the RM assigns
tasks to node queues in a way that is similar to how it already
assigns tasks to nodes. The resulting job completion times
are depicted in the “YARN+Q” line of Figure 2. We see that

3 For example, when scheduling a task of job1 with equal preference for
machines {m1,m2} and a task of job2 that will run much faster at m1, it
is not possible to guarantee that job2’s task will always run at m1.
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Figure 2. Job completion times for production Workload 2
using different scheduling types.

5 sec 10 sec 50 sec Mixed-5-50 Workload 1
60.59% 78.35% 92.38% 78.54% 83.38%

Table 1. Average YARN cluster slot utilization for work-
loads with varying task durations.

naively offering FIFO queues at worker nodes in YARN can
be worse than not having queues at all. As will be shown
later, this is due to similar head-of-line issues, as well as the
potentially poor early binding of tasks to machines.

In this paper, we provide more principled solutions to-
wards using task queues well in the context of cluster sched-
ulers, be they centralized or distributed. Our contributions
include:

• We present a centralized (Yaq-c) and a distributed (Yaq-d)
cluster scheduling design, both of which support queuing
at worker nodes and can accommodate our queue manage-
ment techniques, without losing the attractive features of
existing designs (Section 2).
• We show that naively adding queues at worker nodes is

unlikely to work well. Rather, we offer guidance on how
to bound the length of queues: using short queues can
lead to lulls and thus to lower cluster utilization, whereas
using long ones increases queuing delays and encourages
sub-optimal early binding of tasks. We also study how to
place tasks to worker machines when doing so involves
picking a run-slot, a queue-slot, or waiting. We finally
introduce task prioritization techniques that are novel to
worker-side queues in cluster scheduling, and which are
crucial for reducing head-of-line blocking and improving
job completion times (Section 3).
• We study how the per-queue scheduling techniques above

can be combined well with cluster-wide policies, such
as global job prioritization (in centralized designs) and
cluster sharing policies (Section 4).
• We implemented both Yaq-c and Yaq-d (Section 5), and

deployed them on an 80-node cluster. Our experimental
results using synthetic and production workloads (derived



Scheduling type Type of queuing Queue management
Scheduling framework Centralized/Distributed Global queue Queues at nodes Task placement Queue sizing Queue reordering

YARN [27] X/ - X ∗
Borg [28] X/ - X ∗

Sparrow [22] - /X X X
Apollo [8] - /X X X

Mercury [20] X/X X X X
Yaq-c X/ - X X X X X
Yaq-d - /X X X X X

Table 2. Overview of queuing capabilities of existing scheduling frameworks compared to Yaq (∗ indicates that the system
performs placement of tasks to nodes but not to queues).

from Microsoft clusters) show that Yaq-c improves median
job completion time by 1.7× over stock YARN. Relative
to an implementation of Sparrow’s batch sampling [22] on
YARN and of Mercury [20], Yaq-d improves median job
completion time by 9.3× and 3.9×, respectively.

We plan to release both Yaq-c and Yaq-d by contributing
them to Apache YARN. The support for queuing of tasks at
YARN’s worker nodes is already available at Apache JIRA
YARN-2883 [30]. The rest of the work will be released in
related JIRAs.

2. Design
In this section, we describe the design of our two cluster
scheduler variations, Yaq-c and Yaq-d, upon which we im-
plement and evaluate our queue management techniques.
Yaq-c extends the centralized scheduler in YARN [27] by
adding task queues at worker nodes. Yaq-d, on the other
hand, is a distributed scheduler that extends our Mercury
scheduler [20, 29]. After laying out the requirements for
our scheduler (Section 2.1), we first give an overview of
our queuing techniques and compare Yaq’s capabilities with
those of existing scheduling frameworks (Section 2.2). Then,
we present the basic components of our system design (Sec-
tion 2.3), and detail the specifics of our design for both Yaq-c
and Yaq-d (Section 2.4 and Section 2.5).

2.1 Requirements
Resource managers for large shared clusters need to meet
various, often conflicting, requirements. Based on conversa-
tions with cluster operators and users, we distill the follow-
ing set of requirements for our system.

Heterogeneous jobs: Due to workload consolidation, pro-
duction clusters have to simultaneously support different
types of jobs and services (e.g., production jobs, best-
effort jobs). Hence, tasks have highly variable durations
and resource needs (e.g., batch jobs, ML, MPI, etc.).

High cluster utilization: Since cluster operators seek to
maximize return on investment, the scheduler should op-
timally use the cluster resources to achieve high cluster
utilization. The expectation is that higher cluster utiliza-
tion leads in turn to higher task and job throughput.

Fast (and predictable) job completion time: Cluster users
desire that their jobs exit the system quickly, perhaps as
close as possible to the jobs’ ideal computational time.
Furthermore, predictable completion times can substan-
tially help with planning.

Sharing policies: Since the cluster is shared amongst mul-
tiple users, operators require support for sharing policies
based on fairness and/or capacity constraints.

2.2 Task Queuing Overview
As we will describe in Sections 3 and 4, the introduction of
local queues in Yaq-c, and the management of the different
queues in both Yaq-c and Yaq-d are our key contributions. It
is thus useful to contrast our designs with existing systems.

In Table 2, we outline the type of queuing that existing
systems enable (global queuing and/or local at the nodes),
as well as the queue management capabilities they support
compared to Yaq. Due to their inherent design, distributed
and hybrid schedulers (such as Sparrow, Apollo, Mercury)
support queuing at the nodes, but not global job queuing.
On the other hand, to the best of our knowledge, no exist-
ing centralized system supports queuing at worker nodes.
This is an interesting point in the design space that we ex-
plore in Yaq-c. Further, although all systems with queues
at worker nodes need to implement a task placement policy,
none of them implement additional queue management tech-
niques, such as task prioritization through queue reorder-
ing, and queue sizing. Hence, we explore such techniques in
Yaq-c and Yaq-d.

2.3 Basic System Components
The general system architecture, depicted in Figure 3 (for
Yaq-c) and Figure 4 (for Yaq-d), consists of the following
main components:

Node Manager (NM) is a service running at each of the
cluster’s worker nodes, and is responsible for task execu-
tion at that node. Each NM comprises running tasks and
queued tasks (as shown in Figures 3 and 4). The former
is a list with the tasks that are currently being executed,
thus occupying actual resources at the node. The latter is a
queue with the tasks that are waiting on the resources held
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Figure 3. System architecture for centralized scheduling
(Yaq-c).

by the currently running tasks and are thus not occupying
actual resources. A task is queued only if the NM cannot
start its execution due to insufficient resources.

Resource Manager (RM) is the component that manages
the cluster resources in centralized scheduling settings
(thus appears only in Yaq-c). The NMs periodically inform
the RM about their status through a heartbeat mechanism.
Based on the available cluster resources and taking into ac-
count various scheduling constraints (e.g., data locality, re-
source interference, fairness/capacity) and a queue place-
ment policy (to determine where tasks will be queued, if
needed), it assigns resources to tasks for execution.

Usage Monitor (UM) is a centralized component to which
the NMs periodically report their status. It is used in dis-
tributed scheduling frameworks as a form of loose coor-
dination to perform more educated scheduling decisions.
Although this component is not necessary [22], a form
of a UM has been used in existing distributed sched-
ulers [8, 20], and is also used in Yaq-d.

Job Manager (JM) is a per-job orchestrator (one JM gets
instantiated for each submitted job). In centralized set-
tings, it negotiates with the RM framework for cluster re-
sources. Once it receives resources, it dispatches tasks for
execution to the associated nodes. In distributed settings,
where there is no central RM, it also acts as a scheduler,
immediately dispatching tasks to nodes.

2.4 Centralized Scheduling With Queues (Yaq-c)
Our system architecture for centralized scheduling is de-
picted in Figure 3. As shown in the figure, a job’s lifecy-
cle comprises the following steps. First, as soon as a client
submits a new job to the cluster, the JM for this job gets ini-
tialized (step 1). The tasks of the job get added to the queue
that is maintained locally in the JM. Then, the JM petitions
the RM for cluster resources based on the resource needs
of the job’s tasks (step 2). The RM chooses where to place
the tasks based on some policy (such as resource availabil-
ity, status of queues at the NMs, data locality, etc.), and then
notifies the JM (step 3). Subsequently, the JM dispatches the
tasks for execution at the specified nodes (step 4). A task
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Figure 4. System architecture for distributed scheduling
(Yaq-d).

will start execution whenever it is allocated resources by the
NM, and until that moment it is waiting at the NM’s queue.
The job’s lifecycle terminates when all of its tasks complete
execution.

Note that the RM performs job admission control, based
on the available resources and other constraints (e.g., cluster
sharing policies). Thus, when a job is submitted, it waits at
a global queue in the RM (shown in blue in the figure), until
it gets admitted for execution.

2.5 Distributed Scheduling With Queues (Yaq-d)
Our system architecture for distributed scheduling is shown
in Figure 4. When a client submits a new job, the corre-
sponding JM gets instantiated (step 1 in the figure). The JM,
who is now acting as the task scheduler for that job, uses
a scheduling policy to select the node to which each of the
job’s task will be dispatched. The scheduling policy relies
also on information that becomes available from the UM,
such as the queue status of a node. The JM then places the
tasks to the specified nodes for execution (step 2). Similar
to the centralized case, if resources in a node are available,
task execution starts immediately. Otherwise, the task waits
in the queue until resources become available.

Our design also enables restricting the number of concur-
rently executing or queued tasks per JM. We defer the details
to Section 5.

3. Queue Management at Worker Nodes
In the design outlined so far, queues at worker nodes are
of particular importance since they determine when a task
bound to a node starts execution. This is the case with ei-
ther architecture, centralized or distributed. However, as ex-
plained in Section 1, simply maintaining a queue of tasks
waiting for execution at worker nodes does not directly
translate to benefits in job completion time, especially in the
presence of heterogeneous jobs.

To this end, our main focus in this work is on efficiently
managing local node queues. Our queue management in-
cludes the following techniques: (1) determine the queue
length (Section 3.1); (2) decide the node to which each task



will be placed for queuing (Section 3.2); (3) prioritize the
task execution by reordering the queue (Section 3.3). We dis-
cuss cluster-wide queue management policies in Section 4.

Note that placing tasks to queues is required whenever
the actual cluster resources are not sufficient to accommo-
date the jobs that are submitted in the cluster. Thus, our tech-
niques become essential under high cluster load. In cases of
lower cluster load, when no worker-side queuing is needed,
Yaq-c behaves like YARN and Yaq-d like Mercury.

To simplify our analysis, in this section we consider slots
of resources consisting of memory and CPU, as done in
YARN too. Whenever applicable, we discuss how our tech-
niques can be extended to support multi-dimensional re-
sources.

Task duration estimates Part of our work relies on esti-
mates of task durations, based on the observation that in our
production clusters at Microsoft, more than 60% of the jobs
are recurring. For such jobs, we assume an initial estimate
of task durations based on previous executions. As we show
in our experiments, Yaq performs well even with only rough
estimates (such as the average duration of a map or reduce
stage).4 In the absence of such estimates, we assume a de-
fault task duration and have extended the JM to observe ac-
tual task durations at runtime and refine the initial estimate
as the execution of the job proceeds.

3.1 Bounding Queue Lengths
Determining the length of queues at worker nodes is crucial:
queues that are too short lead to lower cluster utilization,
as resources may remain idle between allocations; queues
that are too long may incur excessive queuing delays. We
discuss two mechanisms for bounding queue lengths: length-
based bounding (Section 3.1.1) and delay-based bounding
(Section 3.1.2).

3.1.1 Length-Based Queue Bounding
In length-based queue bounding, all nodes have a predefined
queue length b, and the RM can place up to b tasks at the
queue of each node. We now focus on how to determine the
value of b. We first consider the case when all tasks have the
same duration, and then turn to the more general case.

Note that we base our analysis on the centralized design,
where task placement is heartbeat-driven. We defer the anal-
ysis for the distributed case for future work, but expect the
findings to be largely similar.

Fixed task duration We assume that all tasks have the
same duration 1/µ (where µ is the task processing rate), and
calculate the minimum queue length that would guarantee
a desired cluster utilization. Let r be the maximum number
of tasks that can run concurrently at a node (based on its
resources and the minimum resource demand of a task), and

4 Note that more sophisticated models for estimating task durations can be
employed. We purposely opted for a simpler approach here, to assess our
system’s behavior even with inaccurate estimates.
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Figure 5. Queue length required to achieve cluster utiliza-
tion u=1−δ, given the number of tasks that can be processed
by a node per heartbeat interval (rµτ ).

τ the heartbeat interval. Then the maximum task processing
rate at the node is rµ. Given r running tasks and b queued
tasks, a node will remain fully utilized when: r + b ≥ rµτ
or b ≥ r(µτ − 1).

Interestingly, the above reasoning is similar to the
bandwidth-delay product for TCP flows, where the goal is
to have enough packets in flight to keep the link fully uti-
lized. In cluster scheduling, tasks can be seen as analogous
to packets, node processing rate to the link capacity, and
heartbeat interval to RTT.

Exponentially-distributed task duration We consider an
arbitrary node that has r run slots and a queue of length b
slots. We want to determine the value of parameter b such
that node utilization is at least 1 − δ for given parameter
δ ∈ (0, 1]. Here we provide the main results of our analy-
sis; more details along with our proofs can be found in Ap-
pendix A. We note that node utilization is at least as large as
the fraction of heartbeat intervals in which all run slots are
always busy. It thus suffices to configure the queue length so
that the latter quantity is at least of value 1− δ.

We admit the following assumptions. Whenever the node
completes processing a task, we assume that it starts process-
ing one of the tasks from the queue taken uniformly at ran-
dom, if there are any in the queue. We assume that task pro-
cessing times are independent and identically distributed ac-
cording to an exponential distribution with mean 1/µ. This
assumption enables us to characterize the node utilization by
leveraging the memory-less property of the exponential dis-
tribution.

Proposition 1. At least a 1−δ fraction of heartbeat intervals
will have all run slots always busy, if the queue length b is at
least as large as the smallest integer that satisfies

rµτ

(
1 +

b+ 1

rµτ

(
log

(
b+ 1

rµτ

)
− 1

))
≥ log

(
1

δ

)
. (1)

We now discuss the asserted sufficient condition. If the
task processing times were deterministic assuming a com-



mon value 1/µ and the length of the heartbeat interval is
a multiple of 1/µ, then for 100% utilization it is necessary
and sufficient to set the queue length such that b+ r = rµτ .
This yields the queue length that is linear in rµτ , for any
fixed value of the run slots r. The sufficient condition in (1)
requires a larger queue length than rµτ for small values of
rµτ . It can be shown that the sufficient condition (1) requires
the queue length that is at least rµτ +

√
log(1/δ)

√
rµτ , for

large rµτ . For numerical examples, see Figure 5. Specifi-
cally, given a heartbeat interval τ = 3 sec, an average task
duration 1/µ of 10 sec, r = 10 tasks allowed to be executed
at a node at the same time, and a target utilization of 95%,
a queue of b = 6 slots is required. Likewise, for an aver-
age task duration of 30 sec, the queue size should be ≥ 3
slots. These values for b are also validated by our experi-
ments (Section 6) on the production Workload 2 of Figure 1.

3.1.2 Delay-Based Queue Bounding
Maintaining queues of the same fixed length across all nodes
does not work well with heterogeneous tasks. When short
tasks happen to be present in a node, this may lead to under-
utilization of its resources, whereas when tasks are longer,
significant delays may incur. Hence, when task durations
are available, we use a delay-based strategy. This strategy
relies on the estimated queue wait time that gets reported by
each node at regular intervals, as we explain in Section 3.2
(Algorithm 2). In particular, we specify the maximum time
WTmax that a task is allowed to wait in a queue. When
we are about to place a task t at the queue of node n (see
Section 3.2), we first check the last estimated queue wait
time WTn reported by n. Only if WTn < WTmax is t
queued at that node. Upon queuing, the RM uses a simple
formula to update WTn taking into account t’s task duration
estimate, until a fresh value for WTn is received from n.
Using this method, the number of tasks that get queued to
each node gets dynamically adapted, based on the current
load of the node and the tasks that are currently running and
queued.

Note that this technique can be directly applied in both
our centralized and distributed designs.

3.2 Placement of Tasks to Nodes
Given a job consisting of a set of tasks, the scheduler has to
determine the nodes to which those tasks will be placed. We
now present the algorithm that Yaq uses for task placement.
We also introduce the algorithm that we use to estimate
the time a task has to wait when placed in a node’s queue
before starting its execution. This algorithm is crucial for
high quality task placement decisions.

As explained in Section 2, we assume that there is a cen-
tral component to which each node periodically publishes
information about its resource and queue status. This com-
ponent is the RM in Yaq-c (see Figure 3), and the UM in
Yaq-d (see Figure 4).

Algorithm 1: Placement of task to node
Input : t: task to be placed; Rfmin: min free cluster

resources percentage before starting to queue tasks
Output: node where t will be placed
// Avoid queuing when available cluster resources

1 if freeResources / totalResources > Rfmin then
2 return placeTaskNoQueuing(t)

3 else return node n with highest queuingScore(n, t)

// How suitable is node n for placing task t to its queue
4 Function queuingScore(n, t)

// affScore ∈ (0, 1] based on data locality (or resource
interference) when placing t on n (higher is better)

5 affScore← affinityScore(n, t)

// Compute load of node based on queue length or
queue wait time (using Algorithm 2)

6 nload← nodeLoad(n)

7 return affScore× 1/nload

Our task placement algorithm is outlined in Algorithm 1.
It takes as input a task t and outputs the node n where t
should be placed. Yaq preferentially places tasks at nodes
that have available resources since such tasks will incur no
queuing delays. Thus, we first check if there are such re-
sources (line 1), and if so, we place t to a node with available
local resources, taking other parameters such as data local-
ity also into account (line 2). If the cluster is almost fully
loaded (as defined by the Rfmin parameter given as input),
we choose which node’s queue to place t (line 3). We use the
function queuingScore(n,t) to quantify how suitable
a node is for executing t. The score of a node comprises two
components: node affinity for t and node load. In our cur-
rent implementation, node affinity takes into account data
locality, but this can be extended to also consider resource
interference, providing better resource isolation when exe-
cuting t. The load of the node can be calculated based on
one of the following strategies depending on the richness of
the information published by each node:

Based on queue length: The simplest information that each
node publishes is the size of its queue. This strategy gives
higher score to nodes with smaller queue lengths. Note
that this can lead to suboptimal placement decisions in
case of heterogeneous tasks: a node with two queued tasks
of 500 secs each will be chosen over a node with five tasks
of 2 secs each.

Based on queue wait time: This strategy assumes that each
node publishes information about the estimated time a task
will have to wait at a node before starting its execution, as
described below. The lower this estimated wait time is, the
higher the score of the node. This strategy improves upon
the previous one when considering heterogeneous tasks,
as we also show experimentally in Section 6.5.2.



Algorithm 2: Estimate queue wait time at node
Input : runTasks: running tasks’ remaining durations;

queuedTasks: queued tasks’ durations;
freeResources: free node resources;
freeResourcesmin: min free node resources
before considering a node full

Output: Estimated queue wait time for the next task that will
be dispatched to the node

1 if freeResources ≥ freeResourcesmin then
2 return 0

3 waitT ime← 0

4 for qTask in queuedTasks do
5 minTask ← remove min(runTasks)

6 waitT ime← waitT ime+minTask

7 runTasks← [t−minTask for t in runTasks]

8 runTasks.add(qTask)

9 return waitT ime+ remove min(runTasks)

Note that Algorithm 1 suggests that we calculate the
score of all nodes for placing each task. Clearly this can
lead to scalability issues, thus in practice we apply various
optimizations (e.g., compute the score of each node only at
regular intervals).

Estimating queue wait time at worker nodes Algorithm 2
outlines how each worker node independently estimates the
expected queuing delay that a new task will incur if it is
placed in its queue. Queue wait time estimates are then
periodically sent to the RM (in Yaq-c) or UM (in Yaq-
d) to help with task placement. Effectively, the algorithm
simulates CPU scheduling. It takes as input the remaining
durations of the currently running tasks, and the durations
of the queued tasks.5 If there are available resources, the
new task will not have to wait (line 2). Otherwise, we go
over the queued tasks and accumulate the time that each
of them has to wait before its execution starts (lines 4-8).
The first task in the queue will have to wait for the running
task with the smallest remaining duration to finish. Then that
task gets removed from the running task list (line 5), and its
task duration gets added to the accumulated queue wait time
(line 6). All remaining running task durations get updated
(line 7), the first task in the queue gets added to the list of
running tasks (line 8), and the same process repeats for all
queued tasks.

Observe that in our estimation, we make the assumption
that a queued task can take the slot of any previously running
task. One could extend our algorithm to take into account the
exact resources required by each task, similar to the queue-
wait time matrix of Apollo [8].

Observe that from the moment a task gets placed to a
node’s queue until the moment its execution starts, better

5 These are estimations of task durations, as explained in the beginning of
Section 3.

Algorithm 3: Compare task priorities
Input : tasks t1, t2; comparison strategy taskCmp; hard

starvation threshold ST ; relative starvation
threshold STr

Output: > 0 if t1 has higher priority, < 0 if t2 has higher
priority, else 0

1 if isStarved(t1) xor isStarved(t2) then
2 if isStarved (t1) then return +1

3 else return −1
4 if !isStarved(t1) and !isStarved(t2) then
5 cmp← taskCmp(t1, t2)

6 if cmp 6= 0 then return cmp

7 if isStarved(t1) and isStarved(t2) then
8 cmp← t2.jobArrivalTime− t1.jobArrivalTime

9 if cmp 6= 0 then return cmp

10 return t1.queueTime− t2.queueTime

11 Function isStarved(ti)
12 return

ti.queueTime > min(ST , ti.durationEst× STr)

placement choices may become available. This may be due
to incorrect information during initial task placement (e.g.,
wrong queue load estimates) or changing cluster conditions
(e.g., resource contention, node failures). Various corrective
actions can be taken to mitigate this problem, such as dy-
namic queue rebalancing [20], duplicate execution [2, 8, 9]
or work stealing [10]. Since duplicate execution hurts effec-
tive cluster utilization, and work stealing makes it hard to
account for locality and security constraints in a shared clus-
ter, in Yaq we use queue rebalancing. However, any other
technique could be used instead.

3.3 Prioritizing Task Execution
The queue management techniques presented so far are cru-
cial for improving task completion time: they reduce queu-
ing delay (Section 3.1) and properly place tasks to queues
(Section 3.2). However, as we also show experimentally in
Section 6, they do not improve job completion time on their
own most of the time. This is because they execute queued
tasks in a FIFO order, without taking into account the char-
acteristics of the tasks and of the jobs they belong to. To
this end, we introduce a task prioritization algorithm that re-
orders queued tasks and can significantly improve job com-
pletion times (see Section 6).

Our prioritization algorithm is generic in that any queue
reordering strategy can be easily plugged in. Moreover, it is
starvation-aware, guaranteeing that no task will be starved
due to the existence of other higher priority tasks. We im-
plemented various reordering strategies, which we present
below. Among them, a significant family of strategies are
the job-aware ones, which consider all of the tasks in a job
during reordering. In particular, we emphasize on Shortest



Remaining Job First that gave us the best results in our ex-
periments.

Our task prioritization algorithm is outlined in Algo-
rithm 3. It takes as input two tasks, one of the reordering
strategies taskCmp (among the following, which we de-
tail below: SRJF, LRTF, STF, EJF), as well as a hard and
a relative starvation threshold. Tasks are marked as starved,
as explained below, using the function isStarved (lines
11-12). Starved tasks have higher priority than non-starved
ones (lines 1-3). If none of the tasks are starved, we compare
them with taskCmp (lines 4-6). If both are starved, we give
higher priority to the task of the earlier submitted job (lines
7-9). We finally break ties by comparing the time each task
has waited in the queue.

Queue reordering strategies: We have implemented and
experimented with the following reordering strategies:

Shortest Remaining Job First (SRJF) gives highest prior-
ity to the tasks whose jobs have the least remaining work.
The remaining work for a job j is a way to quantify how
close j is to completion. It is computed using the formula
Σti∈RT (j)ti · td(ti), where RT (j) are the non-completed
tasks of j and td(ti) is the (remaining) task duration of
task ti, based on our task duration estimates. The remain-
ing work gets propagated from the RM (in Yaq-c) or the
UM (in Yaq-d) to the nodes through the existing heart-
beats.

Least Remaining Tasks First (LRTF) is similar to SRJF,
but relies on number of remaining tasks to estimate the
remaining work. Although this estimate is not as accurate
as the one used by SRJF, it is simpler in that it does
not require task duration estimates. The remaining tasks
number gets propagated from the JM to the nodes through
the existing heartbeats.

Shortest Task First (STF) orders tasks based on increasing
expected duration. This strategy is the only one in this
list that is not job-aware, given that it uses only task
information and is agnostic of the status of the job the
tasks belong to. However, it can become interesting when
coupled with our starvation-aware techniques.

Earliest Job First (EJF) orders tasks based on the arrival
time of the job that the tasks belong to. This is essentially
FIFO ordering, and is the default strategy in most sched-
ulers. No additional knowledge is required from the jobs.
Although EJF performs no reordering, as described above,
we use it to discriminate between starved tasks.

Commonalities between our reordering strategies and ex-
isting OS and network scheduling strategies are discussed in
Section 7. Observe that our current strategies are oblivious to
the job structure (e.g., whether a task belongs to the map or
reduce phase of a M/R job, the structure of a DAG job, etc.).
As part of ongoing work, we are evaluating novel strategies
that account for job structure which can be used to further

prioritize task execution. Moreover, we are currently investi-
gating how, in the presence of multi-dimensional resources,
we can momentarily violate a reordering strategy in order
to provide better resource packing and thus achieve higher
resource utilization.

Starvation-aware queue reordering All of the above
strategies except EJF can lead to starvation or to excessive
delays for some tasks. For example, long tasks can suffer
with STF if short ones keep arriving. Similarly, tasks of
large jobs can suffer with LRTF and SRJF. To circumvent
this problem, during reordering we check whether a task has
waited too long in the queue. If so, we give it higher prior-
ity. In particular, we specify both a hard (ST ) and a relative
(STr) threshold. A task is marked as starved if it has waited
longer than STr times its duration or if it has waited longer
than ST secs. STr allows short tasks to starve faster than
long ones (e.g., a 2-sec task should be marked as starved
sooner than a 500-sec task, but not more than ST secs).

4. Global Policies
Our queue management techniques presented so far focused
on task execution at specific nodes. We now discuss how Yaq
can be coupled with cluster-wide policies. In particular, we
first focus on techniques for global job reordering in the case
of a centralized design (Section 4.1), and then on imposing
sharing policies, such as fairness and capacity (Section 4.2).

4.1 Global Job Reordering
As discussed in Section 2.4, Yaq-c maintains a queue of jobs
at the RM.6 Along with task reordering at each node, we can
also devise job reordering strategies to be used at the RM.
Similar to the task reordering strategies presented in Sec-
tion 3.3, we can apply SRJF, LRTF and EJF at the job level.
More specifically, SRJF will give higher priority to jobs with
the smallest remaining work, whereas LRTF will prioritize
jobs with the least remaining number of tasks. EJF uses a
FIFO queue. The analogous to STF would be SJF (Short-
est Job First), assuming we have information about the job
durations. Moreover, our starvation-aware techniques can be
applied here as well, to avoid jobs from waiting too long in
the RM queue. More advanced multi-resource packing tech-
niques (such as Tetris [15]) can also be employed.

Although prioritizing jobs at the RM can be beneficial,
what is more interesting in Yaq is how this global job re-
ordering interplays with the local task reordering strategies,
as they might have conflicting goals. For instance, when
SRJF/LRTF are used both globally and locally, they are ex-
pected to further improve job completion times. However,
this is probably not the case when SRJF is enabled globally
and EJF locally: the former will favor jobs that are close to
completion, whereas the latter will locally favor tasks with

6 Notice that there can be no global job reordering in our distributed Yaq-d
design, as there is no global queue in the system.



smaller duration. Our initial results show that there are in-
deed combinations that can further improve job completion
times. We are currently working on formalizing such bene-
ficial combinations, also taking into account workload char-
acteristics.

4.2 Sharing Policies
Scheduling frameworks facilitate sharing of cluster re-
sources among different users by imposing sharing policies.
For instance, YARN [27] can impose both fairness (each
user gets a fair share of the cluster) [5] and capacity (each
user gets a percentage of the cluster) [4] constraints. Spar-
row also shows how to impose weighted fair sharing in a
distributed setting [22].

All these existing techniques can be applied in Yaq-c and
Yaq-d in order to impose sharing constraints over both run-
ning and queued tasks. However, the scheduling framework
has to impose constraints over the actual cluster resources
(this is what the user actually observes). When task prior-
itization is disabled, the sharing constraints over the actual
resources will be met, as each task will be executed in the
order it was submitted by the scheduler. The problem arises
in case of queue reordering: the scheduler has imposed con-
straints assuming a specific execution order, but this order
might change, giving resources to the wrong users, thus ex-
ceeding their cluster share against others.

To circumvent this problem, we exploit the starvation
threshold ST of our prioritization algorithm (see Sec-
tion 3.3). In particular, given that each task is marked as
starved after ST seconds, actual resources will be given to
it and sharing constraints will be met after that period of
time.7 As we experimentally show in Section 6.4, Yaq-c is
indeed able to successfully meet strict capacity constraints
with only slight momentary violations.

Going further, we make the observation that the above
technique is pessimistic in that it does not take advantage of
user information about the queued tasks. If two tasks belong
to the same user, they are not actually causing violation
of sharing constraints between them. This can be solved
by pushing auxiliary information about the users to worker
nodes. Moreover, it is interesting to investigate whether task
prioritization strategies can momentarily allow violations of
sharing constraints in order to achieve better job completion
times (using some form of deficit counters [24]).

5. Implementation

Yaq-c We implemented Yaq-c by extending Apache Hadoop’s
YARN [6] as follows. First, we extended YARN’s NM to
allow local queuing of tasks, and implemented our queue
management techniques for bounding queue lengths (Sec-
tion 3.1) and prioritizing task execution (Section 3.3). Sec-

7 As long as task preemption is enabled, otherwise a starved task has to wait
for one of the running tasks to finish its execution.

ond, we extended YARN’s scheduler to enable placement of
tasks to queues (Section 3.2), support job prioritization (Sec-
tion 4.1), and respect cluster sharing constraints in the pres-
ence of task queuing (Section 4.2). Finally, in the current im-
plementation, we modified Hadoop’s capacity scheduler [4],
but our changes can be applied to any Hadoop-compatible
scheduler (e.g., DRF [13], fair scheduler [5]).

Yaq-d We implemented Yaq-d by extending the distributed
part of Mercury [20, 29] that already supports queuing at
worker nodes. In particular, we implemented our techniques
for task placement to queues and task prioritization on top
of Mercury. In our current implementation, we do not bound
the queue lengths, although that could be possible by allow-
ing tasks to be queued at the JMs, in case no queue slots
are available in a node. However, as our experimental results
show, we already get significant gains over Mercury even
without bounding queue lengths.

We have already made available the addition of task
queues in YARN’s NMs at Apache JIRA YARN-2883 [30].
We also plan to open-source our queue management tech-
niques both on YARN and Mercury.

6. Experimental Evaluation
The main results of our evaluation are the following:

• Yaq-c improves median job completion time (JCT) by 1.7x
when compared to YARN over a production workload.
• Yaq-d, when evaluated over the same workload, achieves

9.3x better median JCT when compared to a scheduler
that mimics Sparrow’s batch sampling, and 3.9x better
median JCT when compared to the distributed version of
Mercury [20].
• Although task prioritization appears to provide the most

pronounced benefits, the combination of all our techniques
is the configuration that gives the best results.

Note that our purpose in this work is not to compare
Yaq-c with Yaq-d. Instead, we want to study the performance
improvement that Yaq-c and Yaq-d bring when compared
to existing designs of the same type (centralized and dis-
tributed, respectively). Since they follow different architec-
tures, each of them targets different scenarios: high level
placement decisions and strict cluster sharing policies for
Yaq-c; fast allocation latency and scalability for Yaq-d. Ap-
plying our techniques to hybrid schedulers [10, 20] would be
an interesting direction for future work.

We now present results from our experimental evaluation.
We first assess the performance of both Yaq-c (Section 6.2)
and Yaq-d (Section 6.3) over a Hive production workload
used at Microsoft, comparing our systems against exist-
ing centralized and distributed scheduling schemes. Then
we show that Yaq-c can successfully impose sharing in-
variants (Section 6.4). Lastly, we show a set of micro-
experiments that highlight specific components of our de-



sign, such as queue-bounding, task placement, and task pri-
oritization (Section 6.5).

6.1 Experimental Setup

Cluster setup We deployed Yaq-c and Yaq-d on a cluster of
80 machines and used it for our evaluation. Each machine
has a dual quad-core Intel Xeon E5-2660 processor with
hyper-threading enabled (i.e., 32 virtual cores), 128 GB of
RAM, 10 x 3 TB data drives configured as a JBOD. Inter-
machine connectivity is 10 Gbps.

Our Yaq-c implementation is based on YARN 2.7.1. We
use the same YARN version to compare against “stock”
YARN. The Mercury implementation that we used was
based on YARN 2.4.2, and the same holds for Yaq-d, since it
was built by extending Mercury, as we explain in Section 5.
We also use Tez 0.4.1 [7] to execute all workloads, and Hive
0.13 for the Hive workload that is described below. In all
our experiments, we use a heartbeat interval of 3 sec, which
is also the typical value used in the YARN clusters at Ya-
hoo! [27].

Workloads To evaluate Yaq-c and Yaq-d against other ap-
proaches, we use the Hive-MS workload, which is a Hive [25]
workload used by an internal customer at Microsoft to per-
form data analysis. This is Workload 2 depicted in Figure 1.
It consists of 185 queries, each having one map and one re-
duce phase. The underlying data consists of five relations
with a total size of 2.49 PB. Each job has an average of
57.9 mappers and 1.5 reducers. Tasks among all jobs have
an average duration of 22.9 sec with a standard deviation of
27.8 sec, when run on stock YARN.

We also use synthetic GridMix [17] workloads, each con-
sisting of 100 tasks/job executed for 30 min, where: (1) X sec
is a homogeneous workload where all tasks in a job have the
same task duration (e.g., 5 sec), (2) Mixed-5-50 is a heteroge-
neous workload comprising of 80% jobs with 5-second tasks
and 20% jobs with 50-second tasks, and (3) GridMix-MS is
another heterogeneous workload, in which task sizes follow
an exponential distribution with a mean of 49 sec. GridMix-
MS is based on Microsoft’s production Workload 1, depicted
in Figure 1, after scaling down the longer task durations to
adapt them to the duration of our runs and the size of our
cluster.

Moreover, in our experiments, the scheduler gets as in-
put the estimated average task duration of the stage (map or
reduce) each task belongs to, as observed by previous execu-
tions of the same job. Note that we deliberately provide such
simple estimates, in order to assess Yaq under imprecise task
durations. These estimates are then used during placement of
tasks to nodes and for some of our task prioritization algo-
rithms (see also discussion in the beginning Section 3).

Metrics We base our analysis on the following metrics: job
completion time, which is the time from the moment a job
started its execution until the moment all tasks of the job
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Figure 6. Job completion times for Yaq-c on Hive-MS work-
load.

Task queuing delay (sec) Job throughput
Mean Stdev Median (jobs/min)

Yaq-c 8.5 21.4 1.1 13.9
Yaq-c (unbounded) 65.5 85.1 30.4 5.6
Yaq-c (no reorder) 53.2 78.2 25.4 7.6
YARN - - - 8.8

Table 3. Average task queuing delay and job throughput for
Yaq-c on Hive-MS workload.

finished execution; slot utilization, which is the number of
slots8 occupied at each moment across all machines, divided
by the total number of slots in the cluster; task queuing
delay, which is the time from the moment a task gets placed
in a node’s queue until its execution starts; average job
throughput, which is the number of jobs in a workload,
divided by the total time needed to execute all jobs, and is
used to calculate effective cluster throughput.

6.2 Evaluating Yaq-c
To evaluate Yaq-c, we compare it against stock YARN. For
Yaq-c we use a queue size of four slots (Section 3.1), the
queue wait time-based placement policy (Section 3.2) and
the SRJF prioritization policy (Section 3.3), as those gave
us the best results. The queue size we used coincides with
the one suggested by our analysis using Equation 1. Fig-
ure 6 shows that Yaq-c achieves better job completion times
across all percentiles with a 1.7x improvement for median
job completion time. As shown in Table 3, Yaq-c also im-
proves job throughput by 1.6x over YARN. These gains are
due to the higher cluster utilization Yaq-c achieves by having
worker-side queues (more details on utilization are given in
Section 6.5.1). Moreover, to show the benefit of our queue
management techniques, in Table 3 we provide performance
numbers for Yaq-c if we disable queue length bounding or
task prioritization. In the absence of our techniques, we ob-
serve excessive task queuing delays that negatively impacts
job throughput, also resulting in worse performance than

8 We use 4 GB and 1 CPU per slot.
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Figure 7. Job completion times for Yaq-d on Hive-MS
workload.

Task queuing delay (sec) Job throughput
Mean Stdev Median (jobs/min)

Yaq-d (w/ rebalance) 17.9 54.2 0.35 16.6
Yaq-d (w/o rebalance) 34.2 67.0 5.6 10.1
Distributed Mercury 49.7 73.7 12.9 5.8
Distributed (batch sampl.) 81.4 101.4 26.2 5.3

Table 4. Average task queuing delay and job throughput for
Yaq-d on Hive-MS workload.

stock YARN. On the contrary, Yaq-c achieves a median task
queuing delay of only 1.1 sec.

6.3 Evaluating Yaq-d
We evaluate Yaq-d against two other distributed scheduler
variants: distributed Mercury, which uses the distributed part
of Mercury [20], and distributed batch sampling, for which
we modified Mercury to perform task placement using batch
sampling, as a way to simulate the task placement done by
Sparrow [22]. We use two different Yaq-d configurations
with and without dynamic queue rebalancing (see end of
Section 3.2). Moreover, we use the queue wait time-based
placement policy (Section 3.2) and the SRJF prioritization
policy with a 10-sec hard starvation threshold (Section 3.3),
which performed best in practice.

Our results for the Hive-MS workload are depicted in Fig-
ure 7 and Table 4. Yaq-d (with rebalance) improves job com-
pletion time (JCT) across all percentiles when compared to
both Mercury and batch sampling. In particular, it achieves
better median JCT by 3.9x over Mercury and by 9.3x over
batch sampling. These improvements are due to the efficient
management of the local queues, as we significantly reduce
the task queuing delays and thus the head-of-line blocking.

Observe that in our Yaq-d implementation we do not use
late binding of tasks to nodes, as it conflicts with some of
YARN’s design choices. As shown in Figure 8 of the Spar-
row paper [22], late binding on top of batch sampling further
improves average job completion time by 14% and the 95th
percentile by∼30%. Therefore, even if we implemented late
binding, most probably Yaq-d would still significantly out-
perform Sparrow.
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Figure 8. Imposing capacity constraints in Yaq-c.

As can be seen from Table 4, Yaq-d also achieves a higher
job throughput by 2.9x over Mercury and by 3.1x over batch
sampling. When configuring Mercury and batch sampling,
we had to tune the number of jobs that are allowed to be
executed concurrently: allowing too many concurrent jobs
improves job throughput but hurts JCT (due to having tasks
belonging to many different jobs being queued at the nodes
without properly sizing or reordering the queues); allowing
fewer jobs improves JCT but leads to lower utilization and
hurts job throughput. We could improve job throughput for
Mercury and batch sampling in our runs by allowing more
concurrent jobs, but that would lead to even worse JCT. On
the contrary, Yaq-d improves both JCT and job throughput
at the same time.

6.4 Imposing Sharing Constraints
As discussed in Section 4.2, task prioritization can poten-
tially lead to violation of cluster-wide sharing policies. To
this end, we use Yaq-c, whose implementation relies on
Hadoop’s capacity scheduler [4] (as explained in Section 5)
that is capable of imposing capacity quotas on each user of
the cluster. To investigate whether Yaq-c continues to respect
such cluster-wide sharing policies despite task prioritization,
we configure the capacity scheduler with two queues, A and
B, where the cluster capacity is split 70% and 30% respec-
tively. We run a GridMix workload that submits jobs to both
queues with equal probability. Figure 8 shows cluster-wide
slot utilization for each of these two queues measured from
the perspective of all worker nodes. As the figure shows,
Yaq-c respects each queue’s capacity with only some mo-
mentary slight violations.

6.5 Micro-experiments
We evaluate specific aspects of our queue management tech-
niques using a set of micro-experiments. In these runs we
use our synthetic GridMix workloads, which make it eas-
ier to experiment with different task duration distributions,
whenever needed. We study the effects of bounding queu-
ing lengths (Section 6.5.1), task placement choices (Sec-
tion 6.5.2), and task prioritization strategies (Section 6.5.3).
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Figure 9. Average cluster slot utilization with different
workloads and queue lengths.
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Figure 10. Job completion time for GridMix-MS workload
with different queue bounding techniques and no task prior-
itization.

We also evaluate our techniques over a heavy-tailed distri-
bution (Section 6.5.4). Here we use Yaq-c, but we also ob-
served similar trends with Yaq-d for task placement and pri-
oritization.

6.5.1 Bounding Queuing Delays
We first study the impact of queue length in cluster utiliza-
tion and job completion times (JCT). To this end, we pur-
posely disable task prioritization in these experiments.

Figure 9 shows how slot utilization for Yaq-c varies for
different workloads when introducing queuing at worker
nodes. By masking feedback delays between the RM and
NM, Yaq-c is able to prevent slots from becoming idle. The
gains are particularly pronounced when task durations are
short: for 5-sec tasks, average utilization is 60% with YARN
but goes up to 96% with Yaq-c. The graphs also show that
utilization improves with longer queue sizes, as expected.
Furthermore, once the nodes are saturated increasing the
queue sizes even further does not improve utilization. For
instance, the 5 sec workload needs a queue size of six slots
to achieve full utilization, while for the 50 sec workload a
queue size of two slots is sufficient.

Figure 10 compares job completion time (JCT) of the
GridMix-MS workload with YARN and both length-based
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Figure 11. Job completion time for the GridMix-MS work-
load with different RM task placement policies.

(QS=x denotes that x tasks are allowed to be queued) and
delay-based bounding (MWT=x denotes that queuing delay
should not exceed x sec). For fixed queue lengths, we see
that JCT increases with queue length. This is to be expected
since increased queue lengths introduce higher queuing de-
lays, without further improving utilization (as shown in Fig-
ure 9). Furthermore, the tail of the distribution also increases
substantially when queue lengths increase, by upwards of
1.7x for MWT=3 compared to YARN.

Figure 9 and Table 3 reveal that simple queues at worker
nodes, even if bounded, negatively impact job completion
times most of the time. Only in a small number of cases,
for some homogeneous workloads, we saw improvement in
JCT just by bounding queue lengths. However, as we show
in Table 3 and later in Section 6.5.3, queue bounding coupled
with task prioritization brings significant JCT gains.

6.5.2 Task Placement at Queues
We now compare different task placement strategies. We use
our two strategies, namely queue length-based and queue
wait time-based placement (see Section 3.2), as well as a
random placement strategy that randomly assigns tasks to
nodes. We use a fixed queue size of six slots with task
prioritization disabled. Job completion times for these runs
are shown in Figure 11. As expected, the placement that is
based on queue wait time outperforms the rest of the strate-
gies, since it uses richer information about the status of the
queues. In particular, it improves median job completion
time by 1.2x when compared to the queue length-based and
by 1.4x to the random strategy. Also note that the random
placement has a significantly longer tail than our two strate-
gies. Therefore, in all our experiments we use the queue wait
time-based placement.

6.5.3 Task Prioritization at Worker Nodes
Figure 12 shows the job completion times (JCT) for our three
task reordering algorithms (LRTF, SRJF, STF). We use a
queue length of ten slots (unless otherwise stated) and no
hard or relative starvation thresholds.
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Figure 12. Job completion time for GridMix-MS workload
with different task prioritization algorithms.
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Figure 13. Job completion time for the GridMix-MS work-
load with different hard starvation thresholds (ST ) and STF
prioritization.

The job-aware policies SRJF and LRTF perform the best
when compared to YARN: 2.2x better median JCT for SRJF
and 2.4x for LRTF. The non job-aware STF reordering pol-
icy performs 1.4x better than YARN. The difference in per-
formance between STF and the other methods is that STF
is more aggressive than others in attempting to fix head-of-
line blocking issues, but can quickly lead to starvation issues
(which are addressed later in this section). Thus, job progress
is a much more reliable metric to use when reordering than
the local metrics STF uses. Interestingly, for the GridMix
workload LRTF performed better than SRJF (most probably
due to the predictability of the synthetic workload). How-
ever, in the real Hive-MS workload, SRJF worked best.

In the same figure, we have included a run with SRJF pri-
oritization and no queue bounding (marked “unbounded”).
This run shows that with queue bounding disabled, task pri-
oritization improves the lower percentiles of JCT, but nega-
tively impacts the higher ones. Based also on the results of
Table 3, it becomes clear that combining task prioritization
with queue bounding is required to get the best results in
terms of JCT.

Starvation Threshold We perform various runs to study
the impact our starvation thresholds (see Section 3.3) have
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Figure 14. Job completion time for the heavy-tailed work-
load that is based on GridMix-MS.

on the performance of Yaq-c. The hard starvation threshold
(ST ) and relative starvation threshold (STr) both provide
the ability to limit how long a task is starved. We empirically
found STr to provide less benefit in decreasing overall job
completion time (JCT) when compared to the effects of ST .
The results we present here showcase the effect of various
hard starvation limits for the STF reordering policy, which
benefits the most from the starvation parameter (given it is
not job-aware as we discussed above). Figure 13 shows JCT
with the GridMix-MS workload using STF reordering, a fixed
queue size of ten slots, and various ST values. First, we ob-
serve that STF is sensitive to the ST value that is used. A
value of 0.5 sec, which marks tasks as starved early, essen-
tially falling back to the EJF strategy, works best for this syn-
thetic workload with tasks of each job being relatively homo-
geneous. High values (ST=10 sec) are detrimental, whereas
a value of 1.5 sec improves JCT for some of the jobs. Our
experiments also revealed that SRJF and LRTF reordering
are less sensitive to different ST values and that relatively
higher values can give better results. Being job-aware, these
strategies already prioritize the execution of starved straggler
tasks. For instance, an ST value of 10 sec worked best on the
more realistic Hive-MS production workload with SRJF. This
also suggests that the ST value should be calibrated based
on the characteristics of the workloads and the used strategy.

6.5.4 Heavy-tailed Workload
The task durations of the heterogeneous workloads we have
used so far (GridMix-MS and Hive-MS) follow an exponen-
tial distribution. In order to assess the impact of our tech-
niques on workloads with different characteristics, we mod-
ified GridMix-MS so that its task durations follow a heavy-
tailed distribution. Specifically, we increased the duration
of the longest 20% tasks by 500 secs. We use Yaq-c with
a queue length of ten slots and the SRJF reordering strategy.
Figure 14 show the gains in JCT that Yaq-c yields for this
heavy-tailed workload. In particular, it improves median job
completion time by 1.8x when compared with YARN.



7. Related Work
Our focus in Yaq is on the effective management of local
task queues at worker nodes, and, as such, is complemen-
tary to extensive prior work in centralized [14, 18, 26–28],
distributed [8, 11, 22, 23], and hybrid [10, 20] cluster sched-
ulers. We covered many aspects of these systems in previous
sections (particularly, in Section 1 and Section 2), and com-
plement our discussion here.

Local queues exist by necessity in distributed schedulers,
such as Sparrow [22], Tarcil [11], Hawk [10], Apollo [8],
and Mercury [20]. Sparrow and Hawk rely on the power of
two choices balancing technique when placing tasks. Tarcil
extends Sparrow’s placement by adopting a dynamically ad-
justed sample size. On the other hand, in Yaq-d, similar to
Apollo and Mercury, each scheduler uses information about
the nodes’ status to perform more educated placement deci-
sions, which is crucial for heterogeneous workloads.

To the best of our knowledge, in all existing schedulers,
whenever a running task finishes the next task selected for
execution is mostly based on FIFO. Apollo acknowledges
that queues can go beyond FIFO and be reordered, but does
not explore this in depth. In contrast, we present the first
extensive study of the impact of different queue management
strategies in the cluster’s performance.

While simple to implement, FIFO ordering can cause
head-of-line blocking whenever task execution times differ
significantly. This in turn impacts predictability of job ex-
ecution times. To mitigate this issue, existing systems take
extensive corrective mechanisms, such as duplicate schedul-
ing [8], dynamically rebalancing queues across nodes [20],
work stealing [10], and straggler mitigation [2, 12, 31]. Since
head-of-line blocking issues are inherent to queuing sys-
tems, similar to these systems, Yaq also incorporates correc-
tive mechanisms. Yaq goes beyond these systems by avoid-
ing these problems in the first place via careful placement of
tasks to nodes, bounding of queues and prioritization of task
execution, thus improving job completion times.

Our task prioritization strategies (see Section 3.3) have
commonalities with multiprocessor scheduling [3]. For in-
stance, SRJF is similar to the Shortest Remaining Time First
(SRTF) scheduling algorithm. However, unlike OS schedul-
ing, SRJF relies on job progress information arriving from
the RM/UM periodically, which can be stale. Moreover, in
Yaq we can only perform local reordering of tasks once they
have already been dispatched to a worker node.

Finally, our queue management techniques are related to
the scheduling of packet flows in networks. The goal in net-
work scheduling is to find a sweet spot between bandwidth
utilization and flow completion time, which can be seen as
related to cluster utilization and job completion time in clus-
ter scheduling, respectively. Recent work like, PDQ [19]
schedules flows based on earliest deadline first, pFabric [1]
relies on remaining flow size, and DeTail [33] on applica-

tion priorities. QJump [16] prioritizes packets based on flow
classes, set by a network administrator.

8. Conclusion
Our work is motivated by the observation that choosing be-
tween existing cluster scheduling frameworks imposes an
unnecessary trade-off. On one hand centralized schedulers
favor predictable execution at the expense of utilization;
on the other hand, distributed schedulers improve cluster
utilization but suffer from high job completion time when
workloads are heterogeneous. To address this trade-off, we
built around the idea of introducing queues at worker nodes.
In particular, a novel contribution of our work is that by em-
ploying queues for centralized frameworks, we achieve uti-
lization comparable to distributed schemes. We then develop
policies for active queue management, carefully choosing
which task to execute next whenever a running task exits,
with the goal of fast job completion times. The policies we
develop are equally applicable to both centralized and dis-
tributed scheduling frameworks. We built Yaq as an exten-
sion to YARN, deployed it on a large cluster and experi-
mentally demonstrated the gains using production as well
as synthetic workloads. Yaq improves job completion time
across all percentiles and, in particular, median job comple-
tion time by up to 9.3x, when compared to existing schedul-
ing schemes, such as YARN, Mercury and an implementa-
tion of Sparrows batch sampling on Mercury.
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A. Determining the Queue Length
We consider an arbitrary node that has r run slots and a
queue of length b slots. We want to determine the value of
the parameter b such that the utilization of the node is at least
1− δ for given parameter δ ∈ (0, 1].

We admit the following assumptions. Let τ be the length
of a heart-beat interval. The node is fed with new tasks at
the beginning of each heart-beat interval such that there are
at most r tasks being processed by the node and at most b
tasks being queued for processing at the node. Whenever the
node completed processing a task it starts processing one
of the tasks from the queue taken uniformly at random, if
there is any in the queue. We assume that task processing
times are independent and identically distributed according
to exponential distribution with mean 1/µ. This assumption
enables us to characterize the node utilization by leveraging
the memory-less property of the exponential distribution.

The node utilization is denoted with u and is defined as
the average fraction of time the run slots of the node are busy
processing tasks over an asymptotically large time interval.
More formally, let Qi(t) = 1 if at time t run slot i is busy,
and Qi(t) = 0, otherwise. Then, the node utilization is
defined by

u = lim
T→∞

1

T

∫ T

0

∑r
i=1 1(Qi(t) = 1)

r
dt.
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where 1(A) = 1 if condition A is true, and 1(A) = 0,
otherwise.

Let Xn,λ be a random variable with distribution that
corresponds to the sum of n independent random variables
with exponential distribution of mean 1/λ. Note that the
distribution of Xn,λ is Erlang distribution with parameters
n and λ, wich has the density function

fn,λ(x) =
λnxn−1e−λx

(n− 1)!
, for x ≥ 0.

Proposition 2. Under the given assumptions, the node uti-
lization is given by

u = 1−
((

1− 1

µτ

)
Pr[Xb,rµ ≤ τ ]

+
1

µτ

e−µτ(
1− 1

r

)b Pr[Xb,(r−1)µ ≤ τ ]

)
Proof. We are interested in the node utilization with respect
to the stationary distribution. Suppose that time 0 is the
beginning of a heart-beat interval. We can use the Palm
inversion formula (or ”cycle formula”) to note that the node
utilization is equal to

u =

∑r
i=1 IE

[∫ τ
0
1(Qi(t) = 1)dt

]
rτ

.

It suffices to consider an arbitrary run slot i of the node
and characterize the expected value of

∫ τ
0
1(Qi(t) = 1)dt.

By the memory-less property of the exponential distribution,
there are r + b tasks at time 0 whose (residual) processing
times are independent and have exponential distribution with
mean 1/µ. Whenever there are r tasks being processed by
the node, the earliest time until completion of a task is equal
in distribution to a minimum of r independent exponentially
distributed random variables each with mean 1/µ; hence, it
has exponential distribution with mean 1/(rµ). It follows
that the earliest time at which the queue is empty is equal
in distribution to Xb,rµ. From this time instance, each run
slot completes processing the task assigned to it after an in-
dependent random duration that has exponential distribution
with mean 1/µ. From this discussion, we conclude that

IE

[∫ τ

0

1(Qi(t) = 1)dt

]
= τ Pr[Xb,rµ > τ ]

+

∫ τ

0

IE[min{σ, τ − x}]dPr[Xb,rµ ≤ x]

where σ is a random variable with exponential distribution
with mean 1/µ.

By a simple calculus, we have

IE[min{σ, t}] =

∫ ∞
0

Pr[min{σ, t} > x]dx

=

∫ t

0

Pr[σ > x]dx

=

∫ t

0

e−µxdx

=
1

µ

(
1− e−µt

)
.

Hence, it follows that the utilization is given by

u = Pr[Xb,rµ > τ ]

+
1

µτ

∫ τ

0

(
1− e−µ(τ−x)

)
dPr[Xb,rµ ≤ x]

which by some elementary calculus can be written as as-
serted in the proposition.

Notice that, in particular, for a node with zero queue slots,

u =
1− e−µτ

µτ
.

A simple lower bound on the node utilization can be
derived as follows. Let Ak denote the event that in the k-th
heart-beat interval none of the run slots is every idle. Notice
that

u ≥ Pr[Ak].

The event Ak is equivalent to the event that the time
elapsed from the k-th heart beat until the completion of the
(b + 1)-st task, among the tasks present just after the k-th
heart beat, is larger than the length of the heart-beat interval
τ . Notice that the distribution of this time duration is equal
Erlang distribution with parameters b+ 1 and rµ. Hence, we
have

Pr[Ak] = Pr[Xb+1,rµ > τ ].

It follows that a sufficient condition for the node utiliza-
tion to be at least 1− δ is the following condition

Pr[Xb+1,rµ ≤ τ ] ≤ δ. (2)

Proposition 3. A sufficient condition for the probability that
in a heart-beat interval none of the run slots is ever idle is at
least 1 − δ is that the queue length b is the smallest integer
such that it holds

rµτ

(
1 +

b+ 1

rµτ

(
log

(
b+ 1

rµτ

)
− 1

))
≥ log

(
1

δ

)
. (3)

Before giving a proof of the proposition, we discuss the
asserted sufficient condition. If the task processing times
were deterministic assuming a common value 1/µ and the
length of the heart-beat interval is a multiple of 1/µ, then
for 100% utilization it is necessary and sufficient to set the
queue length such that b + r = rµτ . This yields the queue
length that is linear in rµτ , for any fixed value of the run
slots r. The sufficient condition in (3) requires a larger queue
length than rµτ for small values of rµτ . It can be shown that



the sufficient condition (3) requires the queue length that is
at least rµτ +

√
log(1/δ)

√
rµτ , for large rµτ .

For numerical examples, see Figure 5. Specifically, given
a heartbeat interval τ = 3 sec, an average task duration 1/µ
of 10 sec, r = 10 tasks allowed to be executed at a node
at the same time, and a target utilization of 95%, a queue
of b = 6 slots is required. Likewise, for an average task
duration of 30 sec, the queue size should be≥ 3 slots. These
values for b are also validated by our experiments (Section 6)
on the production Workload 2 of Figure 1.

Proof. The proof follows by (2) and the Chernoff’s inequal-
ity, which we describe as follows.

We first establish the following claim:

Pr[Xn,λ ≤ x] ≤ e−λx(1+
n
λx (log( n

λx )−1)), for x ≥ 0. (4)

Let σ1, σ1, . . . , σn be a sequence of independent expo-
nentially distributed random variables each of mean 1/λ.
Using Chernoff’s inequality, for every θ > 0, we have

Pr[Xn,λ ≤ x] ≤ eθxIE[e−θ
∑n
i=1 σi ]

= eθx
n∏
i=1

IE[e−θσi ]

= eθxIE[e−θσ1 ]n

= eθx
(

λ

λ+ θ

)n
.

The minimizer of the last expression is for the value of
parameter θ such that

λx+ θx = n.

Hence, we obtain the inequality asserted in (4).
Using (4), have

Pr[Xb+1,rµ ≤ τ ] ≤ e−rµτ(1+
b+1
rµτ (log( b+1

rµτ )−1)).

By requiring that the right-hand side in the last inequality is
smaller than or equal to δ, we obtain the inequality asserted
in the proposition.

For every integer value b such that condition (3) holds,
we have that Pr[Xb+1,rµ ≤ τ ] ≤ δ, which implies the node
utilization of at least 1 − δ. Since the left-hand side of the
inequality in (3) is increasing in b, it suffices to chose the
queue length that is the smallest integer b such that condition
(3) holds.
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