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ABSTRACT

Many large organizations collect massive volumes of data
each day in a geographically distributed fashion, at data
centers around the globe. Despite their geographically di-
verse origin the data must be processed and analyzed as
a whole to extract insight. We call the problem of sup-
porting large-scale geo-distributed analytics Wide-Area Big
Data (WABD). To the best of our knowledge, WABD is
currently addressed by copying all the data to a central
data center where the analytics are run. This approach con-
sumes expensive cross-data center bandwidth and is incom-
patible with data sovereignty restrictions that are starting
to take shape. We instead propose WA Nalytics, a system
that solves the WABD problem by orchestrating distributed
query execution and adjusting data replication across data
centers in order to minimize bandwidth usage, while re-
specting sovereignty requirements. WANalytics achieves an
up to 360x reduction in data transfer cost when compared
to the centralized approach on both real Microsoft produc-
tion workloads and standard synthetic benchmarks, includ-
ing TPC-CH and Berkeley Big-Data. In this demonstration,
attendees will interact with a live geo-scale multi-data center
deployment of WANalytics, allowing them to experience the
data transfer reduction our system achieves, and to explore
how it dynamically adapts execution strategy in response to
changes in the workload and environment.

1. INTRODUCTION

Large-scale organizations process massive volumes of data
each day. The total volume of data from activities such as
logging user interactions and monitoring compute infrastruc-
tures can be on the order of 10s or 100s of TBs each day.
The data are collected in a geo-distributed fashion across
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multiple data centers to ensure low latency for end-users,
regulatory compliance, and availability. Analyzing all these
geographically dispersed data as a whole is necessary to ex-
pose valuable insight. We call the problem of supporting an-
alytics on large volumes of geographically distributed data
Wide-Area Big Data or WABD.

WABD is typically addressed today by retrieving all the
data to a single data center where the analytics are run. This
centralized approach is problematic at large scales because
it uses a substantial amount of cross-data center bandwidth,
which is growing increasingly expensive and scarce [10, 7].
Moreover, this approach may soon be rendered impossible
by sovereignty regulations governing data movement.

In previous work we proposed an alternative geo-distributed
execution approach which pushes part of the computation to
each data center whenever this is beneficial, avoiding mov-
ing data between data centers and thus reducing bandwidth
costs [17, 16]. Our system, WANalytics, automatically op-
timizes query execution and data replication strategies to
minimize bandwidth cost, while respecting given regulatory
and fault-tolerance constraints. It employs several novel
techniques, including a pseudo-distributed execution mecha-
nism to collect precise measures of data transfer costs (used
during query optimization), and aggressive caching of in-
termediate results, which further reduce data transfers. In
our experiments, WANalytics achieved a reduction in data
transfer costs of up to 360x compared to the centralized
baseline both on a Microsoft production workload and sev-
eral standard synthetic benchmarks.

We have designed two versions of the system: one that
focuses exclusively on SQL computation [17], as well as a
more general-purpose version that supports arbitrary DAGs
of computational tasks [16]. This demonstration will show-
case the more mature SQL branch of WANalytics.

During the demonstration, attendees will interact with a
live deployment of WANalytics spanning data centers spread
across multiple continents. They will be able to submit
queries, obtain results, visualize in real-time the data trans-
fer reduction WA Nalytics achieves over the centralized base-
line, and examine how it adapts its execution strategy due
to changes in the workload and environment. We will pro-
vide pre-defined example workflows that attendees can fol-
low to expose the interesting features of our system. Demo
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Figure 1: WANalytics architecture

attendees will also be able to write and execute their own
arbitrary SQL queries.

We next provide a brief overview of WANalytics’ design
and capabilities (§2). We then describe the demonstration
setup (§3) and provide an overview of related work (§5) be-
fore concluding (§5).

2. WANalytics OVERVIEW

Figure 1 shows an overview of WANalytics’ architecture.

WANalytics manages data that are partitioned and/or
replicated across several data centers. Data are generated
externally by end-users processing transactions. WANalyt-
ics has no control over which data centers individual tuples
are initially logged to — the data partitioning scheme is
dictated by external considerations, such as the latency ob-
served by end-users — but may replicate data to other data
centers for performance and/or fault-tolerance.

The system presents an abstract, logically-centralized view
over the distributed data. Analysts write and submit SQL
queries against this logically centralized database. The WAN-
alytics command layer receives queries, partitions them to
create a distributed execution plan, and orchestrates dis-
tributed execution. At each data center the command layer
interacts with a thin proxy layer managing a single-data cen-
ter analytics stack (Apache Hive in our current implemen-
tation). The proxy layer provides support for transferring
data between data centers and manages a cache used for the
data transfer optimization in §2.3.

A workload analyzer (§2.1) analyzes measurements col-
lected at runtime, potentially using pseudo-distributed exe-
cution (§2.2), to identify if changes to the query execution
and data replication strategies would reduce data transfer
costs. During normal WANalytics execution the workload
analyzer would run periodically and occasionally, say once a
day, but for the purposes of this demonstration we will rean-
alyze the workload each time an attendee submits a query.

2.1 Workload Analyzer

WANalytics is targeted towards applications with a slowly
evolving core of recurrent queries. This matches our experi-
ence with Microsoft production workloads and is consistent
with reports on data processing pipelines at other organi-
zations. The workload optimizer jointly optimizes the com-
bination of base data replication strategy, logical execution
plan for each query, and the choice of which data center each
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task in the execution plan for each query is scheduled to run
on.

WANalytics makes these decisions using a split, two-level
optimization approach, in which (1) some choices, such as
join order, are initially locked down by a centralized SQL
query planner (a customized version we built of Apache Cal-
cite') using simple column-level statistics, and then (2) the
remaining choices, such as distributed execution and data
replication, are jointly optimized by an Integer Program
formulation, based on measurements collected at runtime
during query execution. [17] motivates this choice of ar-
chitecture, and argues that it is an attractive point in the
tradeoff between the complexity of the optimization process
and the quality of the solution it generates.

In some cases collecting the measurements needed for phase
(2) may require modifying query execution, using a mode we
call pseudo-distributed execution.

2.2 Pseudo-distributed execution

Consider a single-table database with a workload consist-
ing of one query performing an aggregation on the table.
Suppose the system currently operates in a centralized con-
figuration, in which all the data are copied to a single central
data center where the aggregation query is then run. Now
suppose we wish to evaluate the effect of moving to a dis-
tributed deployment in which data are left partitioned across
data centers, and the query is executed by obtaining partial
aggregation results from each data center which are then
combined centrally.

To estimate the cost of distributed execution we would
need to know the size of the partially aggregated output
that would result at each data center. When the query is
run centralized this information is unavailable, since all data
are combined during operator execution.

To measure data sizes (and thus determine the most ben-
eficial distributed execution plan), WANalytics instead sim-
ulates a virtual data center topology in which each partition
is housed in a separate logical data center. This is accom-
plished by rewriting queries and pushing down WHERE clauses
to restrict their operation to specific partitions/data centers.
Details are discussed in [17]. This approach is both com-
pletely general, capable of rewriting arbitrary SQL queries
to trace their execution on any given database, and very
precise, since it directly measures each data transfer instead
of relying on heuristic estimation.

Pseudo-distributed execution can end up slowing down
query execution (by up to 20% in our experiments), but it
never increases the volume of data transferred between data
centers, which is the sole metric we are concerned with.

2.3 Data transfer optimization

Consider a query on a sales-log table, asking for the av-
erage number of orders from each country over the past
week. Suppose the query is run once every day. Unopti-
mized WANalytics would recompute the query from scratch
each day, but this transfers 7x more data than necessary
since only the past day’s worth of data would have changed
each day.

To reduce data transfers, WANalytics aggressively caches
all intermediate results produced during query execution.
Before the results for any sub-query are transferred between

"http://optiq.incubator.apache.org/



two data centers, the system first checks to see if the sub-
query results are cached. If they are, WANalytics only com-
putes and sends the diff between the old and the new results.

Interestingly, caching helps not only when the same query
is run repeatedly, but also when two different queries share
the same sub-operation. For instance, the TPC-CH bench-
mark, one of the several synthetic benchmarks we evalu-
ated [17], contains 6 different queries, all computing slightly
different aggregates on top of the same data-intensive join,
and caching reduces the cumulative data transfer for all
these queries by 5.99x.

3. DEMONSTRATION

During the demonstration attendees will interact with a
live geo-distributed deployment of WANalytics, with data
stored across three data centers in North America, Europe
and South-East Asia?. Attendees will be able to run SQL
queries, visualize the reduction in data transfer costs from
using geo-distributed execution, and explore how WANalyt-
ics’ optimizer can adapt query plans in response to changing
conditions.

The demonstration will proceed in two phases. In the
first phase we will demonstrate example workflows (sets of
queries) that showcase interesting features of our system. In
the second phase attendees will be invited to interact with
the system directly by writing and evaluating arbitrary SQL
queries against the database.

3.1 Setup

The deployment will host a copy of the CH benchmark
database [3]. The database will be populated with some
initial data; attendees will also be able to have the system
simulate OLTP transactions that update the database (in-
creasing its total size) over the course of the demonstration.

Figure 2 shows the user interface that attendees will in-
teract with. The interface provides three options:

e Reset the system to its initial state.

e Update the database by simulating a specified volume
of OLTP transactions.

e Run SQL queries analyzing the data.

Whenever a query is submitted, WANalytics first gen-
erates an initial query plan using simple column-level his-
togram statistics. After the query is run once, the system
will have collected enough detailed information (§2.2) to be
able to produce an updated, optimized query plan, which
will be used on subsequent runs of the query®. The log at
the bottom of the UI provides a visualization of both plans.
Note that WANalytics jointly optimizes the plans for all
queries in the workload, and thus the optimal plan identi-
fied for a given query may change as the workload evolves
and expands.

The dashboard on the top-right provides visualizations of
both the current, real-time data transfer volumes along each
network link, as well as a comparison of cumulative cost over
time against the centralized baseline.

2We will also provide a simulated 3-data center setup, hosted
locally on the demonstration machine, as a fallback in case
of e.g. network connectivity problems at the conference site.
SRecall (§2) that WANalytics targets applications with a
recurrent workload, consisting of queries that arrive repeat-
edly. Using a potentially sub-optimal plan for the very first
run of any query is reasonable in this context.
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3.2 Demo phase 1: Example workflows

In the first phase of the demonstration we will run through
example workflows to showcase the interesting features of
our system. Some candidate examples:

1. Intra-query caching

Consider a query asking for the total sales volume on each
day:

Q: SELECT date, SUM(sales_price) AS total_sales
FROM orders
GROUP BY date

The first time @ is run, the system will need to retrieve
daily sales volumes over all historical data from each data
partition. But subsequent reruns of (), after OLTP updates
logging new orders, will be much less data-intensive — the
caching mechanism WANalytics uses (§2.3) will ensure that
only the new information since the last run is retrieved.

2. Inter-query caching

Consider the following two queries, run one after the other:

Q1: SELECT supplier_country,
SUM(sales_price) AS total_sales

FROM orders JOIN suppliers

USING supplier_no

GROUP BY supplier_country

Q2: SELECT supplier_category,
SUM(sales_price) AS total_sales

FROM orders JOIN suppliers

USING supplier_no

GROUP BY supplier_category

Both queries compute slightly different projections on top
of the same (data-intensive) join. Since WANalytics caches
all intermediate results produced during query computation
(8§2.3), it reduces data transfer volume almost by half by
avoiding processing the join from scratch twice.

3. Single-query optimization

Consider the query

Q: SELECT customer_name, SUM(order_value)

FROM customers JOIN orders

USING customer_id

WHERE orders.order_date BETWEEN
’2001-01-01’ AND ’2001-12-31°

GROUP BY customer_name

asking for historical sales volumes. Since the customers ta-
ble keeps growing over time, as new customers keep being
added, only a fairly small fraction of the customers table
will have any matching entries in the orders table for the
specified date range. A semi-join strategy, starting out by
shipping out the list of distinct customer_ids who placed an
order in the date range, turns out to be optimal in this sce-
nario. However, the simple histogram heuristics that WAN-
alytics’ initial query planner uses [17] can cause it to overes-
timate the join cardinality and suggest a hash join instead.
However, once statistics are collected after an initial run
using this strategy (§2.2), the optimizer would notice and
switch to the optimal query plan.
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4. Multi-query optimization

Consider the following two queries
Q1: SELECT item_id, COUNT(supplier_id)
FROM stock JOIN suppliers

USING (item_id)

WHERE stock.country = ’USA’

GROUP BY item_id

Q2:
FROM lineitems JOIN suppliers
USING (supplier_id, item_id)

GROUP BY supplier_country, item_id

SELECT supplier_country, item_id, SUM(sale_price)

The (filtered) stock table is much smaller than the suppliers

table, which is in turn much smaller than the lineitems
table. If Q1 is the only query in the workload, WANalyt-
ics would process the join in Q1 by filtering the stock table
and broadcasting the results to each of the larger suppliers
table’s partitions. But once Q2 is added to the workload,
WANalytics notices that broadcasting the suppliers table
instead for Q1 would allow it to take advantange of cross-
query caching, as in example 2, and amends the query plan
for Q1 accordingly.

3.3 Demo phase 2: Arbitrary user-provided
workflows

In the second phase of the demonstration attendees will be
invited to interact directly with the system, and explore how
WANalytics processes and optimizes arbitrary SQL work-
loads they construct.

4. RELATED WORK

We now briefly discuss some directly relevant contribu-
tions from past work; we survey related work in greater de-
tail in [16] and [17].

The WABD problem is closely related to literature in dis-
tributed and parallel databases [9, 13, 6], but our focus on
analytics instead of transactions, the scale of the problem
we target, our attention to bandwidth, and our exploration
of more general computational models (with workflows of
arbitrary tasks [16]) all render our problem significantly dif-
ferent.

Hive [15], Pig [12], Impala [1], Shark [18] and similar scale-
out systems support analytics on continuously updated data,

but are designed for single-cluster operation. PNUTS/Sherpa [4]

does support geographically dispersed data but lays out data
to reduce latency and not to minimize analytics cost. Span-
ner [5] supports OLTP workloads on geo-distributed data.
Mesa [8] and Riak [2] replicate data across data centers for
fault-tolerance but do not address distributed analytics ex-
ecution.

Sensor networks [11] share a similar problem of minimiz-
ing the use of expensive network bandwidth, but not our
massive scale or the breadth of our computational model.
Stream-processing databases process long-standing queries
on dispersed data, but the focus of work in this area has
been on relatively simple computational models. A repre-
sentative recent example, JetStream [14], targets a limited
computational model centered around aggregation queries
and does not, for instance, support joins.
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S. CONCLUSION

Persistent growth in data volumes and rising interest in
sovereignty regulation are rendering the current centralized
approaches to geo-scale analytics increasingly untenable. We
propose an alternative geo-distributed execution approach
that is much better adapted to these requirements. Our
system, WANalytics, incorporates several novel techniques
inspired by revisiting classical database problems from a net-
working perspective. This demonstration showcases WAN-
alytics’ capabilities by allowing attendees to interactively
construct and submit arbitrary SQL workloads on a live geo-
scale multi-data center WANalytics deployment.
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