Urban Sensing Based on Human Mobility

Shenggong Ji'*, Yu Zheng>'*7, Tianrui Li'
ISouthwest Jiaotong University, Chengdu, Sichuan, China; 2Microsoft Research, Beijing, China
3Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences
shenggongji@163.com, yuzheng @microsoft.com, trli@swjtu.edu.cn

ABSTRACT

Urban sensing is a foundation of urban computing, collecting
data in cities through ubiquitous computing techniques, e.g.
using humans as sensors. In this paper, we propose a crowd-
based urban sensing framework that maximizes the coverage
of collected data in a spatio-temporal space, based on human
mobility of participants recruited by a given budget. This
framework provides participants with unobstructed tasks that
do not break their original commuting plans, while ensuring a
sensing program balanced coverage of data that better support-
s upper-level applications. The framework consists of three
components: 1) an objective function to measure data cover-
age based on the entropy of data with different spatio-temporal
granularities; 2) a graph-based task design algorithm to com-
pute a near-optimal task for each participant, using a dynamic
programming strategy; 3) a participant recruitment mechanism
to find a portion of participants from candidates for a given
budget. We evaluate our framework based on a field study and
simulations, finding its advantages beyond baselines.

ACM Classification Keywords
H.4.m Information Systems Applications: Miscellaneous

Author Keywords
Urban Computing; Urban Sensing; Crowdsensing

INTRODUCTION

Urban sensing is the foundation of urban computing [24],
collecting data generated in urban spaces using different kinds
of sensors. One type of urban sensing leverages people as
sensors (i.e., crowd sensing [6]) to probe the physical world.
In such crowd-based urban sensing applications, we hope the
collected data can have a good coverage in both spatial and
temporal spaces (called balanced data) so as to better support
upper-level functions, such as monitoring [21], inferences [25]
and predictions [27]. For example, to diagnose urban noises,
we hope people participating in a sensing program can collect

“The research was done when the first author was an intern in Mi-
crosoft Research under the supervision of the second author.
"Yu Zheng is the correspondence author of this paper.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions @acm.org.

UbiComp ’16, September 12-16, 2016, Heidelberg, Germany

©2016 ACM. ISBN 978-1-4503-4461-6/16/09. .. $15.00

DOI: http://dx.doi.org/10.1145/2971648.2971735

sound levels throughout an entire city and across different time
intervals. Likewise, to better monitor traffic conditions of a
city, we expect people traveling on different road segments
can contribute their GPS trajectories at different time intervals.
As human mobility is highly skewed [3] and uncertain [1, 7] in
a city, however, it is difficult to design urban sensing methods
that can result in data with a balanced coverage.

In this paper, given a budget, a geographical region and a
time span, we design an urban sensing framework, which
recruits participants and assigns tasks to them based on their
mobility so as to maximize the coverage of collected data
in the given spatio-temporal space. As illustrated in the left
part of Figure 1, the owner of an urban sensing program can
publish a geographical space (denoted by the broken red box)
and a time span (e.g. 7-10am) where they are going to collect
data, the type of data, as well as the minimal reward for each
hour a participant can obtain. If interested in it, participants
(e.g. uy, uy, uz) submit the information about their mobility,
consisting of an origin, a destination, a departure time, and an
arrival time, before the sensing program starts. Our system
estimates the slack time of each participant based on their
mobility (i.e., the time span between a participant’s arrival and
departure times minus the necessary time needed for traveling
between an origin and a destination). The system will then
select proper participants (e.g. u; and u;), based on their
slack times and a budget specified by the program owner, to
maximize the collective coverage of the data those participants
will potentially collect in the spatio-temporal space. As shown
in the right part of Figure 1, each participant is assigned a task
that is comprised of a reward (») and a sequence of collecting
locations with corresponding time intervals. In case the data
is not completely collected as planned (e.g. experiencing car
accidents or traffic congestion), the system will conduct a
second round of participant recruitment based on collected
data (denoted by the tensor) and other participants’ mobility,
until the budget runs out or the given time span is out.

Participant
Recruitment and
Task Design

Cqllegted
th Data

i i

Time Span: 7-10am Il Sensing Tasks for u and u,

Figure 1. The procedure of our urban sensing framework.

Such an urban sensing framework can provide participants
with unobstructed tasks that do not break their original com-

muting plans, while ensuring a sensing program has the best
coverage of data that can better support upper-level applica-
tions (check Related Work for more details). To achieve this
goal is challenging, however, given the following reasons:
First, to define the coverage of collected data is non-trivial in a
spatio-temporal space, where spatial and temporal dimensions
can have different granularities [18]. Partitioned by different
geographical sizes and different lengths of temporal intervals,
collected data will present different distributions. The evalua-
tion of data coverage will significantly affect the task design
and participant recruitment. Second, while there are numer-
ous task candidates that can be assigned to a participant (e.g.
multiple paths satisfying its commuting plan), we try to find
a near-optimal task to maximize the data coverage. Third,
to recruit participants from a given pool of candidates is a
NP-hard problem [16, 2], which is hard to solve efficiently.

To address these issues, we propose an urban sensing frame-
work that is comprised of an objective function, a graph-based
task design algorithm and a participant recruitment mechanis-
m. Our contributions are four-fold:

o The objective function measures the coverage of collected
data through computing the entropy of data represented with
different spatio-temporal granularities (e.g. the hierarchy
of geographical spaces and the length of time intervals).
This function quantifies the coverage of data for an urban
sensing program, improving the task design and participant
recruitment significantly.

o The graph-based task design algorithm constructs a location
graph based on a participant’s mobility and the data that has
been collected, finding a near-optimal task that maximizes
the data coverage of the sensing program for the participant
using a dynamic programming strategy.

e The participant recruitment mechanism first randomly se-
lects participants from a candidate pool and then replaces
these selected participants gradually by other candidates
left in the pool, until the coverage of the data that will be
potentially collected is not improved anymore. This mech-
anism solves the NP-hard problem efficiently, resulting in
a data coverage close to those generated by computational
expensive methods, such as the greedy-based mechanism.

o We evaluate our framework based on the real human mobil-
ity of 34 users. The field study and simulation results have
shown the advantages of our framework beyond multiple
baseline approaches.

OVERVIEW

Preliminary

Definition 1 (Participant): A participant is a tuple u =<
Is, Lo, ts, to, v >, Where [, [, 5,1, are the participant’s origin,
destination, departure time and arrive time, respectively, and
r refers to the reward we will give to the participant. r is
calculated based on the participant’s slack time:

r= rtx{(te_ts)_t(lssle)} (1)

where r, is the unit reward per hour and the latter part is the
slack time of participant u; #(/;, [.) denotes the necessary travel
time between [/, and /,.

Definition 2 (Task): An urban sensing task s is a sequence of
collecting locations associated with collecting time intervals,
in which data is to be collected, i.e., s = (I1, 1) — (b, 1) —
.-+, where [denotes the collecting location and ¢ refers to the
collecting time interval.

Definition 3 (Sensed Data): The sensed data is represented by
a three-dimension tensor A, where an entry A(i, j, f) denotes
the amount of data collected in location (i, j) at time interval
t. In this study, we divide a city into uniform grids. Location
(i, j) denotes the grid at the i-th row and j-th column.

Problem Definition

Given a pool of participant candidates U = {uy, uy, ..., u,} and
a budget B, the urban sensing problem is to 1) recruit a portion
of participants U’ in U, 2) design a task s, for each recruited
participant u € U’, such that the coverage of data collected
¢(A) is maximized, formally defined as:

max ¢(A)
y Sucyr Ur < B (2
o A= ZuEU’ ‘7{31«

where A, is the data sensed by s,; we will detail ¢(A) later.

Framework

Figure 2 presents the framework of our urban sensing ap-
proach, which is comprised of three main components: join
and sensing, task design, and participant recruitment.

*
— —» Replacement !ﬁ Unselected Participants ' Selected Participants

- . o e oo @ 00022
cle Location Graph e 0 0o ° o .,g
215 Construction g
) o @,0 0 © 0,0 05
S | t 1
2 Path % |Location Value Location

. [© .
- Computing ~ | Measurement Selection
i + 1t

Objective
Function

Select one
participant

Time Span
o

Join and Sensing Participant Recruitment

Figure 2. The framework of our urban sensing system.

In the first component, as illustrated in the bottom part of
Figure 2, people can create an urban sensing program by sub-
mitting a geographical region and a time span where data will
be collected, together with the type of data to be collected, a
budget (e.g. the amount of money they would like to pay), and
the minimum reward that a participant can obtain each hour.
If interested, participants (denoted by gray human icons) can
submit information on their mobility, consisting of an origin,
a destination, a departure time, and an arrival time, through

their mobile devices. If being recruited, a participant (denoted
by red human icons) will receive a task which consists of a
sequence of collecting points and corresponding time intervals
where the participant should collect data. Afterwards, those
selected participants go collect data in the real world following
the assigned task and return the collected data to our system
through their mobile devices.

In the task design component, as depicted in the top of Figure
2, we design a task for each participant, based on their mo-
bility and the data that is expected to be collected, through
four steps. First, we check each location individually in the
geographical region, finding the locations that can be reached
by a participant between their departure time and arrival time.
Each selected location is associated with a time interval in
which data can be collected (called collecting time interval).
Second, we measure the value of each selected location (for
improving data coverage, denoted by different colors in Figure
2) based on an objective function and the data that is supposed
to be collected. For example, if a location or its spatial neigh-
bors have just been sensed by other participants, the value of
data at this location should be lower than those that have never
been explored. We call such values of data coverage value. In
the third step, we connect two selected locations /; and I, if
a participant can reach [, at its collecting time interval after
collecting data in /;. In this way, we can construct a location
graph with each node denoting a location with a collecting
time interval and a coverage value. In the location graph, each
path from the participant’s origin to destination is an unob-
structed task candidate. Finally, we search the location graph
for a near-optimal path with near-maximum coverage value.

The participant recruitment component is comprised of two
steps: participant selection and participant replacement [2],
as demonstrated in the middle part of Figure 2. First, we
select participants from a candidate pool, randomly and one-
by-one. By calling the task design component, we assign each
participant a task and update the data that has been planned to
be collected (denoted by the sensed data). At this moment, the
data has not really been collected yet. The total budget is then
reduced by the reward that will be given to the participant. We
repeat the participant selection process until the budget has
been used up. Afterwards, we start the participant replacement
process, which randomly replaces one participant from the
selected group (denoted by the red human icons) with another
participant from the candidate pool. If the data coverage is
improved by the replacement, we keep the change; otherwise,
we drop the replacement and continue to find another pair of
participants to do the replacement. We repeat the replacement
process until the data coverage is not improved at all after
certain times (e.g. 100 times) of consecutive attempts.

OBJECTIVE FUNCTION

In this section, we discuss the difficulties of evaluating data
coverage and then we propose a hierarchical entropy-based
objective function.

Difficulty on Evaluating Data Coverage
In an urban sensing application, data coverage is usually mea-
sured by its amount and distribution. While the amount of

data is easy to measure, the distribution of data is difficult to
evaluate in a spatio-temporal space. Partitioned by different
geographical sizes and different lengths of temporal intervals,
collected data will present different distributions. For example,
as shown in Figure 3, with the given spatial and temporal s-
pace, we can have both a fine-grained partition (Figure 3E) and
a coarse-grained partition (Figure 3F). With the fine-grained
partition in the spatial space in Figure 3A and Figure 3C, the
two datasets (denoted by blue circles) can both cover 4 out
of 16 grids, which indicates that they may have the same data
coverage. However, if it has a coarse-grained partition, the
first dataset only covers 1 out of 4 grids (Figure 3B), while the
second dataset can cover the entire 4 grids (Figure 3D).

Nele ol @ ® .
[AN)) -
™)
(] ~
) ° 7
T 2 3 4 1%
B e e D) ° Ay A
[2 J [] N
[]
...... 4 -
j=2
.‘ == it

Figure 3. Different granularities of partitions and data distributions.

Hierarchical Entropy-based Objective Function
To address this issue, we propose a hierarchical entropy-based
objective function ¢(A), defined as

H(A) = aEA) + (1 —) log, O(A), 3

where E(A) denotes the hierarchical entropy of the collected
data A, measuring the balance of data A; Q(A) refers to
the amount (quantity) of the collected data; @ € [0, 1] is
a parameter to tune the importance of data balance to data
amount, which can be application-specific. For example, we
can set « larger to make an urban sensing program focus
mainly on collecting balanced data. To make @ more sensitive,
in our objective function (Equation 3), we apply log, Q(A),
instead of Q(A), as log, Q(A) and E(A) are with more similar
order of magnitude. Formally, the data amount Q(A) is

OA) = > AG, j,1),)

i,jit
where A(i, j,) denotes the amount of data collected in grid
(i, j) at time interval ¢. Below, we detail the data balance E(A).

To measure the data balance of the collected data A, we pro-
pose the hierarchical entropy E(A) to simultaneously consider
the data balance at different spatial and temporal granularities
(i.e., from fine-grained partitions to coarse-grained partitions).
The insight is that a balanced data coverage is expected to be
balanced at each granularity. Specifically, the data balance at
each granularity is evaluated using entropy and a balanced data
distribution has a large entropy. That is, our hierarchical data
balance E(A) is the entropy aggregation of data distribution
at each granularity. We define it as

Kumay

E(A) = Z W(K)E(AK))/ kmasx, &)

k=1

where k., is the number of granularities we consider in the
given spatio-temporal space; the weight factor w(k) is to make
data balance at each granularity contribute equally to E(A);
E(A(k)) is the data balance (i.e., the entropy) at granularity £,
which is defined as:

E(AK) = - Z p, j tlk) log, (p(i, j, k), (6)
ijit
where p(i, j, tlk) = A, j, tlk)/ Q(A); A(, j, tlk) is the amount
of data collected in grid (i, j) at interval ¢ from the perspective
of granularity k. For granularity k, we denote 1(k), J(k) as the
number of rows and columns in the spatial space and 7T (k)
as the number of time intervals. When the data A is evenly
distributed at granularity k, we can get the maximum entropy
log, I(k)J (k)T (k). Consequently, we can set the weight factor
. . _ log, I(HJ(DT(D)

w(k) in Equation 5 as w(k) = m such that for each

granularity k, w(k)E(A(k)) has the same maximum value.

To demonstrate the effectiveness of the proposed hierarchical
entropy E(A), as shown in Figure 4, we consider two datasets
in the spatial space. First, we have k,,,, = 2 granularities of
partitions with /(1) = J(1) = 4 and /(2) = J(2) = 2. Then
we can get E(A) = 1 for the first dataset (Figure 4A) and
E(A) = 3 for the second (Figure 4B). That’s, the dataset in
Figure 4B is much more balanced than the dataset in Figure
4A, which is quite consistent with our common knowledge.

Fine-grained Coarse-grained

Figure 4. Data balance considering hierarchical partitions.

Given the collected data A, to efficiently compute the objec-
tive value ¢(A), we provide a method which takes only O(1)
time complexity. The method is detailed in Appendix 1. In
comparison, if without the efficient method, computing ¢(A)

directly based on its definition is with O{ZIZZT 1(k)J (k)T (k)}
time complexity, which can be fairly expensive for two aspect-
s. On one hand, as we’ll see later, we need to compute the
objective value ¢(A) very frequently when designing tasks for
participants. On the other hand, I(k), J(k), T'(k) can be very

large in some real-world urban sensing applications.

TASK DESIGN

Location Selection

In our urban sensing framework, an urban sensing task is
defined as a sequence of collecting locations with correspond-
ing time intervals. Thus, before designing such a location
sequence for a participant, we need to first select all individual
locations that the participant can reach, based on its mobility
information. Note that a location can be associated with many
time intervals, as participants may sense data in a location at
different time intervals. Similarly, for a time interval, there
could be many locations that the participant can reach.

To select all such individual locations, we check each location
in the given geographical region. Specifically, if a participant
can reach a location at a time interval while not violating its
original commuting plan, two constraints should be satisfied:
1) before the end of this time interval, the participant can reach
the location and finish sensing the data; 2) after sensing the
data, the participant can reach its destination timely (i.e., be-
fore the given arrival time) to not break its original commuting
plan. Basically, it takes some time to perform data sensing.

Obviously, participants’ travel time estimation is crucial. For a
given commuting mode (e.g. driving), travel time estimation is
easy with previously well studied methods. For example, using
the method proposed in [19], taxicabs’ travel time estimation
error is just 2.6 minutes on average. Actually, we can also
put aside some slack time for potential unexpected situations
(e.g. traffic accidents). However, in some cases, participants
will take two or more commuting vehicles during one single
trip (e.g. driving — bicycle — bus) and travel time estimation
becomes complicated: 1) Participants can clearly report each
commuting mode’s origin, destination, departure time, and
arrival time, then we can split a trip with many commuting
modes into many sub-trips with one commuting mode [23],
whose travel time can be well estimated; 2) Otherwise, travel
time estimation is difficult (beyond our consideration scope).

We detail the process of location selection using the example
in Figure 5. A time interval is supposed to be 10 minutes.
To check a location (location 2 for example), we need to go
through two steps. First, we estimate the travel time needed
for the participant traveling from its origin to location 2 (18
minutes) and the travel time from location 2 to its destina-
tion (16 minutes), as shown in Figure SA. It implies that the
participant can reach location 2 at 8:43 and should leave for
destination before 8:58. Next, we find that location 2 can
only be associated with two time intervals, i.e., 9:40-50 and
9:50-60 (Figure 5A), ruling out the time intervals before 8:43
(Figure 5B) and after 8:58 (Figure 5C). In this way, we can
check each location and obtain all individual locations that the
participant can reach. Let’s denote L, as the set of locations
that the participant can reach at time interval ¢. In this example,
we have L8;40_5() = {1, 2, 5} (Figure SD), L3:50_(,0 = {2, 5, 6}
(Figure 5E) and Lg.gp-19 = {3, 6} (Figure 5F).

A) B) 82030 om) | [-C) 9:0010 91d)
83040 i 910-20 i

@ fc fc 16 min f: 6 min

‘E g 25) £

S O LS

D 1 "@m | [E) sm) | [-F) o14) |

‘ 8:40-50 ad ag an

_— 9:00-10

an an 8:50-60 ai

Figure 5. Location selection for a participant.

Location Value Measurement

Given the current collected data A, sensing data in differen-
t locations may have different contributions to overall data
coverage ¢(A). We call such a contribution of a location the
coverage value. Intuitively, a location with more coverage
value is more likely to be included in a designed task. The cov-
erage value of a location is also associated with time intervals

as a location at different time intervals could contain different
coverage value. Formally, given the already sensed data A,
the coverage value of the location / = (i, j) at time interval ¢,
denoted by ¢{(/,)| A}, is formulated as

AL DIA} = $(A + Aqp) = $(A), (N

where A, refers to the data sensed at location / = (i, j) at
time interval 7, i.e., A, is null except A (i, j, t) = 1. Indeed,
the coverage value ¢{([,)| A} is the marginal coverage gain if
new data in location / at time interval ¢ is designed to be added
into the already sensed data ‘A.

As we expect a balanced data coverage in both the spatial and
temporal space, for the coverage value of a location there are
two typical cases: 1) If some participants have just sensed data
in a location or its spatial neighbors, the coverage value in this
location at current time interval will drop significantly; 2) On
the contrary, a location that has not been explored for a long
time, is supposed to be with more coverage value.

Location Graph Construction

With selected individual locations, to extract all task candi-
dates is definitely non-trivial. As defined, a task candidate
is a location sequence (I1,7;) — (l,t) — ---, which sat-
isfies t; < #, < ---. However, not all location sequences
satisfying the constraint is a task candidate. Intuitively, even
if 1 < 1, the participant still might not be able to reach I,
from /; within #, — #;, especially when [, and /; are far away
from each other. This means we need to further check whether
a location sequence is a valid task candidate or not, based
on the participant’s travel time needed between two location-
s. However, to check all possible location sequences is not
possible, due to its extremely high cardinality. Specifically,
for a participant with selected individual locations at different
time intervals, denoted by L, L,,--- , L,,, ., there are totally
]—[;’l“l‘ Z'rﬁi 17 Ll,?—‘:!nu location sequences. Obviously, the number
of location sequences grows exponentially to the amount of
individual locations. In the real world, unfortunately, there
could be hundreds of individual locations, especially when
participants have lots of slack time (Figure 6A).

x 10°

directed edge from location (I;, #;) to location (5, t;) (Figure
8). Hence in the location graph a path from the participant’s
origin to destination, implying the participant is able to cover
each location one by one, is a task candidate, and to extract all
(unobstructed) task candidates is to extract all such paths.

However, to construct such a location graph is not easy, since
sometimes we can’t identify whether the participant can reach
location (1, ;) from location (/;, #;). For example, as shown in
Figure 7A, if we only know the participant reaches location 5
at time interval 8:40-50, there could be two different situations:
1) the participant reaches location 5 at 8:41 (Figure 7B) and
then she can reach 2 at 8:50-60; 2) the participant reaches
location 5 at 8:45 (Figure 7C) and will fail to reach location
2 at 8:50-60. The key point here is that, the participant may
reach the location at any time stamp in the given time interval,
which will lead to completely different results.

3500
30001

N
a
=]
S

2000

o o
S o
S S

of Selected Locations

o
=]
S

00 200
Slack Time (minute:

L
300
s)

400

3.5

3k

= g
- o N o>
T T

Puke s, >

of Selected Locations

0

100

I
200

I
300

Slack Time (minutes)

400

A) Location associated with time interval B) Location associated with time stamp
Figure 6. Real-world statistics on the cardinality of selected locations.

To efficiently extract task candidates, we construct a location
graph (Figure 9) for a participant, in which vertices include
all selected individual locations, the participant’s origin and
destination. We study the spatio-temporal relation between
any two selected individual locations, and if the participant
can reach location /, at time interval ¢, from location /; at #;
(i.e., reach location (I, 1) from location ([, #)), we link a

IVEC! @ ‘@@ B[] [W ol *W
o o o
‘ =] ! ‘ = K ! ‘ | o=l :
A LT = = £
&D— 8:40-50 1 &D— 8:41 1 &D— 845

Figure 7. Importance of time stamp information for graph construction.

To address this issue, we intend to select locations that a par-
ticipant can reach before some exact time stamps, i.e., some
specific time stamps in the time intervals. As illustrated in Fig-
ure 8, given the mobility information of the participant, we first
select some specific time stamps (e.g. 9:00, 9:04 and 9:08).
And then we select the locations that the participant can reach
before each specific time stamp, that’s Lo.go0 = {1,2, 3,5, 6},
Lo.os = {3,4,6,7,9,a} and Loog = {7,8,b,c}. The specific
time stamps can be set to be with an equal time gap ¢, (e.g.
t; = 4 minutes in Figure 8) and when ¢, approaches 0, the loca-
tions associated with time stamps are close to those associated
with time intervals. Based on the exact time stamps and the
estimated travel time between locations, we can directly tell
whether a participant is able to reach one location from the
previous one, and if yes, there is an edge (see Figure 8).

a0

9:11
-7 -4 P
P P PEag 2
9:08}<~ == == 5 s
9:041=7" e ==
P ‘:\7/ < = rid =
9:00p=* i - - ~ - 3
i 9 @—" C
T 5 6) o)
8:57

Figure 8. Location selection associated with specific time stamps, i.e.,
9:00, 9:04 and 9:08 (7, = 4).

Now, we can formally construct a location graph G(u|A) for a
participant u, as shown in Figure 9. The vertices V in the graph
G(u|A) contains two parts: 1) each selected location [/ with
a time stamp ¢ and a coverage value as defined in Equation
7 (for a location, the coverage value at a time stamp is its
coverage value at its corresponding time interval); 2) the origin
l; and destination /, of the participant u associated with its
departure time ¢, and arrival time f,, respectively. The edges E
in the location graph is also comprised of two components: 1)
according to the location selection process, there always exists

a directed edge from the participant’s origin (/y, ;) to each
selected location (/, t) and a directed edge from each selected
location (/, f) to the participant’s destination (/,, #.); 2) for any
two locations (I, ¢1) and (I, t,), if the participant can reach /,
before the time stamp #, from /; at time stamp ¢, then there is
a directed edge from location (I}, #,) to location (I, #2).

| | |
8:26 8:30 8:35 8140 845 818

Figure 9. The constructed location graph for a participant. The figure
around each location denotes its value, for example, the coverage value
of location 3 at 8:30 is 3. The first type of edges are not demonstrated.

Constructing such a location graph has little influence on the
time efficiency of our task design, given the following two
reasons: 1) we can construct the location graph once receiv-
ing the participant’s mobility information, before the urban
sensing program starts; 2) given different A’s, we just need
to update the coverage value for each location (Equation 7),
leaving the remaining parts of the location graph unchanged.

Path Computing

Based on the location graph, we can give a formal definition
for task design now: to design the best task s, for participant u
is to find the optimal path from the participant’s origin (/y, t;)
to destination (., #.), denoted by (I, t,) — (I1,11) = (b, 1) —
- = (Iy, ty) — (e, 1), such that the overall coverage value
of all locations in task s, = (I1,1;) = (o, 1) = -+ = (Ip, ty)
is maximized. Mathematically, it is

max (s A) = ¢(A+ Ay,) = $(A), ®)

where ¢(s,|A) refers to the marginal improvements for data
coverage if all data in the task s, is designed to be sensed; Aj,
denotes the data sensed from the task s,,.

Nonetheless, to find such an optimal path could still be very
computationally expensive. As our hierarchical entropy-
based objective function ¢ is non-linear, i.e., ¢(s,|A) #
Z%:l &, t)| A}, to get the optimal path we must check
each path from the participant’s origin to destination, whose
cardinality can be quite large. As shown in Figure 6B, in real-
world scenarios, the number of selected individual locations
(vertices for the graph) grows drastically with the increase of
the participant’s slack time, which could result in numerous
paths from the participant’s origin to destination.

To address this issue, we intend to find an efficient near-optimal
path (task) such that only a very small portion of paths from
the participant’s origin (I, t,) to destination (/,, z,) are needed
to be tested. Specifically, instead of maximizing the overall
coverage value of all locations in a path (Equation 8), we turn
to maximize the sum of each location’s coverage value, i.e.,

M
max Z (L, 1) A} ©)

m=1

To efficiently find such a near-optimal path (task), we provide a
dynamic programming strategy [4] based on two observations.
First, as shown in Figure 9, the location graph is directed
and acyclic such that selected locations can be classified into
different layers according to their time stamps, denoted by
Ly, Ly, - (e.g. L1 ={2,1,3} in Figure 9). Edges start from
locations with smaller time stamps (called lower layers) to
higher layers. Second, based on the first observation, we can
iteratively compute the best path from /; to each location /,
layer by layer. Initially, the best path from [to each location
[at the first layer L, is directly to be (I, #,)—(l,t). To find
the best path from [, to each location [at the second layer L,,
taking (4,8:35) for example, we first find all locations linking
to (4,8:35), denoted by (4,8:35)"={(2,8:30),(1,8:30)}. Next,
we select the best vertex from (4,8:35)™, i.e., (1,8:30), as the
best path (I;, #,)—(1,8:30) (with coverage value 2) contains
more coverage value than the best path (I, #,)—(2,8:30) (with
coverage value 1). Finally, the best path from /; to (4,8:35) is
directly to be ([, t,)—(1,8:30)—(4,8:35). In this way, we can
iteratively compute the best path from (/y, £;) to each selected
location (/,), including (Z., t,), from which we get the task s,,.
We formally detail our dynamic programming process below.

1. For each ! € Ly, the best path from [to [is Path{(l;, t;) —
(I} = (s t;) — (I,1) and the coverage value of each
location in the path is ¢{(Is, ;) — (I, 1)} = &{(L, H)|A}.

2. Foreach! € L, (t > 2), we first extract those locations which
have a link to (/,), which is denoted by (/,). For example,
in Figure 9, we have (4,8:40)" ={(2,8:30),(4,8:35),(5,8:35)}.
Then, we find the best location (I, tpes;) from (I,)™ where
Path{(ls,ts) = (lpest» trest)} 1S With most coverage value, i.e.,
Upests test) = argmaxg, gyeon P1(Us, t5) — (lo, to)}. After
that, we directly obtain the best path Path{(l,,t;) — (I,1)} =
Path{(l;,t5) = (Ipests trest)} — (I,) with the coverage value
¢{(ls’ [s) - (l’ [)} = ¢{(lv’ tx) - (lbest, thest)} + ¢{(l’ t)lﬂ}

3. Finally, we get the task s, from Path{(l,t;) = (L, t.)}.

To help participants fulfill the designed tasks, we have two
useful mechanisms in our framework. First, in our definition,
a task is a sequence of sensing points (locations) rather than
fixed paths. Participants can flexibly choose their own path
between two consecutive sensing points, just making sure each
assigned location can be well sensed. Second, each location
in a task is associated with a time interval rather than a time
stamp, i.e., participants have more flexibilities. For example,
assume the location sequence (2,8:30)—(4,8:40)—(9,8:45) is
the task extracted using our algorithm, then before assigning
it to a participant, we will transfer it to (2,8:30-40)—(4,8:40-
50)—(9,8:40-50) if a time interval is set to be 10 minutes.

Even though a task might not be well finished by a participant,
we have an error tolerance mechanism. There do exist some
unexpected situations that will fail designed tasks, such as
urgent things happening to a participant and its original com-
muting plan needing to be changed temporarily. To address
this issue, we can re-conduct the participant recruitment and
task design for the participants whose departure times are af-
ter this unexpected failed task. That is, we can dynamically
adjust the recruitment and task design based on the actual data
collected by previously recruited participants.

EVALUATION

This section evaluates our urban sensing framework using the
real human mobility of 34 participants which is extracted from
a real-world noise sensing experiment.

Datasets

We first briefly introduce the real-world noise sensing experi-
ment, from which we extract real human mobility datasets for
evaluating our framework. The noise sensing experiment is
conducted in a 6.6km X 3km geographical region in Beijing,
from May 15-20 and from June 9-19, 2015. For each day,
the sensing time span is from 6:00 am to 22:00 pm. 34 col-
lege students are recruited as participants to sense noise data
using built noise sensing Apps. In this experiment, instead
of designing tasks for participants, we let participants make
decisions on where and when to sense data based on their real
commuting plans. It takes 2 minutes for participants to sense
noise data, and the more data they collect, the more rewards
they will get (each data is with some rewards). Thus to earn
more rewards participants need to put more slack time. When
participants conduct noise sensing, their GPS trajectories will
be recorded every 30 seconds through the App and will be sent
to our back-end server later. In this real-world experiment, we
spend 8000 RMB with 3313 noise data collected. As shown
in Figure 10C, without well designed tasks for participants in
this experiment, the collected noise data is highly skewed in
the geographical space, i.e., redundant data in areas nearby the
participants’ colleges and scarce data in remaining areas.

From the recorded GPS trajectories of participants, we can ex-
tract their mobility information (commuting plans). Specifical-
ly, given a trajectory in which the participant has consecutive
sensing behavior (if not, a trajectory will be split into sub-
trajectories), the location and time stamp of the first sensed
data are deemed as the origin and departure time of the partic-
ipant respectively, and similarly the location and time stamp
of the last data as its destination and arrive time respectively.
In some cases, both the origin and destination of participants
(students) are their colleges, that is students spend some time
just for joining our sensing experiment to earn some rewards.
Also, we can easily extract the moving velocity of each partic-
ipant from the recorded trajectories. As participants (students)
usually go to sense data on foot or by riding a bicycle, which
are not sensitive to traffic conditions, we can directly use the
extracted moving speed to conduct travel time estimation (i.e.,
road distance divided by speed). And then we can estimate
participants’ slack times (see Equation 1).

Overall we extract 244 records of commuting plans and af-
ter integrating them into one day, we have 244 participant
candidates with mobility information to evaluate our urban
sensing framework. As depicted in Figure 10A and 10B, the s-
patial distribution of participants’ commuting plans are highly
skewed, i.e., redundant human coverage nearby participants’
colleges and little human coverage in other areas. We expect
our urban sensing framework can get a good data coverage
even with such a skewed human mobility dataset.

Experiment Settings
To evaluate our urban sensing framework, we first deem the
previously extracted 244 participants with human mobility as

8 o ¢ R
ol | []
6rie [|see o |]
o [| nole (ol
4[] afe ol 116 e
°¢ ® Uy
2t |l e o6 o
0- & X-axis: Time interval |
Y-axis: Amount of participants
2
— — D100 200 30 40 50
A) Participants’ origins
S 12 *
4 SR ? | .
A J 10 I
= —— e i
8 [Al [[]
| - | olle
Colleges o I Medlll Bt o
= o |o0p | |d0 @
a ol o oap | 19
o | o -
2 see .
-
0@ X-axis: Time interval
) Y-axis: Amount of participants
o100 200 300 40 50

B) Participants’ destinations

Dataamoun
5

| X-axis: Time interval
40 Y-axis: Dataamount

° 0 10 20 30 40 50

C) Collected data

Figure 10. Spatial and temporal distribution of participants’ origin (A),
destination (B) and collected data (C).

the participant candidates who submit their mobility informa-
tion to our system, based on which we conduct the participant
recruitment and task design in our framework. As the human
mobility is real, we believe our experiment results can well
guide real-world implementations of our urban sensing system
in the future. In our evaluation, the sensing region and the time
span keep the same with those in the previous noise sensing
experiment. We partition the geographical region into 24x12
grids and the sensing time span into 48 time intervals, based
on which we design sensing tasks to participants. To model
our hierarchical entropy for data balance (Equation 5), we
consider another 3 granularities of partitions (i.e., kjqx = 3)
with parameters for each granularity summarized in Table 1.
In addition, if without special clarification, we have the fol-
lowing settings by default: 1) the budget (i.e., money) is 5000
RMB and the unit reward per hour to participants is 40 RMB;
2) in task design, the specific time stamps that locations are
associated with are set to be every 4 minutes, i.e., f, = 4; 3) in
participant recruitment, replacement algorithm will stop if no
improvement can be reached after 100 times of consecutive
attempts; 4) in objective function (Equation 3), we set @ as
0.5, i.e., both data amount and data balance are important.
Granularity k | I(k) Jk) T(k)

1 12 12 24

2 8 6 12

3 4 3 6

Table 1. Parameters for different granularities of partitions.

Evaluation on Collecting Balanced Data

To support upper-level applications, a balanced data coverage
is very important in many urban sensing scenarios, which,
however, is also very challenging as the human mobility in a
city can be highly skewed. To this end, we first evaluate our
urban sensing framework on its capability for collecting data
with a good coverage using the highly skewed human mobility

of participant candidates (see Figure 10A and Figure 10B). In
our hierarchical entropy-based objective function (Equation 3),
the parameter « tunes the importance of data balance to data
amount. Thus we study three different cases here: 1) @ = 0:
aiming at more data amount; 2) @ = 0.5: aiming at both data
amount and data balance; 3) @ = 1: aiming at more balanced
data. Note that the « can be application-specific in real life.

Figure 11 visually demonstrates the spatial and temporal dis-
tribution of the data collected by our framework. Compared
with the highly skewed human mobility of the participant can-
didates (Figure 10A and Figure 10B), we surprisingly collect
balanced data in the spatial space, especially when @ = 1 as
shown in the Figure 11C. In fact, to collect more balanced data
(a = 1), participants are, to maximum extent, designed to cov-
er the entire sensing region, especially for those participants
with a lot of slack time (not breaking their original commuting
plans). That is, we have provided a practical urban sensing
framework to collect data with a balanced coverage even using
the intrinsically skewed human mobility in real life. As we
can’t modify participants’ departure times and arrival times
(we provide unobstructed tasks), there remains little room to
improve data balance in the temporal space.

= | g 100
X-axis: Time interval
809 Y-axis: Dataamount
E &y o
3 60- ¢ [] '- . b
£s i % o G
= o [eof
s 40 sey
- a | S L X °
.]
20
.
e & 1020 30 40 50
A)a=0
- N 3 70,
7 ¢ X-axis: Time interval
60 ||| Y-axis: Dataamount
2% .0 o .
= 50 .~ Ne e
3 ¢ ol et »
-)
Elr, 40 LERTE
b L
LB g 30 ¢
a o e
20,
L]
Le 1% 10 20 0 40 S0
B)a=0.5
= —)
= - rg 60 R
50 o)
]
| - ® | L] ...Q.
)
| - = 40F oa) et 9 “’a 8 b
3 ® . L) .
g 3] 1§ .
P | «
¥ m | 8 20 ' 6
|
104 X-axis: Time interval
Y-axis: Dataamount
Le % 10 20 30 40 50
Qua=1

Figure 11. Spatial and temporal distributions of collected data using our
framework with different a.

In addition to the visual results, we obtain some statistics
presented in Figure 12. We are capable of receiving more data
amount (a = 0) or better data balance (a = 1) while the case
a = 0.5 provides a good trade-off between the data amount and
the data balance. As depicted in Figure 12, as the @ increases,
the entropy of the collected data grows while the amount
of the data decreases, which agrees with our inner setting
for the a. It indicates that apart from the data balance, our
framework can also maximize the data amount by setting o =
0. In essence, the task design mechanism in our framework
endows participants with higher sensing capability to cover
more geographical space, no matter what the specific objective
function is. Therefore we believe our task design framework

can be well applied to different kinds of objective functions in
real-world urban sensing scenarios.

11 9.5 7 3000
) . 2800)
sl E(AQ) EAQR) | oo EA®B) QW)
9 2600
10 6 2400
85 2200
9.5 55 2000
8| 1800
9 5 1600
0 75 0 10 1400 0
85 lo||S||~ ol 451 lo||a||~ SIS
]I ey (i 1200 (RN
3
o 13 3 7 S 4 3 3 1000 S

Figure 12. Performance comparison between different .

Evaluation on the Hierarchical Entropy

In this subsection, we study whether our proposed hierarchical
entropy can measure data balance accurately in the spatio-
temporal space. To this end, we set the hierarchical entropy
as our objective function, i.e., ¢(A) = E(A). We compare
it with baselines, which, by contrast, consider data balance
(entropy) only at one single granularity. Therefore, we have
three baselines for comparison, including the data balance at
the first granularity ¢ (A) = E(A(1)), the second granularity
@2(A) = E(A(2)) and the third granularity ¢3(A) = E(A(3)).

As shown in Table 2, each baseline tends to collect balanced
data (large entropy) only at its own granularity. For exam-
ple, ¢3(A) has the most entropy at the third granularity, with,
unfortunately, the least entropy for both the first and second
granularity. As a balanced data coverage is expected to be
balanced at each granularity, data balance considering only
one single granularity (e.g. ¢1(A), ¢p2(A), $3(A)) can be very
biased. On the contrary, our hierarchical data balance ¢(A)
achieves good results at all granularities, the second best for
each granularity. Also, our hierarchical data balance achieves
the best overall performance E(A). That is, our hierarchical
entropy can best measure spatio-temporal data balance.

EA1) EAGB) EMAG) EHA)
H(A) 10.02 8.61 6.10 10.90
$1(A) 10.16 8.35 5.82 10.64
$2(A) 9.87 8.68 6.03 10.84
$3(A) 9.44 797 6.14 10.45

Table 2. Comparison between hierarchical entropy and baselines.

Evaluation on Time Efficiency

Besides effectiveness, an urban sensing application also re-
quires high time efficiency. Here, we study the time efficiency
of our urban sensing framework. Our experiments are per-
formed using C# programs on a server with 2.40 GHz Intel(R)
Xeon(R) CPUs. From the experiment results, our dynamic
programming strategy can design a task within 2 seconds on
average. The efficient task design can be attributed to two as-
pects as discussed previously: 1) we can construct the location
graph (14 seconds on average) for each participant just after
the participant submits its commuting plan, i.e., it won’t affect
the efficiency of our task design; 2) a very efficient method
(see Appendix 1) is proposed to compute the coverage value
for each selected location in our task design. Based on the
efficient task design algorithm, only less than 10 minutes are
necessary for the participant recruitment mechanism.

Evaluation on Participant Recruitment Mechanism

This subsection investigates the performance of our participant
recruitment mechanism, which is comprised of a random al-
gorithm and a replacement algorithm. For a better evaluation,
we compare our mechanism with the following two baselines.

e Random recruitment: As the first step of our mechanism, the
random recruitment doesn’t use the replacement algorithm
to further refine its recruitment performance.

o Greedy recruitment: Instead of selecting participants in a
random manner, each time the greedy algorithm selects
the best participant who marginally contributes most to the
overall data coverage. To find such a participant, each time
the greedy algorithm needs to conduct task design for each
unselected participant, taking a lot of running time.

Table 3 presents the experiment results where we compare
the three mechanisms from two aspects. First, for data cov-
erage, our participant mechanism defeats the two baselines
in terms of both data balance and data amount. The random
recruitment, however, gets the worst performance. Second,
for running time, our mechanism is very efficient (8 minutes),
taking just more 3 minutes than the random algorithm. The
greedy mechanism however is very time-consuming (55 min-
utes) because it needs to do much more times of task design as
mentioned earlier. As expected, the replacement mechanism
in our framework can efficiently and effectively improve the
performance of the random mechanism. Compared with this
two baselines, our mechanism is the best.

E(A(l)) EAQR)) E(AB)) O(A) Running Time
Random 9.84 8.35 5.93 1780 ~ 5 minutes
Greedy 9.94 8.46 6.04 1847 ~ 55 minutes
Ours 10.08 8.56 6.05 2053 ~ 8 minutes

Table 3. Comparison between our recruitment method and baselines.

Evaluation on Task Design

In our task design mechanism, the selected locations are asso-
ciated with time stamps which are set to be every f, minutes
(e.g. t; = 4). With smaller ¢,, more individual locations can
be selected (see Figure 6) leading to more task candidates
being extracted, thus we can also have better results for both
data balance and data amount as shown in Figure 13. How-
ever, smaller 7, also takes more running time for task design.
Specifically, when t, = 4, it takes just around 2 seconds to
design a task, but when 7, = 2, it needs 8 seconds. In the real
world, the program owner needs to make a trade-off between
performance and running time when selecting .

102 87, 6.1, 2200
1018 8.68 6.09) 2180
E(A(1)) E(A(2)) E(A(3)) Q(A)
10.16 8.66 6.0 2160
10.14 8.64 6.07) 2140
10.12) 8.62 6.0 2120
101 856, 6.05, 2100
10,08 858 6.04 2080
10,06 856 6.03 2060
1004 854 6.02) 2040
= || = || < [}
10,02 0| 852 6.01] 0| 2020 I
10 +2| [+ 85 +3 [+ 2000 SR

Figure 13. Comparison between different specific time stamps ..

RELATED WORK

Urban Data Evaluation Method

Data coverage ratio, the ratio of data collected across the
whole sensing region and the entire sensing time span, is
commonly used to measure the value of data collected. In
general, a coverage ratio is predetermined before an urban
sensing program starts, and the objective is to minimize the
total rewards (i.e., budgets) paid to recruited participants while
ensuring the collected data can meet the predetermined ratio
[1, 7, 20]. Besides data coverage ratio, the value of data can
also be specified by urban sensing program owners or experts
[14]. And more recently, inferring the missing data using the
already collected data, has been studied in [17, 22]. In this
case, the collected data is deemed to be valuable if the missing
data can be well inferred using the collected data.

In our work, we consider an urban sensing problem with a giv-
en budget, which could be more universal in real life. Accord-
ingly we propose the hierarchical entropy-based data coverage
evaluation method. Note that to predetermine a proper data
coverage ratio is difficult when a budget is given. The pro-
posed data evaluation method directly measures data balance
and data amount by considering data distribution at different
granularities of spatial and temporal space. We believe it could
be a good data coverage evaluator, especially for urban sensing
programs with a given budget constraint.

Task Design Based on Human Mobility

In many previous works [20, 1, 7], recruited participants col-
lect data following their natural traveling paths (usually the
quickest path from an origin to a destination). That is, par-
ticipants collect data based on their natural mobilities, not
designed by the program owner. To model participants’ trav-
eling paths, they use participants’ historical trajectories [20]
or mathematical models (e.g. Truncated Levy Walk model in
[7] and Markov chain model in [1]). However, natural human
mobility is intrinsically skewed (imbalanced) in the urban area,
which has been well demonstrated by a large-scale real-world
study in [3]. Hence, the performance of urban sensing based
on participants’ intrinsically skewed mobility is a big concern.
For example, as shown in Figure 14, participants usually travel
the quickest path (denoted by the orange path in A) from home
to work (i.e., from a dwelling district to a business district). Ar-
eas along the quickest path contain redundant human coverage
while the remaining areas are not covered at all. As a result,
as depicted in Figure 14B, previous works only collect data
along the quickest path, leaving most other areas not explored
at all, resulting in a highly imbalanced data coverage.

/\Destination (business district)(C)Origin (dwelling district)
]
=
bl e
s 39

A) Tasks designed in our framework

Quickest path\:] Data

|]

a \ O

DD@

B) Tasks in many previous works

Figure 14. Tasks in our framework (A) and previous frameworks (B).

To deal with the skewed human mobility, [9] designs a reward
mechanism to set discriminative rewards for data in different
areas, aiming to steer participants to collect data in areas with
little human coverage. An accurate model on participants’
reactions to the discriminative rewards is critical to this frame-
work. Such a model, however, could be very difficult given the
complex related factors in the real world, which may include
participants’ psychologies, distribution of rewards, type of
data to collect, weather condition, traffic condition, etc.

In this work, we propose a novel task design mechanism which
can endow participants with higher sensing ability. Specifical-
ly, participants can be designed to sense those areas with little
human coverage while containing valuable data (e.g. data with
more coverage value, more specified utilities or more inference
capabilities). The insight is that with some incentives (reward-
s), participants would be willing to 1) report their commuting
plans and 2) travel new paths (represented by the light blue
and red paths in Figure 14A) to reach their destinations as long
as the arrival time is well controlled, e.g. before the working
time in this example. The promotion of participants’ sensing
ability can provide a win-win solution for both urban sensing
program owners and participants: 1) For program owners, they
can collect more valuable data (more balanced coverage as
shown in Figure 14A); 2) Participants are more likely to be
recruited with rewards; In Figure 14, our framework recruits
three participants while in the previous frameworks only one
participant is necessary to avoid collecting redundant data.

Urban Sensing Applications

With the proliferation of rich-sensor mobile devices (e.g. smart
phones, wearable devices), a number of urban sensing applica-
tions have been proposed [12, 11, 26, 25, 5, 13]. For example,
in literature [12], Ouyang et al. propose a crowdsourcing-
based event localization system to detect the location of events
occurring in a city. The work [11] leverages the mobile crowd-
sensing to provide a weather estimation method in urban areas.
Zheng et al. [25] propose a novel method to infer New York
noise distribution using the 311 data collected by massive citi-
zens, along with other sensed data. In [15], taxicabs are used
to sense gas consumption and pollution emissions in a city.

Clearly, most of these applications need data with a balanced
coverage to better deal with their problems. Our urban sensing
framework is just designed to collect data with a good coverage
even using intrinsically skewed human mobility in real life.
Hence we believe our framework can well support these upper-
level applications and will have broad applications.

CONCLUSION AND FUTURE WORK

In this paper, we provide a novel urban sensing framework
based on real-world human mobility to maximize the coverage
of data collected. One of the main results is that, through well
designed tasks we can largely improve an urban sensing pro-
gram’s performance (e.g. data coverage), which was hampered
by highly skewed human mobility in real life. Specifically, in
our framework participants can be designed to sense areas with
little human coverage but containing valuable urban data, yet
not violating their original commuting plans. Another impor-
tant result lies in the proposed hierarchical entropy-based data

coverage evaluator. Our evaluator directly measures both data
amount and data balance by considering different granularities
of spatial and temporal space. We evaluate our framework
using human mobility from the real world, with extensive ex-
periments demonstrating its advantages over many baselines.

In the future, we plan to focus on two directions. First, par-
ticipants may join our system after an urban sensing program
starts [10, 8] such that both the task design and participant
recruitment should be performed in real-time. Second, partic-
ipants can also submit their expected rewards together with
their commuting plans, making a truthful task design and
participant recruitment mechanism necessary [2, 16].

ACKNOWLEDGEMENTS

This work was supported by the China National Basic Re-
search Program (973 Program, No. 2015CB352400) and NS-
FC under grants No. U1401258 and No. 61573292.

APPENDIX

Appendix 1: Efficient Method to Get Objective Value
Given the sensed data A, to efficiently compute the objective
¢(A) (Equation 3), we propose an efficient method which
takes O(1) time complexity. Based on this method, in task
design, we can also efficiently update each location’s coverage
value (Equation 7). To compute ¢(A) is to compute Q(A) and
E(A(k)), thus we just consider Q(A) and E(A(k)) below.

Assume we already know the current A, Q(A) and E(A(k)),
we intend to update the Q(A’) and E(A’'(k)) dynamically
based on the Q(A) and E(A(k)), when new data is sensed in
grid (i, jo) at time interval ¢y. That is, A’ is a copy of A except
that A’ (iy, jo, o) = Ao, jo, to) + 1. First, we can directly get
OA) = Q(A)+1. Segond, based on the definition of entropy:
E(AK) = = s ﬂ&%]‘) log, ﬂ&%"), we can derive
E(AK)) = logy QA) = 5z i ja A, j. k) logy AG, j, k)

and then ; ;, AG, j, 1lk) log, A, j, tlk) = Q(A)(log, O(A) —
E(A(k))), which indicates

Ditig, j# ey, A J 11k) logy A, j, tlk) =
O(A)(logy O(A) — E(A(K))) — Alix, ji, tklk) 1ogy Ak, ji, tklk),

where (i, jr) denotes the (ip, jo)’s corresponding location at
granularity k; #;, refers to the #,’s corresponding time interval
at granularity k. Now, for E(A’(k)), similarly we have
E(A' (k) = logy(Q(A) + 1) -
ST Diirjjnarr, AU, Jy k) 1ogy A, J, 11k) —
ot (Alixs Jis tlk) + 1) Togy (Al i telk) + 1).

Based on the previous formulation, we finally get

E(A' (k) = 1ogy(Q(A) + 1) = 57 (Q(A)(log, O(A) ~
E(AK)) — Ay, jis telk) logy Al jis tulk)) =
ot (Alie, jis telk) + 1) 1ogy (A, jes elk) + 1)

That is, after new data (iy, jo, fo) is collected, we do find an
efficient way to compute the Q(A’) and E(A’(k)) (i.e., the
¢(A")) based only on current Q(A) and E(A(k)). Initially, we
set Q(A) = 0 and E(A(k)) = 0, as A is null.

REFERENCES

1.

10.

11.

Asaad Ahmed, Keiichi Yasumoto, Yukiko Yamauchi, and
Minoru Ito. 2011. Distance and time based node selection
for probabilistic coverage in People-Centric Sensing. In
Proceedings of the 8th Annual IEEE Communications
Society Conference on Sensor, Mesh and Ad Hoc
Communications and Networks, 2011. 134—-142.

. Ning Chen, Nick Gravin, and Pinyan Lu. 2011. On the

Approximability of Budget Feasible Mechanisms. In
Proceedings of the Twenty-Second Annual ACM-SIAM
Symposium on Discrete Algorithms, 2011. 685-699.

. Yohan Chon, Nicholas D. Lane, Yunjong Kim, Feng

Zhao, and Hojung Cha. 2013. Understanding the
coverage and scalability of place-centric crowdsensing. In
Proceedings of the 2013 ACM International Joint
Conference on Pervasive and Ubiquitous Computing,
2013. 3-12.

. Thomas H. Cormen, Charles E. Leiserson, Ronald L.

Rivest, and Clifford Stein. 2009. Introduction to
Algorithms (3. ed.). MIT Press.

. Zipei Fan, Xuan Song, Ryosuke Shibasaki, and Ryutaro

Adachi. 2015. CityMomentum: an online approach for
crowd behavior prediction at a citywide level. In
Proceedings of the 2015 ACM International Joint
Conference on Pervasive and Ubiquitous Computing,
2015. 559-569.

. Raghu K. Ganti, Fan Ye, and Hui Lei. 2011. Mobile

crowdsensing: current state and future challenges. I[EEE
Communications Magazine 49, 11 (2011), 32-39.

. Sara Hachem, Animesh Pathak, and Valérie Issarny. 2013.

Probabilistic registration for large-scale mobile
participatory sensing. In Proceedings of the 2013 IEEE
International Conference on Pervasive Computing and
Communications, 2013. 132-140.

. Kai Han, Chi Zhang, Jun Luo, Menglan Hu, and

Bharadwaj Veeravalli. 2016. Truthful Scheduling
Mechanisms for Powering Mobile Crowdsensing. /[EEE
Trans. Comput. 65, 1 (2016), 294-307.

. Ryoma Kawajiri, Masamichi Shimosaka, and Hisashi

Kahima. 2014. Steered crowdsensing: incentive design
towards quality-oriented place-centric crowdsensing. In
Proceedings of the 2014 ACM International Joint
Conference on Pervasive and Ubiquitous Computing,
2014. 691-701.

Juong-Sik Lee and Baik Hoh. 2010. Dynamic pricing
incentive for participatory sensing. Pervasive and Mobile
Computing 6, 6 (2010), 693-708.

Evangelos Niforatos, Pedro Campos, Athanasios
Vourvopoulos, André Déria, and Marc Langheinrich.
2014. Atmos: a hybrid crowdsourcing approach to
weather estimation. In Proceedings of the 2014 ACM
International Joint Conference on Pervasive and
Ubiquitous Computing, 2014. 135-138.

13.

14.

16.

17.

18.

19.

20.

21.

. Wentao Robin Ouyang, Animesh Srivastava, Prithvi

Prabahar, Romit Roy Choudhury, Merideth Addicott, and
F. Joseph McClernon. 2013. If you see something, swipe
towards it: crowdsourced event localization using
smartphones. In Proceedings of the 2013 ACM
International Joint Conference on Pervasive and
Ubiquitous Computing, 2013. 23-32.

Kiran K. Rachuri, Christos Efstratiou, Ilias Leontiadis,
Cecilia Mascolo, and Peter J. Rentfrow. 2013. METIS:
Exploring mobile phone sensing offloading for efficiently
supporting social sensing applications. In Proceedings of
the 2013 IEEE International Conference on Pervasive
Computing and Communications, 2013. 85-93.

Sasank Reddy, Deborah Estrin, and Mani B. Srivastava.
2010. Recruitment Framework for Participatory Sensing
Data Collections. In Proceedings of the 8th International
Conference on Pervasive Computing, 2010. 138—155.

. Jingbo Shang, Yu Zheng, Wenzhu Tong, Eric Chang, and

Yong Yu. 2014. Inferring gas consumption and pollution
emission of vehicles throughout a city. In Proceedings of
the 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2014.
1027-1036.

Yaron Singer. 2010. Budget Feasible Mechanisms. In
Proceedings of the 51th Annual IEEE Symposium on
Foundations of Computer Science, 2010. 765-T74.

Leye Wang, Daqing Zhang, Animesh Pathak, Chao Chen,
Haoyi Xiong, Dingqi Yang, and Yasha Wang. 2015b.
CCS-TA: quality-guaranteed online task allocation in
compressive crowdsensing. In Proceedings of the 2015

ACM International Joint Conference on Pervasive and
Ubiquitous Computing, 2015. 683-694.

Weiqing Wang, Hongzhi Yin, Ling Chen, Yizhou Sun,
Shazia Wasim Sadiq, and Xiaofang Zhou. 2015a.
Geo-SAGE: A Geographical Sparse Additive Generative
Model for Spatial Item Recommendation. In Proceedings
of the 21th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2015.
1255-1264.

Yilun Wang, Yu Zheng, and Yexiang Xue. 2014. Travel
time estimation of a path using sparse trajectories. In
Proceedings of the 20th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining,
2014.25-34.

Daqing Zhang, Haoyi Xiong, Leye Wang, and Guanling
Chen. 2014. CrowdRecruiter: selecting participants for
piggyback crowdsensing under probabilistic coverage
constraint. In Proceedings of the 2014 ACM International
Joint Conference on Pervasive and Ubiquitous
Computing, 2014.703-714.

Fuzheng Zhang, David Wilkie, Yu Zheng, and Xing Xie.
2013. Sensing the pulse of urban refueling behavior. In
Proceedings of the 2013 ACM International Joint
Conference on Pervasive and Ubiquitous Computing,
2013.13-22.

22.

23.

24.

25.

26.

27.

Yin Zhang, Matthew Roughan, Walter Willinger, and Lili
Qiu. 2009. Spatio-temporal compressive sensing and
internet traffic matrices. In Proceedings of the ACM
SIGCOMM 2009 Conference on Applications,
Technologies, Architectures, and Protocols for Computer
Communications, 2009. 267-278.

Yu Zheng. 2015. Trajectory Data Mining: An Overview.
ACM Transactions on Intelligent Systems and Technology
6, 3 (2015), 29.

Yu Zheng, Licia Capra, Ouri Wolfson, and Hai Yang.
2014a. Urban Computing: Concepts, Methodologies, and
Applications. ACM Transactions on Intelligent Systems
and Technology 5, 3 (2014), 38:1-38:55.

Yu Zheng, Tong Liu, Yilun Wang, Yanmin Zhu, Yanchi
Liu, and Eric Chang. 2014b. Diagnosing New York city’s
noises with ubiquitous data. In Proceedings of the 2014
ACM International Joint Conference on Pervasive and
Ubiquitous Computing, 2014. 715-725.

Yu Zheng, Yanchi Liu, Jing Yuan, and Xing Xie. 2011.
Urban computing with taxicabs. In Proceedings of the
2011 ACM Conference on Ubiquitous Computing, 2011.
89-98.

Yu Zheng, Xiuwen Yi, Ming Li, Ruiyuan Li, Zhangqing
Shan, Eric Chang, and Tianrui Li. 2015. Forecasting
Fine-Grained Air Quality Based on Big Data. In
Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
2015.2267-2276.

	Introduction
	Overview
	Preliminary
	Problem Definition
	Framework

	Objective Function
	Difficulty on Evaluating Data Coverage
	Hierarchical Entropy-based Objective Function

	Task Design
	Location Selection
	Location Value Measurement
	Location Graph Construction
	Path Computing

	Evaluation
	Datasets
	Experiment Settings
	Evaluation on Collecting Balanced Data
	Evaluation on the Hierarchical Entropy
	Evaluation on Time Efficiency
	Evaluation on Participant Recruitment Mechanism
	Evaluation on Task Design

	Related Work
	Urban Data Evaluation Method
	Task Design Based on Human Mobility
	Urban Sensing Applications

	Conclusion and Future Work
	Acknowledgements
	Appendix
	Appendix 1: Efficient Method to Get Objective Value

	References

