
Operator and Query Progress Estimation in Microsoft SQL
Server Live Query Statistics

Kukjin Lee§ Arnd Christian König§ Vivek Narasayya§ Bolin Ding§ Surajit Chaudhuri§

Brent Ellwein§ Alexey Eksarevskiy§ Manbeen Kohli§ Jacob Wyant§ Praneeta Prakash§

Rimma Nehme§ Jiexing Li∓ Jeff Naughton∓

§Microsoft Corp., Redmond
{kulee,chrisko,viveknar,bolind,surajitc,brellwei,alexek,makohli,jacobwy,pprakash,rimman}@microsoft.com

∓Univ. of Wisconsin, Madison
{jxli,naughton}@cs.wisc.edu

ABSTRACT
We describe the design and implementation of the new Live Query Statistics
(LQS) feature in Microsoft SQL Server 2016. The functionality includes
the display of overall query progress as well as progress of individual oper-
ators in the query execution plan. We describe the overall functionality of
LQS, give usage examples and detail all areas where we had to extend the
current state-of-the-art to build the complete LQS feature. Finally, we eval-
uate the effect these extensions have on progress estimation accuracy with
a series of experiments using a large set of synthetic and real workloads.

1. INTRODUCTION
Accurate online estimates of the overall progress of execution

of a SQL query is valuable to database administrators (DBAs),
application developers and end users of applications. For exam-
ple, a DBA (or an automated agent) can use query progress in-
formation to help decide whether a long-running, resource inten-
sive query should be terminated or allowed to run to completion.
There has been extensive work in SQL query progress estimation,
e.g., [6, 18, 23, 24].

In addition to overall query progress information, it can also be
valuable to provide progress estimates for individual operators in
a query execution plan [12]. Such an operator-level progress indi-
cator can aid in live troubleshooting of performance issues due to
a poorly chosen execution plan: similarly to how accurate progress
estimation allows database administrators to identify long-running
queries early in their execution, having accurate progress estimates
for individual operators allows DBAs to rapidly identify issues with
operators that require significantly more time or resources than ex-
pected. For example, a database administrator might observe a
nested loop operator that is not only executing for a significant
amount of time, but, according to the progress estimate, has only
completed a small fraction of its work. Based on this, she may then
compare the number of rows seen so far on the outer side of the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGMOD ’16, June 26–July 1, 2016, San Francisco, CA, USA.
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-3531-7/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2882903.2903728

join and discover that these are already much larger than the op-
timizer estimate for the total number of outer rows, indicating an
cardinality estimation problem. This may then trigger various re-
medial actions on the side of the DBA, such as creating additional
statistics, the use of plan hints or a reformulation of the query. The
same determination could obviously also be made using the oper-
ator duration information only, obtained after execution; however,
having online operator-level progress information enables a DBA
to identify potential issues much more quickly and easily.

In this paper we describe the design and implementation of op-
erator and query level progress estimation included as part of Mi-
crosoft SQL Server 2016, available via the new Live Query Statis-
tics (LQS) feature that is part of SQL Server Management Studio
(SSMS). This feature enables the scenarios discussed above by pro-
viding estimates of both query and operator level progress. These
progress estimates as well as the row counts are exposed to users
through a query plan visualization. LQS can work with both Mi-
crosoft SQL Server 2014 as well as Microsoft SQL Server 2016.

1.1 Overview and Organisation
In the following, we will describe the new Live Query Statistics

feature in detail; first, in Section 2, we will give an overview of the
LQS functionality, including a description of the different compo-
nents working together, and show examples of the output surfaced
to the user. Subsequently, in Section 3, we will formally introduce
the relevant technical background and then describe the particular
challenges we faced when building the LQS feature. In particular,
we will identify all aspects in which we needed to extend the cur-
rent state-of-the-art to arrive at the desired functionality and level
of accuracy. We will then go through the details of how we ad-
dressed each of these challenges in Section 4 and experimentally
evaluate the effect of the resulting techniques in Section 5. Finally,
we briefly discuss future work in Section 7.

2. OVERVIEW OF LQS
In this section, we will give an overview of the Live Query Statis-

tics functionality as well as the different instrumented components.
The progress estimator itself is a client-side component, which con-
sumes all required counters for currently executing queries exposed
via dynamic management views (DMV) on the server side (see Fig-
ure 1). The progress estimate for both the entire query as well as
each individual operator is then computed in the client and dis-
played visually together with the query plan.

http://dx.doi.org/10.1145/2882903.2903728

Live Query Statistics

SQL Server Management
Studio (SSMS)

Application

Query Execution Profile

Dynamic Management
Views (DMVs)

Column Store Segments

Polling the DMVs

Microsoft SQL Server

SQL Queries

Execution Plan

Figure 1: Architecture Overview.

2.1 Server Side DMVs
The counters required for progress estimation are collected within

the Microsoft SQL Server engine process; most of them are ex-
posed by the dynamic management view sys.dm_exec_query_profiles
introduced first in Microsoft SQL Server 20141. This view returns
counters for each operator in a currently executing query (at the
granularity of individual threads), such as the estimated and actual
number of rows, the total elapsed time and CPU time for an oper-
ator, the number of physical reads, etc. Each counter is dynami-
cally updated while the query executes. LQS supports the display
of progress estimates for multiple, concurrently executing queries,
each of them being given their own dedicated window.

2.2 Progress Estimation in SSMS
The progress estimation itself is implemented as a client-side

module which is part of the SQL Server Management Studio. This
model queries the DMV sys.dm_exec_query_profiles every 500ms
to obtain up-to-date information on each executing operator/thread
and, in addition, uses information extracted from a query’s show-
plan (such as estimated cardinalities as well as CPU and I/O cost
estimates) as well as additional system meta-data (such as e.g., the
DMV sys.column_store_segments). The fact that progress estima-
tion is client code (with the required information exposed by the
server) has the advantage that the progress estimation module can
evolve independently of the server code. Further, it allows for the
development of other first-party or third-party client side tools that
use the same data sources.

The main disadvantage lies in the fact that some information that
is potentially useful for progress estimation (such as more detailed
information on the internal state of Sort and Hash operators) is not
exposed via sys.dm_exec_query_profiles at this time. Because the
progress estimation is client code, it has no visibility into some as-
pects of operator state. We will touch on some of these limitations
in Section 7.

2.3 Visualization
In SQL Server Management Studio, progress estimates are shown

combined with query showplan output, showing an estimate of
progress of the overall query (i.e., percentage completion) as well
as an progress estimate for each operator as well. An example can
be seen in Figure 2. In this example, the query is TPC-H Query

1See https://msdn.microsoft.com/en-us/library/-
dn223301.aspx for details.

1, and the showplan for this query is shown in the bottom window.
Below each operator, its progress is displayed – in this example,
the Columnstore Index Scan and Compute Scalar operators have
executed for 42.58 seconds and are at 5% progress, whereas all
operators further up the plan have not started execution yet. The
overall query progress is displayed on the top left-hand corner of
the showplan window (3% in this example).

2.3.1 Visualization and Usage Examples
The LQS interface animates the links between all currently exe-

cuting operators, thereby making it easy to identify which pipelines
in the query plan are active at any moment. For example, in Fig-
ure 3 we can see that the upper two pipelines have already com-
pleted execution; here, the arrows between two operators are solid
and their thickness corresponds to the number of tuples having
flown between them. In contrast, the lower pipeline has dotted, ani-
mated arrows between the operators, meaning that it is still execut-
ing and – since all operators in the pipeline are still at 0% progress
after 40 seconds of execution – likely long-running. Especially for
complex query plans, this functionality allows DBAs to identify
potential bottlenecks and opportunities for tuning very quickly.

In Figure 4 we demonstrate a different example scenario for
LQS: here, in addition to the output we described earlier in the
context of Figure 2, we also show the estimated cardinality and the
total number of rows output so far for each operator in the plan2 for
illustration. As we can see, while the upper Clustered Index Scan
operator has already finished execution (we can see the progress
of the operator being reported as 100%), the Table Spool and lower
Clustered Index Scan operator are still executing and show very sig-
nificant errors in estimated cardinality; this cardinality information
allows the DBA to identify nodes and the corresponding predicates
with significant estimation errors which potentially may contribute
to sub-optimal plans.

As we can see in Figure 4, the progress estimates at the Table
Spool and lower Clustered Index Scan operators themselves are not
accurate, which in turn leads to over-estimation of the fraction of
work done at these nodes. We chose this example to illustrate that
even when we do not have accurate estimates of node cardinality
and e.g., overestimate the work done by an operator, LQS can still
guide a database administrator to problematic nodes in the execu-
tion plan: in this example, the progress estimates at these nodes
initially go up to 99% and then stay at that estimate for a significant
time time. This in itself is enough to alert a DBA to the inaccuracy
and potentially trigger an investigation of the nodes in question.

3. CHALLENGES
In this section we will describe the challenges encountered dur-

ing the implementation of the LQS functionality. In particular, we
will describe where the current state-of-the-art in research either
needed to be extended or did not yield sufficient accuracy for some
of the real workloads we used to evaluate the LQS system. To give
this overview, we will first introduce some necessary background
on progress estimation.

3.1 Background

3.1.1 Operators and Pipelines
Current progress estimation techniques [6,7,12,15,21–24] model

a running queryQ using a tree of physical operators and base their
estimates of a query’s progress on the number of tuples or bytes

2In the current interface, this information is is available by hovering
the mouse over the operators in the showplan.

Figure 2: Query and Operator Progress in Live Query Statistics

processed by (a subset of) these operators at various points in time.
We useNodes(Q) to enumerate the operators in the execution plan.
To capture the notion of the sets of operators in a query plan which
execute concurrently, prior work defined Pipelines or Segments (de-
fined in [7], and [22], respectively), which correspond to maximal
subtrees of concurrently executing operators in a (physical) opera-
tor tree.

For each pipeline (or segment), the nodes that are the sources
of tuples operated upon by the remaining nodes (i.e., typically all
leaf nodes of the pipeline, with the exception of the inner subtree of
nested loop operators) are referred to as the driver nodes (or domi-
nant input) of the pipeline; we use the notationDriverNodes(Q) ⊆
Nodes(Q) to denote these. An example operator tree with 3 pipelines
is shown in Figure 5; the shaded nodes correspond to driver nodes.
The notion of segments was further refined in [23].

3.1.2 Model of Work Done
Operators in a query execution plan of a modern RDBMS are

typically implemented using a demand driven iterator model [11],
where each physical operator in the execution plan exports a stan-
dard interface for query processing (including Open(), Close() and
GetNext()). For the purposes of progress estimation, we follow the
GetNextmodel of work done by an operator, introduced in [7]. In
theGetNextmodel, at any point during the execution of the query
the true progress of an operator o is defined as:

Prog(o) =
k

N
(1)

where k is the number of rows output by the operator thus far, and
N is the total number of rows that will be output by the operator
when query execution is complete. Similarly, the true progress of a
query Q in the GetNext model is:

Prog(Q) =

∑
i∈Nodes(Q) wiki∑
i∈Nodes(Q) wiNi

(2)

The summation is taken over all operators in the query execution
plan. wi is a weight associated with operator i that can be used to

capture the fact that different operators perform different amount
of work per tuple output relative to other operators.

While the ki values can be measured precisely and with negli-
gible overhead at query time, the Ni values are typically derived
using the estimates of query optimizer, meaning that the accuracy
of progress estimation is closely tied to the accuracy of cardinality
estimation itself [15], which is know to erroneous in many cases.
One of the ways this challenge has been alleviated has been by
only considering driver nodes in the summation in equation 2 [7].
Because the cardinalities of driver nodes are typically known ex-
actly when their pipeline starts execution (although there are no-
table exceptions which we will discuss in subsequent sections), this
reduces the error in progress estimation for executing pipelines sig-
nificantly. The main requirement for this approach to work is that
the progress at the driver nodes closely matches the progress over
all nodes of the pipeline.

3.2 Progress Estimation for Individual Oper-
ators

While previous work in progress estimation only concentrated
on estimating the overall progress of queries (with the exception
of [12]), Live Query Statistics also surfaces progress estimates for
each individual operator. Providing operator-level progress esti-
mates is conceptually similar to the GetNext based scheme de-
scribed above (see Equation 1), when limited to single nodes, but
creates a number of additional challenges, which we will describe
below.

3.3 Challenges and Contributions
In order to enable the LQS functionality, there were a number

of challenges we had to address. First, a key challenge for any
progress estimation technique that ties their measure of progress to
the number of rows output or processed by each operator is to ac-
curately estimate the total number of rows to be output/processed,
which is closely tied to the known hard problem of cardinality esti-
mation. This challenge is made more difficult in our case by the fact
that LQS provides operator-level progress estimates and hence re-
quires accurate cardinality estimates for all operators in a plan; the

Completed pipelines

Long-running pipeline
(<1% completion after 40 sec.)

Figure 3: Live Query Statistics in Action

Estimated Cardinality

Rows output so far

Figure 4: Live Query Statistics in Action

Index Scan T.A Index Scan T.B

Sort

Merge Join

Pipeline 1

Pipeline 2

Pipeline 3

Filter

(Hash) Group-By

Figure 5: Example execution plan with multiple pipelines.

“trick” described above of only considering driver nodes can not be
applied here, unlike for progress estimation of the entire query (or
pipeline).

While the challenge of inaccurate cardinality estimates cannot
be overcome generally, there is one unique aspect of progress esti-
mation that can be leveraged here: unlike the cardinality estimation
inside the query optimizer [5], progress estimation has the opportu-

nity to observe execution characteristics of operators in flight, and
use this feedback to dynamically refine cardinality estimates for
both the executing operators and operators further up in the query
plan. Earlier approaches to progress estimation [6, 15, 23] have
used this to propose techniques that dynamically refine cardinal-
ity estimates as the query executes. For LQS, we propose a cardi-
nality refinement approach of the same type, which uses a differ-
ent model (described in Section 4.1) and in practice demonstrates
fast convergence to the true cardinality. We combine this technique
with the (worst-base) bounding techniques proposed in [7] based
on algebraic properties of the operators (which we describe in Sec-
tion 4.2). The combination of both techniques can help us mitigate
many cases where there are egregious errors in the initial optimizer
cardinality estimates.

Second, for accurate estimates of operator level progress, we
needed to develop new techniques for modeling blocking opera-
tors (e.g. Hash, Sort), whose progress is in general insufficiently
characterized by the number of tuples output by the operator it-
self. Here, the unmodified GetNext model as described in Sec-
tion 3.1.2 is not sufficient to give accurate progress estimates, even
when cardinalities are known. In addition, similar but not identical
challenges are posed by semi-blocking operators (e.g., Exchange,
Nested Loops) that can buffer inputs and break key assumptions

made by earlier progress estimation techniques. We describe the
techniques used to address these challenges in Sections 4.4 and 4.5.

Third, due to the often vastly different (per-row) resource re-
quirements of different operators, we need to determine an ap-
propriate weight for each operator in a query to obtain accurate
overall query progress. For this challenge, we adopt a variant of
the technique of [18], which leverages per-tuple CPU and I/O cost
estimates by the optimizer and models the overlap between CPU
and I/O as the basis for automatically determining an appropriate
weight for an operator (or pipeline of operators).

Finally, we need to handle a number of additional cases not
addressed in prior work but common in practice, including: (a)
Scan operators containing filters evaluated at the storage engine
level (e.g., Bitmap filters) whose selectivity may initially be esti-
mated incorrectly, (b) operators such as Scans of Columnstore in-
dexes [16, 17] that execute in batch mode rather than one row at a
time. We will describe how we address each of these challenges in
the next section.

4. ADDRESSING THE TECHNICAL CHAL-
LENGES

In Section 3.3, we have identified a number of different chal-
lenges to accurate progress estimation as well as some scenarios
not addressed by prior work; in this section, we will describe dif-
ferent techniques used to address these and improve the accuracy
of progress estimation.

4.1 Cardinality Refinement
As described in Section 3.1.2, the Ni terms in the progress es-

timator (see Equation 2) are based on optimizer estimates, which
may be very inaccurate for the long-running and often complex
queries that progress estimation is targeted at. The use of driver
nodes discussed in Section 3.1.1 alleviates this concern only par-
tially; this approach assumes that the overall progress in a pipeline
is proportional to the progress of the driver nodes, which can be
violated in practice (see [15], Section 4.4.1, for a more detailed
discussion). Moreover, providing operator-level progress estimates
requires accurate estimates of the Ni terms on all nodes, not just
the driver nodes.

While there exist large numbers of techniques to improve cardi-
nality estimates by leveraging feedback from other executing queries
in the research literature (such as [4, 8, 14, 20, 27, 28]), many of
which are applicable in the context of progress estimation, our cur-
rent technique only leverages the data structures and statistics al-
ready available in the target database engines; we leave the integra-
tion of novel statistical summaries as future work.

Instead, we leverage the observation that, unlike query optimiza-
tion, progress estimation can leverage improved Ni estimates ob-
tained after a query has started execution. The basic technique we
use is to refine the estimate of Ni at runtime by treating the input
tuples seen at a node i as a random sample of all tuples processed
by this operator (similarly, to e.g., [13] for COUNT aggregate
queries) and scale the corresponding ki up by the (inverse of the)
fraction α of the tuples consumed at the driver node(s) of the cor-
responding pipeline:

α =

∑
i∈DriverNodes

ki∑
i∈DriverNodes

Ni
(3)

Here, we use only the driver nodes to estimate the scale-up factor,
as for them the Ni are typically known with high accuracy, making
the estimate of the total cardinality Ni = ki/α. The refinement

of the total cardinality Ni at node i, i.e., Ni = ki/α, can be in-
terpreted as population estimation using sampling without replace-
ment. The intuition is that, each row output by a driver node (by a
GetNext call) may trigger the output of zero, one, or more rows at
node i. So assuming future drive-node rows trigger the output of
rows at node i at the same rate, the total number of rows output by
node i becomes ki/α.

Of course, rows are output at node i at varying rates during the
whole process and thus we need to estimate the average rate. For-
mally, let

TotalRowsDN =
∑

i∈DriverNodes

Ni

be the total number of rows output by driver nodes, and

SeenRowsDN =
∑

i∈DriverNodes

ki

be the number of rows output by them so far. Let N true
i be the true

cardinality at node i. Our estimation Ni thus can be rewritten as

Ni =
ki

SeenRowsDN
TotalRowsDN

=
ki

SeenRowsDN
· TotalRowsDN.

The true cardinality N true
i can be rewritten similarly to be

N true
i =

N true
i

TotalRowsDN
· TotalRowsDN,

whereN true
i /TotalRowsDN is the average rate of rows being out-

put at node i. We essentially estimate this true average rate as
ki/SeenRowsDN, which decides how much error there is in our
estimation of Ni relative to N true

i .
If rows from driver nodes are randomly permuted, ki/SeenRowsDN

is a reasonably accurate estimation of N true
i /TotalRowsDN with

the estimation error bounded by the Central Limit Theorem or Ho-
effding inequality. The order of these rows, unfortunately, depends
on the physical layout of database tables which is fixed in advance
and cannot be assumed to be totally random. Still, refining cardi-
nalities in this manner is still a valid strategy for the vast majority of
possible orderings: we have been able to show that among all possi-
ble orders of these rows, in the majority of them, ki/SeenRowsDN

is very close to N true
i /TotalRowsDN.

Formally, an order of rows from driver nodes is said to be a bad
order iff |Ni−Ntrue

i |
Ntrue

i
> ε. Among all possible orders of rows be-

ing output from driver nodes, the portion of bad orders is propor-
tional to 1

ε2·SeenRowsDN
(where the exact equation depends on a

number of additional, data-dependent parameters), which decreases
quickly as we get more and more rows from driver nodes (i.e., as
SeenRowsDN increases).

Obviously, as also pointed out in [12], extrapolating theNi from
observations in this manner requires initially observing sufficiently
many tuples at node i as well to allow us to estimate the operator
selectivity accurately. As a result, we only invoke the cardinality
refinement if the following guard conditions are met: First, similar
to [12], we require a minimum number of tuples observed for all
inputs to any operator. Second, for any filter or join operator, we
only trigger refinement if we have observed both tuples satisfying
the join/filter condition as well as tuples not satisfying it.

One thing to note is that a different techniques for online refine-
ment of cardinality estimates in progress estimates have been pro-
posed previously [22]. Unlike this approach, we do not use linear
interpolation between the initial optimizer estimate and the scaled-
up estimate, as we found these estimates to converge very slowly
for highly erroneous initial estimates.

Finally, for any nested loop iterations, we make an additional
modification to the technique, refining the cardinality estimates on
the inner side of the nested loop by scaling the average number
of GetNext calls per input tuple by the corresponding 1/α for the
outer side; this is merely reflecting the fact that for nested loops, the
outer side of the loop governs how often the inner side is invoked
(as opposed to the child node). In case of multiple nested loops
within a pipeline we have to apply this logic multiple times, from
the outer to the inner nodes.

4.2 Cardinality Bounding
In addition to online cardinality refinement, we use the tech-

niques described in [7] to maintain worst-case lower and upper
bounds on the number of GetNext calls possible for each oper-
ator, based on the number of tuples seen so far at each operator and
the size of the input(s). If the value of any Ni ever falls outside of
these bounds, it is set to the nearest boundary value. We describe
the computation of the cardinality bounds on a per-operator basis
in Appendix A.

Since these bounds are derived based on the algebraic proper-
ties of the operators alone, they are conservative, and therefore
tend to only kick in for operators in the later pipelines in a query
plan; for these operators, the initial cardinality estimation often re-
quires computing selectivities for multiple joins and filter predi-
cates, meaning that the cardinality estimates often have significant
errors. In these cases, cardinality bounding can reduce these er-
rors significantly: for example, after a first pipeline is complete, we
know the exact cardinality of the input to the leaf node(s) of the
second pipeline. In such cases, the resulting upper bound on the
correspondingNi for any node in the second pipeline can be signif-
icantly lower than the initial optimizer estimate of these Ni, in turn
improving the cardinalities used during progress estimation. Sim-
ilarly, these bounding techniques can improve estimates in case of
cardinality underestimation as well. As we will show in the experi-
mental evaluation (see Section 5.1), cardinality bounding results in
noticeable increase in overall progress estimation accuracy.

4.3 Predicates evaluated in the Storage Engine
A special case for progress estimation are predicates that are

pushed down to the storage engine. One important example of this
are bitmap filters, which are common in data warehousing work-
loads. Bitmap filters are a type of semi-join reduction in which
rows on the inner side of the join that cannot join with rows on the
outer side, are eliminated prior to the join operator. In a typical
case, the bitmap filter is created when the build input of a Hash
Join is executed, and the bitmap filter is evaluated when scanning
the probe side input. An example of a bitmap filter that has been
pushed into the scan is shown in Figure 6.

There are many other examples of such filters, such as complex
combinations of conjunctions and disjunctions, predicates on out-
of-model scalar functions, etc., all of which may be pushed to the
storage engine.

Because these predicates filter out rows as part of the initial data
access, the assumption that we base driver nodes on, namely, that
we have accurate estimates of the number of rows output by a
driver node, is not valid any more. In fact, the bitmap filters and
other complex predicates of this type often have very large esti-
mation errors. As a result, using these driver nodes to compute
query progress or as part of cardinality refinement for other nodes
becomes problematic.

Therefore, we use a different technique when estimating the progress
at nodes of this type: as long as only predicates are pushed to the
storage engine that cannot be supported by an index, we know that

Figure 6: Plan with Bitmap Filter Evaluation in Index Scan.

the entirety of the table has to be accessed by the Scan operator
(even if many rows may be filtered as part of the scan); hence, we
instead compute the number of logical I/O operations required to
scan the underlying table and based the current measure of progress
at the Scan node in question on the fraction of these I/O requests
issued at this point. This approach has turned out to be highly ac-
curate and a significant improvement over the initial approach.

4.4 Semi-blocking Operators
Some operators such as Sort and Hash are stop-and-go, i.e., they

are blocking. Other operators are pipelined in their execution, how-
ever, they buffer their output, which causes them to behave similar
to blocking operators for subsets of their output. We refer to such
operators as semi-blocking. Examples of such semi-blocking op-
erators include Nested Loops (when the inner operator is an Index
Seek) and Parallelism (aka. Exchange).

To illustrate this issue, consider the query pipelines shown in
Figure 7: without any buffering, we would expect the number of
GetNext calls in the Parallelism operator and its Nested Loop child
to be identical. However, this is not the case in practice: in Figure 8
we plot the number of GetNext calls for both operators over time
– as we can see, the Parallelism operator ’lags’ behind its child
noticeably. Note that while the curves follow each other closely
on the time-scale, because of the steep trajectory of the curve, the
difference in the number of GetNext calls between the operators
can be very significant; for example, for the two measurements
highlighted in Figure 8, the ratios between the GetNext calls of the
Nested Loop and the Parallelism operator are about 88x and 12x,
respectively. This, in turn, can significantly hurt the accuracy of
progress estimation for two main reasons.

Figure 7: The Parallelism operator in this plan progresses signifi-
cantly slower than its child node (Nested Loop)

First, they break the central assumption underlying the use of
driver nodes, namely that the progress measured using driver nodes
only corresponds to the progress over all nodes in a pipeline. To
illustrate this, consider the case of a pipeline consisting of a single
index nested loop join, with the scan of the outer side being the
sole driver node. In this scenario, the buffering can lead to the

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

30:48.0 30:49.0 30:50.0 30:51.0 30:52.0 30:53.0 30:54.0 30:55.0 30:56.0 30:57.0 30:58.0 30:59.0

Ki of Nested Loop

Ki of Parallelism Operator

Ki-Ratio > 12x

Ki-Ratio > 88x

Time

Figure 8: The difference in the GetNext calls between the two
nodes from Figure 7 over time

scenario where all tuples from the outer side have been consumed
and buffered before any tuples on the inner side were accessed,
meaning that the progress at the driver node is 100%, yet the query
may still be far from completion. This is a scenario we observe
often in practice.

Second, when significant buffering occurs, the method described
in Section 4.1 of refining the Ni estimates by scaling the corre-
sponding ki by the (inverse) driver-node progress is not accurate
any more; especially when multiple semi-blocking operators occur
in sequence in a query pipeline, this will lead to significant over-
estimation of the Ni terms, as the ’correct’ scale-factor becomes
smaller and smaller with every semi-blocking operator between the
node whose cardinality we are trying to refine and the driver nodes
of the corresponding pipeline.

To address these issues, we modify the techniques described so
far for pipelines containing semi-blocking operators as follows:
(1) For progress estimation of Nested Loop joins (which buffer tu-
ples coming from the outer side), we treat the inner side of the
join as a driver node as well. Similar modifications were proposed
in [15] and were shown to yield significant improvements across a
wide range of workloads there.
(2) For the purpose of improving initial estimates of the Ni counts
using the cardinality refinement techniques of Section 4.1, we scale-
up the ki counts of a node that is separated from the leaves of its
pipeline by at least one semi-blocking operator, using the progress
at its immediate child. This is in contrast to using the progress of the
driver node to scale-up the ki counts. This difference in scale-up
logic is illustrated in Figure 9. In case of nodes with multiple chil-
dren (e.g., Merge Joins) we use both children’s progress to compute
the corresponding α.
(3) Finally, we adjust the scale-up factor for tuples on the inner side
of a nested loop join to adjust for the fraction of tuples buffered on
the outer side of the operator.

4.5 Improvements for Blocking Operators
One challenge introduced by operator-level progress is the accu-

rate modelling of progress for blocking operators. For many block-
ing operators, the fraction of work done by the operator itself is
very poorly characterized by the fraction of tuples output by the
operator. For example, in case of Hash Aggregates, once tuples
have started to be output, typically most of the processing and I/O
associated with the operator have been completed already. When
considering query-level progress, this issue is often, but not always,
masked by the fact that the I/O and processing associated with tu-
ples being input to a blocking operator is modelled as part of its

Ni = Ki / (Kj / Nj)

Nj = Kj / (Kk / Nk)

(Kdriver / Ndriver)

Driver node

Pipeline

Ni = Ki / (Kdriver / Ndriver)

Nj = Kj / (Kdriver / Ndriver)

Progress Rate = (Kdriver / Ndriver)

Driver node

Pipeline

Scaling up by Driver Node Progress Scaling up in the Presence of buffering

Figure 9: Scaling up Ni estimates using driver nodes vs. immedi-
ate child nodes.

Table Scan

Hash
Aggregate

(in)

Table Scan

Hash
Aggregate

Hash
Aggregate

(out)

𝑃𝑟𝑜𝑔𝑟𝑒𝑠𝑠(𝑆𝑐𝑎𝑛) =
𝐾1
𝑁1

=
𝐾1

10000

𝑃𝑟𝑜𝑔𝑟𝑒𝑠𝑠(𝐻𝑎𝑠ℎ) =
𝐾2
𝑁2

=
𝐾2
10

𝑃𝑟𝑜𝑔𝑟𝑒𝑠𝑠(𝐻𝑎𝑠ℎ) =
𝐾2 + 𝐾3
𝑁2 + 𝑁3

=
𝐾2 + 𝐾3
10010

𝑃𝑟𝑜𝑔𝑟𝑒𝑠𝑠(𝑆𝑐𝑎𝑛) =
𝐾1
𝑁1

=
𝐾1

10000

𝑁2 = 10000

𝑁2 = 10

𝑁3 = 10

𝑁1 = 10000 𝑁1 = 10000

Figure 10: Modeling Hash Aggregation Progress in Two Phases.

child’s operator(s). However, for operator-level progress, this does
not apply any more.

Earlier work [12] has dealt with this scenario by introducing two
new terms: “blocking time”, which specifies the amount of time re-
quired before an operator outputs tuples, and “blocking progress”,
which specifies the fraction of total work done before tuples are
output. The approach we chose in this work is different: because
the relative per-tuple processing overhead for input and output tu-
ples can be significantly different and change as a function of the
width of output rows, complexity and number of aggregate expres-
sions and grouping columns, etc., we model operators of this type
(such as Sort and Hash) as two distinct phases. The first phase
progresses in proportion to the fraction of input tuples consumed,
whereas the second phase progresses in proportion to the fraction
of tuples output by the operator.

We show the change compared to earlier approaches in Figure 10.
On the left side we show the earlier progress model for a Hash Ag-
gregate operator which inputs 10K tuples and outputs 10. In this
model, the progress for this operator is 0 until tuples are output. In
the new model, shown on the right side, the input and output phases
of the Hash Aggregate are modelled separately, with the input ex-
ecuting synchronously with the child Scan operator and the output
executing subsequently. To illustrate the effect of this change in
practice, we plot the example progress for a Hash Aggregate oper-
ator (used in the execution of TPC-DS Query 13) in Figure 11 over
the time the operator is active; in the figure, the dotted line rep-
resents a perfect estimate. Whereas the original model (using the
output Ni only) reports no progress throughout nearly the entire
time (and only changes when output is produced at the very end of
execution), the new progress model (based on both input and out-
put tuples) shows the operator making progress before any output
is produced and correlates much better with time.

Note that the new model still can be an over-simplification, for
example, for large sorts with multiple merge steps even more intri-

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%
100.00%

3
2
:3
7
.0

3
2
:4
4
.0

3
2
:5
1
.0

3
2
:5
8
.0

3
3
:0
5
.0

3
3
:1
2
.0

3
3
:1
9
.0

3
3
:2
6
.0

3
3
:3
3
.0

3
3
:4
0
.0

3
3
:4
7
.0

3
3
:5
4
.0

3
4
:0
1
.0

3
4
:0
8
.0

3
4
:1
5
.0

3
4
:2
2
.0

3
4
:2
9
.0

3
4
:3
6
.0

3
4
:4
3
.0

3
4
:5
0
.0

3
4
:5
7
.0

3
5
:0
4
.0

3
5
:1
1
.0

3
5
:1
8
.0

3
5
:2
5
.0

3
5
:3
2
.0

3
5
:3
9
.0

3
5
:4
6
.0

3
5
:5
3
.0

3
6
:0
0
.0

3
6
:0
7
.0

3
6
:1
4
.0

3
6
:2
1
.0

3
6
:2
8
.0

3
6
:3
5
.0

3
6
:4
2
.0

3
6
:4
9
.0

3
6
:5
6
.0

3
7
:0
3
.0

3
7
:1
0
.0

3
7
:1
7
.0

P
ro

gr
e

ss

Time

Output Ni only Input Ni And Output Ni Progress True Progress

Figure 11: The effect of the refined model for Hash Aggregation

cate models may be needed; however, it performs well in practice
across a variety of workloads and significantly improves upon our
earlier models, as we demonstrate in the experimental evaluation.

4.6 Selecting the Operator Weights
While the accuracy of single-operator progress mainly depends

on accurate estimation of the Ni (and – for blocking operators –
how we “break” them into pipelines), the accuracy of the overall
query progress requires us to assess the relative “speeds” at which
different pipelines iterate over tuples; these speeds in turn depend
on the corresponding row sizes and the amount of processing done
at each individual operator in a pipeline.

We model these differences in speeds by changing the corre-
sponding wi terms in equation 2 accordingly. For this, we adopt
the framework first introduced in [18]; here, the query workload is
divided up into speed-independent pipelines, which are defined as
groups of connected operators that execute concurrently and pro-
cess tuples at a speed independent of the speeds of other operators
(in other pipelines). The relative weights for each such pipeline are
then set using estimates of I/O and CPU cost of the corresponding
operators by the optimizer and the notion of ’overlapping’ work:
we make the (simplifying) assumption that I/O and CPU cost within
a single operator are overlapping, meaning that only their maxi-
mum is used to weigh a pipeline.

In addition, the overall duration of a query depends only on the
duration of its “longest” path (i.e., the path of speed-independent
pipelines from the top operator in a query to the leaf level which
requires the longest time among all such paths). As a result, we
maintain this path (based on optimizer cost estimates of I/O and
CPU cost per tuple and refined Ni counts) among all pipelines
and use only the set of nodes along it to compute the overall query
progress.

Because the weights we use are derived from optimizer cost esti-
mates, they do not model transient effects not considered by it (e.g.,
effects of caching due to the buffer pool).

To illustrate the difference that this weighting scheme can make
on progress estimation, we plotted the progress estimates over time
for query 21 from the TPC-DS benchmark in Figure 12. As we
can see in Figure 12, the un-weighted estimator severely under-
estimates query progress until the very end of query execution.
In contrast, the weighted operator progress correlates much bet-
ter with time. Examining the query plan in question in more detail,
we see that it consists of 6 pipelines; one of them is not part of
the longest path, so it is ignored. Two of the pipelines have very
small CPU and I/O costs (and also only small numbers of tuples),
so they don’t affect progress estimation significantly. However, for
the remaining 3 pipelines, which make up the majority of the ex-
ecution, the corresponding weights differ by more than an order
of magnitude, with the first two pipelines in the query plan having

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

P
ro

gr
e

ss

True Progress Weighted Progress Estimation Unweighted Progress Estimation

Figure 12: Progress for TPCDS Q21 with and w/o operator
weights

high weights and each corresponding to nearly half of the execu-
tion time in the query (which can be seen by the two distinct ’an-
gles’ in the progress estimate in Figure 12); the effect of modelling
these weights better (in combination with an initial over-estimate of
the cardinality of the third pipeline, whose importance is decreased
due to the adjusted weights) results in the improved accuracy of the
progress estimates. We will evaluate the overall effects of using
operator weights in Section 5.

4.7 Progress Estimation for Data with Column-
store Indexes

In addition to the traditional row-at-a-time execution model, Mi-
crosoft SQL Server supports processing data in batches of rows
when operating on data stored in columnar format, thereby greatly
reducing CPU time and cache misses when processing large data
sets [16, 17]. These changes affect progress estimation as well,
as progress for these operators cannot be based on GetNext calls
any more; instead, we use a more coarse-grained approach in which
we base the progress estimates for these operators/pipelines on the
fraction of column segments processed at any point in time. The
dynamic management view sys.dm_exec_query_profiles exposes the
counters required for computing the numbers of segments processed
by an operator as well, while the total number of segments in the
underlying index can be computed from the dynamic management
view sys.column_store_segments.

5. EXPERIMENTS
In this section, we will evaluate the various techniques described

in Section 4 using both real-world and synthetic workloads.
Workloads: In order for this evaluation to cover a wide range
of query plans and data distributions, we use 5 different work-
loads; the set of workloads we selected is skewed towards decision-
support scenarios, since progress estimation is generally most im-
portant for longer-running queries. The workloads we use are

• A 100 GB instance of the TPC-H benchmark, with the data
generated with a skew-parameter of Z = 1 [1].

• A 100 GB instance of the TPC-DS decision support bench-
mark.

• “REAL-1”: a real-world decision-support and reporting work-
load over a 9GB Sales database. Most of the queries in this
workload involve joins of 5-8 tables as well as nested sub-
queries. The workload contains 477 distinct queries.

• “REAL-2” is a different real-life decision-support workload
on 12GB dataset with even more complex queries (with a

typical query involving 12 joins). This workload contains a
total of 632 queries.

• “REAL-3”: a 3rd real-life decision-support workload using a
97 GB dataset; this workload contains a total of 40 join and
group by queries.

Error Metrics: In the following experiments, we will consider two
different error metrics, depending on which aspect of our algorithm
we seek to evaluate.

First, in scenarios where we evaluate the accuracy of techniques
designed to improve the estimation of theNi denominators in equa-
tion 2, we compare the accuracy of an unweighted (i.e., ∀i : wi =
1) progress estimatorProg to the progress estimate we obtain when
we replace all estimated Ni with the exact values N̄i (which we
can determine after a query’s completion). We measure this error
at a number of evenly spaced time-intervals, recording the progress
estimates as well as the ki and Ni for every second of a query’s
runtime. We use the notation set Observations(Q) to denote
the set of all such measurements for a query Q; for simplicity
of notation, we denote each measurement using an index t, t ∈
Observations(Q). For each measurement t, we denote the corre-
sponding number of GetNext calls at a node i by kti . We average
the resulting error per query over all measurements and over all
queries. This measure of accuracy thus becomes:

Errorcount :=

1

|Q|
∑

Q∈Workload

(∑
t∈Observations(Q)

∣∣(Prog(Q, t)−
∑
i∈Nodes(Q) k

t
i∑

i∈Nodes(Q) N̄i

)∣∣)
Second, in practice many users of progress estimates mainly care

about how well the estimates correlate with the time required to ex-
ecute this query. In addition, a number of the techniques discussed
in Section 4, such as the selection of different weights wi for each
operator i are aimed at improving the correlation between execu-
tion time and progress (and would remain important even if all Ni
were estimated without error). Here, for each measurement t we
use T ime(t) to denote the time the measurement was taken and
T ime(tstart(Q)) to denote the start and T ime(tend(Q)) to de-
note the end of execution for a query Q. We introduce a second
error measure that evaluates how well a progress estimator Prog
correlates with time, defined as

Errortime :=
1

|Q|
∑

Q∈Workload(∑
t∈Observations(Q)

∣∣(Prog(Q,t)− Time(t)−Time(tstart(Q))
Time(tend(Q))−Time(tstart(Q))

)∣∣)
We also consider use operator-specific variants of each error mea-

sure, where we only consider the error over all operators of a spe-
cific type.

For both metrics, all queries are executed in isolation. Note that
for both metrics, the maximum error is small; for Errorcount, it
cannot exceed 1.0 and for Errortime it cannot exceed 0.5. Hence,
even an improvement of 0.1 or even 0.05 is significant in terms
of real-life progress estimation accuracy. To illustrate this, we
have plotted the progress estimators for two estimators on TPC-DS
query 36 in Figure 13, with the difference in error between them
being 0.1.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

03:19.9 03:20.9 03:21.9 03:22.9 03:23.9 03:24.9 03:25.9 03:26.9 03:27.9 03:28.9 03:29.9 03:30.9 03:31.9 03:32.9 03:33.9 03:34.9 03:35.9 03:36.9 03:37.9 03:38.9 03:40.0 03:40.9

Estimator 1

Estimator 2

True Progress

Figure 13: Two example progress estimates with 0.1 difference in
Error

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

REAL-3 REAL-2 REAL-1 TPC-DS TPC-H

A
vg

 E
rr

o
r C

o
u

n
t
p

e
r

q
u

e
ry

No Refinement Bounding only Bounding + Refinement

Figure 14: Evaluating the effect of cardinality refinement

5.1 Evaluation of Cardinality Refinement
First, we evaluate the effect of the various techniques used to ob-

tain more accurate estimates of theNi terms in Equation 2, namely
the online cardinality refinement discussed in Section 4.1 and the
cardinality bounding described in Section 4.2.

In Figure 14 we show the overall Errorcount when compar-
ing the overall query progress computed with exact knowledge of
the correct Ni terms to progress estimates based on three different
models: (a) the “Total GetNext” (TGN) Model (which corresponds
to Equation 2 with all wi terms set to 1), (b) the TGN model with
cardinality bounding and (c) the query progress model based on
driver nodes only (DNE), using both online cardinality refinement
as well as cardinality bounding. The results are shown in Figure 14.
As we can see, both online cardinality refinement as well as bound-
ing both substantially improve the quality of progress estimation
across all workloads.

In Figure 15 we show the effect of cardinality refinement broken
down by each operator type; we plot the average Errorcount for
each operator when using (a) no refinement, (b) only the refinement
based on the techniques described in Section 4.1 and (c) when us-
ing the basic cardinality refinement techniques combined with the
modifications geared towards addressing the challenges posed by
semi-blocking operators (see Section 4.4).

As we can see, while cardinality refinements improve estimates
for some operators (most notably Nested Loop Joins and the Bitmap
filter operators associated with Hash Joins), they also cause the av-
erage accuracy for some operators to degrade, e.g., when the frac-
tion of tuples output by an operator is significantly correlated with
time. Still, as shown by Figure 14, even the simple refinement tech-
niques noticeably improve progress estimates when compared to no
refinement when averaged over all operators.

Now, adding the techniques that address semi-blocking opera-
tors improves the effect of refinement across the board (with only
one exception: Merge Join operators), in many cases significantly;
this illustrates the importance of dealing with this type of buffer-
ing, which – in the context of cardinality refinement – has not been
addressed in prior work.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

A
ve

ra
ge

 L
1

 E
rr

o
r

p
e

r
O

p
e

ra
to

r No Refinement

Cardinality Refinement

Refinement + Semi-Blocking Adjustments

Figure 15: Effect of Cardinality Refinement by Operator

0

0.05

0.1

0.15

0.2

0.25

0.3

REAL-3 REAL-2 REAL-1 TPC-DS TPC-H

Er
ro
r T

im
e

Avg L1 Errors of Query progress: unweighted vs. weighted Estimators

With Weight Without Weight

Figure 16: Evaluating the effect of operator weights

5.2 Evaluation of Operator weights
In this experiment, we evaluate the effect of the techniques using

the relative operator cost when combining the progress estimates
across pipelines on overall per-query accuracy. For this purpose,
we evaluated all 5 workloads both with no weights (i.e., ∀i : wi =
1) and compared the resulting accuracy to the weighting scheme
described in Section 4.6. Because weights are intended to model
the variations in speed across pipelines, we use the Errortime
metric here. The results are shown in Figure 16. As we can see,
applying the weighting scheme improves the correlation between
progress estimates and time noticeably across all workloads.

5.3 Evaluation: Improvements for Blocking
Operators

In this experiment, we evaluate the effectiveness of the tech-
niques described in Section 4.5 to improve the modelling of block-
ing operators. For this purpose, we measured Errortime for both
the original model as well as the improved one over all instances
of Sort and Hash Aggregation operators over all 5 workloads; the
results are shown in Figure 17. As we can see, the new model does
noticeably improve the modelling of both Hash and Sort operators;
at the same time, the absolute errors are still significant, suggesting
that a more refined model of these operators utilizing more infor-
mation on the internal operator state as future work.

5.4 Evaluation: Progress Estimation for Batch-
Mode Operations

In this experiment, we evaluate the effect that the presence of
Columnar Indexes has on progress estimation: for this purpose,
we executed the TPC-H workload over two different physical de-
signs: (a) the design obtained when building all indexes recom-
mended for this workload by the Microsoft SQL Server Database
Tuning Advisor [3] (DTA) and (b) the design obtained where we
only construct a non-clustered Columnstore Index on each table in

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Hash Match Sort

A
ve

ra
ge

 E
rr

o
r ti

m
e

Model uses Output Ni only Model uses Input and Output Ni

Figure 17: Evaluating the new model for blocking operators

0

0.05

0.1

0.15

0.2

0.25

TPC-H TPC-H ColumnStore

Er
ro
r T
im

e

Figure 18: Average Error with and without Columnstore Indexes

the TPC-H benchmark. The average ErrorTime over the entire
TPC-H workload is shown in Figure 18.

As we can see, the average error is reduced significantly; this
turns out to be due to two main factors: for one, the distribution
of operators for this workload has changed significantly: in Fig-
ure 19 we plotted the counts of each operator across the TPC-H
workload for the two different physical designs; as we can see, the
non-Columnstore design induces query plans with much more sig-
nificant variation in the types of operators, whereas the Column-
store design results in query plans which mostly consist of Index
Scans and Hash Join operators and much fewer Nested Loops or
Index Seek operators.

Furthermore, the distribution of progress estimation errors changed
significantly as well: in Figure 20, we plot the ErrorTime broken

0

10

20

30

40

50

60

70

O
p

er
at

o
r

Fr
eq

u
en

cy

TPC-H ColumnStore TPC-H

Figure 19: Operator Distribution with and without Columnar In-
dexes

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Er
ro

r T
im

e
p

er
 O

p
er

at
o

r

TPC-H ColumnStore TPC-H

Figure 20: Average Error per Operator with and without Columnar
Indexes

down by each operator. We can see that the per-operator error is
significantly reduced for all operators occurring in the design based
on Columnstore Indexes.

6. RELATED WORK
The problem of progress estimation for database queries was

first proposed and studied in [7] and [22], with further refinements
in [6, 23, 24]. In addition to the work on query progress estimation
itself, there has been considerable research interest in techniques
estimating the execution time of queries outright; however, these
techniques either require the pre-computation of uniform random
samples for all tables touched by a query [29,30], which can be pro-
hibitively expensive in practice, or rely on statistical models trained
on prior instances of the same query template and therefore do not
generalize to new ad-hoc queries [9, 10].

A statistical approach to progress estimation, that attempts to
pick among a set of existing estimators dynamically using machine
learning, has been described in [15]. [21] extended query progress
estimation to multi-query scenarios, and [19,25,26] study progress
estimation in MapReduce systems, both of which are scenarios that
are beyond the scope of this paper.

Other database engines, e.g., Oracle expose server side views
that provide real time monitoring of actual and estimated cardi-
nality for currently executing query plans similar to the DMVs dis-
cussed in this paper. Oracle also exposes a dynamic view (v$session_-
longops) that – similar to dm_exec_query_profiles – provides
statistical information and progress estimation for database oper-
ations such as backup/recovery functions, statistics gathering, and
certain types of SQL operators [2]. However, not all operators in
SQL queries are covered and therefore (often) no estimate of over-
all query progress is possible.

7. DISCUSSION AND FUTURE WORK
While the experimental evaluation demonstrated the improve-

ments over the earlier state-of-the-art realized as a result of the
techniques described in Section 4, they also point to opportunities
for further improvements in progress estimates. Because the cur-
rent design computes a query’s progress as part of a client process,
most of these improvements require the Microsoft SQL Server en-
gine to expose additional counters beyond the set contained as part
of sys.dm_exec_query_profiles already. These include:

• More fine-grained information on the internal state of block-
ing operators such as Hash and Sort. As illustrated in Fig-
ure 11, these operators can perform significant processing

that is not concurrent with them outputting rows, meaning
that it is not captured well by the GetNext model.

• Counters exposing how many tuples are being buffered and
how many tuples have been passed on for all semi-blocking
operators such as Nested Loop joins or Parallelism.

• In cases where we have combinations of filters evaluated at a
leaf node, we need additional information on the selectivities
of these filters: in order to apply the technique described in
Section 4.3 in these scenarios, we ideally require the cardi-
nality resulting from the filters that leverage indexes in their
execution only to adjust the number of logical reads used in
the technique described in Section 4.3 accordingly.

Other potential future improvements include (a) the improved
propagation of cardinality estimate refinements across pipeline bound-
aries, as we currently only propagate worst-case bounds beyond
blocking operators, but not refined cardinalities themselves, and (b)
the ability to use feedback from prior executions of queries to ad-
just the weights that model the relative costs of CPU and I/O over-
head when estimating query-level progress, (c) extending the re-
fined model of Section 4.5 to additional operators and (d) improved
cardinality-refinement logic for special cases where it is known that
the number of GetNext calls (per driver node tuple) is highly cor-
related with time, such as cases of Merge Joins where one of the
inputs contains large regions of non-joining tuples before the first
joining tuple is seen, or filters with predicates on the column the
input data is sorted on.
Acknowledgements: We are grateful for the feedback from the
anonymous reviewers, which improved this paper significantly.

8. REFERENCES
[1] Program for TPC-H data generation with Skew.

ftp://ftp.research.microsoft.com/users/viveknar/TPCDSkew/.
[2] V$SESSION_LONGOPS.

http://docs.oracle.com/cd/B19306_01/server.102/b14237/-
dynviews_2092.htm#REFRN30227.

[3] S. Agrawal, S. Chaudhuri, L. Kollar, A. Marathe,
V. Narasayya, and M. Syamala. Database Tuning Advisor for
Microsoft SQL Server 2005. In VLDB, pages 1110–1121,
2004.

[4] N. Bruno, S. Chaudhuri, and L. Gravano. STHoles: A
Multidiemsnional Workload-Aware Histogram. In ACM
SIGMOD, 2001.

[5] S. Chaudhuri. An overview of Query Optimization in
Relational Systems. In ACM PODS, 1998.

[6] S. Chaudhuri, R. Kaushik, and R. Ramamurthy. When can
we trust Progress Estimators for SQL queries? In
Proceedings of the 2005 ACM SIGMOD international
conference on Management of data, pages 575–586. ACM,
2005.

[7] S. Chaudhuri, V. Narasayya, and R. Ramamurthy. Estimating
Progress of Execution for SQL queries. In Proceedings of the
2004 ACM SIGMOD international conference on
Management of data, pages 803–814. ACM, 2004.

[8] C. M. Chen and N. Roussoploulos. Adaptive Selectivity
Estimation Using Query Feedback. In Proceedings of the
ACM SIGMOD Conference, pages 161–172, May 1994.

[9] J. Duggan, U. Cetintemel, O. Papaemmanouil, and E. Upfal.
Performance Prediction for Concurrent Database Workloads.
In Proceedings of the 2011 ACM SIGMOD International
Conference on Management of data, pages 337–348. ACM,
2011.

[10] A. Ganapathi, H. Kuno, U. Dayal, J. L. Wiener, A. Fox, M. I.
Jordan, and D. Patterson. Predicting Multiple Metrics for
Queries: Better Decisions enabled by Machine Learning. In
Data Engineering, 2009. ICDE’09. IEEE 25th International
Conference on, pages 592–603. IEEE, 2009.

[11] G. Graefe. Query Evaluation Techniques for Large
Databases. ACM Computing Surveys (CSUR), 25(2):73–169,
1993.

[12] R. H. Güting. Operator-Based Query Progress Estimation.
Technical Report 343-2/2008, FernUniversität Hagen,
February 2008.

[13] J. M. Hellerstein, P. J. Haas, and H. J. Wang. Online
Aggregation. ACM SIGMOD Record, 26(2):171–182, 1997.

[14] A. König and G. Weikum. Combining Histograms and
Parametric Curve Fitting for Feedback-Driven Query
Result-size Estimation. In 25th International Conference on
Very Large Databases, 1999.

[15] A. C. König, B. Ding, S. Chaudhuri, and V. Narasayya. A
Statistical Approach towards Robust Progress Estimation.
Proceedings of the VLDB Endowment, 5(4):382–393, 2011.

[16] P.-A. Larson, C. Clinciu, C. Fraser, E. N. Hanson,
M. Mokhtar, M. Nowakiewicz, V. Papadimos, S. L. Price,
S. Rangarajan, R. Rusanu, and M. Saubhasik. Enhancements
to SQL Server Column Stores. In ACM SIGMOD, 2013.

[17] P.-A. Larson, C. Clinciu, E. N. Hanson, A. Oks, S. L. Price,
S. Rangarajan, A. Surna, and Q. Zhou. Sql Server Column
Store Indexes. In ACM SIGMOD, 2011.

[18] J. Li, R. Nehme, and J. Naughton. GSLPI: A Cost-based
Query Progress Indicator. In Data Engineering (ICDE), 2012
IEEE 28th International Conference on, pages 678–689.
IEEE, 2012.

[19] J. Li, R. V. Nehme, and J. F. Naughton. Toward Progress
Indicators on Steroids for Big Data Systems. In CIDR, 2013.

[20] L. Lim, M. Wang, and J. S. Vitter. SASH: a Self-adaptive
Histogram Set for Dynamically Changing Workloads. In
VLDB, 2003.

[21] G. Luo, J. Naughton, and P. Yu. Multi-query SQL Progress
Indicators. In EDBT, pages 921–941, 2006.

[22] G. Luo, J. F. Naughton, C. J. Ellmann, and M. W. Watzke.
Toward a progress indicator for database queries. In
Proceedings of the 2004 ACM SIGMOD international
conference on Management of data, pages 791–802. ACM,
2004.

[23] G. Luo, J. F. Naughton, C. J. Ellmann, and M. W. Watzke.
Increasing the Accuracy and Coverage of SQL Progress
Indicators. In Data Engineering, 2005. ICDE 2005.
Proceedings. 21st International Conference on, pages
853–864. IEEE, 2005.

[24] C. Mishra and N. Koudas. A Lightweight Online Framework
for Query Progress Indicators. In Data Engineering, 2007.
ICDE 2007. IEEE 23rd International Conference on, pages
1292–1296. IEEE, 2007.

[25] K. Morton, M. Balazinska, and D. Grossman. ParaTimer: a
Progress Indicator for Mapreduce DAGs. In Proceedings of
the 2010 ACM SIGMOD International Conference on
Management of data, pages 507–518. ACM, 2010.

[26] K. Morton, A. Friesen, M. Balazinska, and D. Grossman.
Estimating the Progress of MapReduce Pipelines. In 26th
International Conference on Data Engineering (ICDE).
IEEE, 2010.

[27] M. Stillger, G. Lohman, V. Markl, and M. Kandil. LEO -

DB2’s Learning Optimizer. In Proceedings of the 27th
Conference on Very Large Databases, Rome, Italy, 2001.

[28] N. Thaper, S. Guha, P. Indyk, and N. Koudas. Dynamic
Multidimensional Histograms. In Proceedings of ACM
SIGMOD Conference, Madison, USA, pages 428–439, 2002.

[29] W. Wu, Y. Chi, H. Hacígümüş, and J. F. Naughton. Towards
Predicting Query Execution Time for Concurrent and
Dynamic Database Workloads. Proceedings of the VLDB
Endowment, 6(10):925–936, 2013.

[30] W. Wu, Y. Chi, S. Zhu, J. Tatemura, H. Hacigumus, and J. F.
Naughton. Predicting Query Execution Time: Are Optimizer
Cost Models really Unusable? In Data Engineering (ICDE),
2013 IEEE 29th International Conference on, pages
1081–1092. IEEE, 2013.

APPENDIX
A. CARDINALITY BOUNDING LOGIC

In this section, we will describe the logic used to the compute
worst-case bounds on cardinalities during query execution described
in Section 4.2. The following table describes how we compute the
lower bound LBi and upper bound UBi for a node i, broken down
by the type of logical operator node i corresponds to. We use the
offset i − 1 to denote the direct child of node i. For Nested Loops
and Hash joins, we use i− 1 to denote the outer and i− 2 the inner
child. Finally, for nodes with variable number of children, we use
the offset j to iterate over all of them (i.e.,

∑
j).

Logical Operator LBi UBi

Inner Join Ki (UBi−1Ki−1) · UBi−2 +Ki

Left Anti Semi Join Ki (UBi−1Ki−1) · UBi−2 +Ki

Left Semi Join Ki (UBi−1Ki−1) · UBi−2 +Ki

Right Outer Join Ki (UBi−1Ki−1) · UBi−2 +Ki

Right Semi Join Ki (UBi−1Ki−1) · UBi−2 +Ki

Full Outer Join Ki (UBi−1Ki−1) · UBi−2 +Ki

Concatenation
∑
j Kj

∑
j UBj

Clustered Index Seek
Ki

TableSize,
Index Seek or, when on inner side of join:
Index Scan TableSize · UBi−1

Table Scan Table Size TableSize
Constant Scan Ni Ni
Eager Spool

Ki ∞Lazy Spool
Filter Ki (UBi−1Ki−1) +Ki

Distribute Streams Ki (UBi−1Ki−1) +Ki

Gather Streams Ki (UBi−1Ki−1) +Ki

Repartition Streams Ki (UBi−1Ki−1) +Ki

Segment Ki (UBi−1Ki−1) +Ki

Distinct Sort Ki (UBi−1Ki−1) +Ki

Sort Ki−1 UBi−1

Top N Sort Ki−1 min{N,UBi−1}
Bitmap Create Ki−1 UBi−1

Aggregate
max(1,Ki) UBi−1 −max(1,Ki)Partial Aggregate

Compute Scalar Ki−1 UBi−1

Top N Sort Ki−1 min{N,UBi−1}
RID Lookup Ki UBi−1

Eager Spool
LBi−1

UBi−1, or, when on inner
Lazy Spool side of join: UBi−1 · UBi−2

Table 1: Bounding logic for each operator

	Introduction
	Overview and Organisation

	Overview of LQS
	Server Side DMVs
	Progress Estimation in SSMS
	Visualization
	Visualization and Usage Examples

	Challenges
	Background
	Operators and Pipelines
	Model of Work Done

	Progress Estimation for Individual Operators
	Challenges and Contributions

	Addressing the technical Challenges
	Cardinality Refinement
	Cardinality Bounding
	Predicates evaluated in the Storage Engine
	Semi-blocking Operators
	Improvements for Blocking Operators
	Selecting the Operator Weights
	Progress Estimation for Data with Columnstore Indexes

	Experiments
	Evaluation of Cardinality Refinement
	Evaluation of Operator weights
	Evaluation: Improvements for Blocking Operators
	Evaluation: Progress Estimation for Batch-Mode Operations

	Related Work
	Discussion and Future Work
	References
	Cardinality Bounding Logic

