
CloudBuild: Microsoft’s Distributed and Caching
Build Service

Hamed Esfahani, Jonas Fietz, Qi Ke, Alexei Kolomiets, Erica Lan,
Erik Mavrinac, Wolfram Schulte, Newton Sanches, Srikanth Kandula

Microsoft

ABSTRACT
_ousands of Microso� engineers build and test hundreds of so�-
ware products several times a day. It is essential that this con-
tinuous integration scales, guarantees short feedback cycles, and
functions reliably with minimal human intervention. _is paper
describes CloudBuild, the build service infrastructure developed
within Microso� over the last few years. CloudBuild is responsi-
ble for all aspects of a continuous integration work�ow, including
builds, test and code analysis, as well as drops, package and sym-
bol creation and storage. CloudBuild supports multiple build lan-
guages as long as they fulûll a coarse grained, ûle IO based contract.
CloudBuild uses content based caching to run build-related tasks
only when needed. Lastly, it builds on many machines in parallel.
CloudBuild oòers a reliable build service in the presence of un-
reliable components. It aims to rapidly onboard teams and hence
has to support non-deterministic build tools and speciûcation lan-
guages that under-declare dependencies. Wewill outline howwe ad-
dressed these challenges and characterize the operations of Cloud-
Build. CloudBuild has on-boarded hundreds of codebases with
only man-months of eòort each. Some of these codebases are used
by thousands of developers. _e speed ups of build and test range
from 1.3× to 10×, and service availability is 99%.

Keywords
Build Systems, CloudBuild, Distributed Systems, Caching, Speciû-
cation Languages, Operations

1. INTRODUCTION
Microso� is rapidly adopting an agile methodology to enable a

much faster delivery cadence of days to weeks. For instance, Oõce
365, Visual StudioOnline and SQLAzure have release cycles ranging
from 3 months to 3 weeks. On the extreme end, Bing’s website ships
several times a day.
Delivering rapidly requires that builds, which are at the core of

the inner loop of any engineering system, are fast and reliable. _is
challenge has given us an opportunity to design a new in-house in-
frastructure for continuous integration known as CloudBuild. Its
design was motivated by these needs:
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICSE ’16 Companion, May 14 - 22, 2016, Austin, TX,USA
© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4205-6/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2889160.2889222

● execute builds, tests, and related tasks as fast as possible,
● on-board as many product groups as eòortlessly as possible,
● integrate into existing work�ows,
● ensure high reliability of builds and their necessary infras-

tructure,
● reduce costs by avoiding separate build labs per organization,
● leverage Microso�’s resources in the cloud for scale and elas-

ticity, and lastly
● consolidate disparate engineering eòorts into one common

service.

We found it diõcult to simultaneously satisfy these requirements.
Most build labs, for instance, have only a few dependencies on other
systems; they connect to one version control system or build drop
storage solution. To avoid separate build labs, CloudBuild sup-
ports the union of all lab dependencies andwork�ows. However, the
consequent interoperability issues can lead to lower reliability. As
another instance of con�icting requirements, product groups have
optimized their builds (and build labs) over many years, o�en ex-
ploiting their particular product architecture and work�ow to opti-
mize for incremental and parallel builds. Since CloudBuild oòers
a generic cloud-based solution across the various product groups,
our current speedup improvements are less dramatic (not 100× for
example) relative to the highly optimized custom systems.
When architecting CloudBuild, we had to make a crucial de-

cision. We found that existing build tools and speciûcation lan-
guages were unsuitable for cached and parallel execution. In partic-
ular, the languages would under-specify dependencies and the tools
produced non-deterministic outputs. Hence, while single machine
(or single threaded) execution would run correctly, distributed ex-
ecution and caching of task outputs could lead to unpredictable be-
havior or limited speedup. A clean solution would be to design a
new build speciûcation language, rewrite all build speciûcations in
this language and force tools to respect additional constraints. Such
eòorts are underway [5, 27]. CloudBuild, however, is our quick
solution. _at is, here we show how to onboard existing speciûca-
tion languages (and tools) on to a cloud-based parallel and cached
build system. _e key advantage with this choice is the speed of on-
boarding. Builds and tests can be sped up and disparate labs can be
consolidated into the cloud quickly. We also found CloudBuild to
be able to cover a wide range of tools and speciûcations. _e cost,
however, is the rather heuristic nature of CloudBuild: our goal is
not to function correctly in every possible setting (of speciûcation
and tool behavior). We mitigate this with customer education and
hardening of CloudBuild to cover frequently recurring issues.
We believe that our design decision has been successful. Cloud-

Build is currently being used by more than 4000 developers in
Bing, Exchange, SQL, OneDrive, Azure andOõce. It executesmore
than 20K builds per day on up to 10K machines spread over several

http://dx.doi.org/10.1145/2889160.2889222

data centers. Build and test speeds typically improved by 1.3 times to
10 times compared to earlier lab based systems, sustaining an avail-
ability of 99.9%. Reliability, deûned as the number of requests that
are served without a CloudBuild internal error, is better than 99%.
CloudBuild connects with three diòerent version control and four
binary storage systems. REST APIs and Azure’s Service Bus [35] are
used for integration into multiple work�ow systems.

While CloudBuild’s service design follows existing designs for
large scale data-parallel systems [3, 8, 41], CloudBuild’s build en-
gine is unique in that it allows the execution of arbitrary build lan-
guages and tools, even in the presence of under-speciûed dependen-
cies and non-deterministic tools.

Given a build request, CloudBuild evaluates build speciûca-
tions, typically expressed in Make or MsBuild ûles, to infer project-
to-project level dependencies. _is means that CloudBuild’s unit
of scheduling is a coarse grained project. While not as ûne grained
as other systems like Google’s Bazel [5], the approach allows greater
reuse of pre-existing build speciûcations, without having to compre-
hend all the runtime semantics of the underlying build tools.
CloudBuild can determine whether to execute a given project

or to reuse outputs captured during an earlier execution, and stored
in a system-wide cache. _e determination is based on the evalua-
tion of the pertinent source ûles and parent projects which is sum-
marized into a cache lookup key for the project. _e approach to
compute this key ensures that the build output is deterministic and
consistent with other projects in the same build.
Finally CloudBuild schedules work, i.e. the tasks for each

project that needs to be built, in a location-aware manner over mul-
tiple worker machines. Locality here implies two things: fresh-
ness of the cache at the machine as well as the freshness of their
enlistment from source control. Without this locality, the build-
preparation-time to conûgure the machine with the right set of
SDKs and sources before it can participate in the build will be sub-
stantial. CloudBuild uses standard DAG scheduling logic. _e
tasks themselves have heterogeneous resource demands. _e de-
pendencies between tasks are more arbitrary than in data parallel
clusters (no shuøes for example). Furthermore, unlike the case
of data-parallel jobs where outputs are much smaller than the in-
put (e.g., queries in TPC-DS [16] or TPC-H [17]), the outputs of
the median build job are quite large since many libraries and exe-
cutables are generated and packaged. _is requires CloudBuild to
more carefully pipeline the fetching of inputs with the execution of
tasks.
For a given task, CloudBuild creates a dedicated ûle system di-

rectory structure, on which build tools are to execute. We call this
a sandbox, and it addresses reliability issues due to under-speciûed
dependencies and allows for multi-tenant builds. _is is similar in
intent to Unix’s chroot jail [34], though it is implemented at the ap-
plication level. As we will explain later, cache and sandbox play to-
gether to guarantee the absence of “Frankenbuilds”, i.e. builds where
outputs from diòerent build jobs can combine in inconsistent ways
due to cache re-use.
Despite allowing so much �exibility for speciûcations, the result-

ing CloudBuild system is fast and reliable. At Microso�, we have
observed that 70 to 90% of build artifacts can be shared; this num-
ber varies across code bases. And CloudBuild’s overhead for dis-
tributed builds is small—with enough builders, 95% of builds take
no more than 1.05× the total time cost of the most expensive path
in the directed task graph described in the build speciûcations.
CloudBuild’s main contribution is thus to allow for reliable, fast

builds in the presence of under-speciûed dependencies and non-
deterministic tools. CloudBuild’s engineering contribution is that
it is easy to use, scales to varying demands and integrates well into

Microso�’s engineering fabric.
In the rest of this paper, we describe the design of Cloud-

Build (§2–§3). Experiential anecdotes are oòered throughout the
design sections to clarify the various design choices. We then char-
acterize some operational aspects of the CloudBuild service (§4.1)
and share onboarding and live-site experiences (§4.2–§4.3). We con-
clude with a discussion of related work (§5) and lessons learnt.

2. PRIMER ON BUILD SERVICES
Today, build systems such asMake,Maven, Graddle andMSBuild

execute on one machine, typically the developers’ desktops or lap-
tops. As the size of code bases grow, these tools can take several
hours for a full build. Delta builds, that is, rebuilding a�er changes,
are faster. However, continuous integration work�ows o�en require
packaging binaries and/or running exhaustive batteries of tests.

To speed up the build work�ow, we note that there is substantial
opportunity to parallelize. While dependencies do exist, they only
form a partial order over the build tasks and many build tasks are
unordered with respect to each other. As a consequence various ef-
forts are under way to provide multi-threaded builds and distribute
the build tasks over many nodes.
Furthermore, there is an opportunity to reuse the outputs of

previous builds, similar to delta builds. Build reuse arises funda-
mentally due to highly modularized so�ware engineering practices.
Teams of developers work on speciûc components and can reuse
the latest binaries for the rest. Even across source control branches,
there is a high likelihood of sharing due to the use of shared libraries
for commonly used or important functionality.

In this context, CloudBuild oòers a distributed and caching
build service. We oòer a quick summary of relevant background.

2.1 Source Control
Enlistments are (partial) materializations of source ûles from

a version control system. CloudBuild supports diòerent ver-
sion control systems , including Source Depot [14], Git [7] and
TFVC [15]. New changes registered in source control are a poten-
tial trigger of new builds for veriûcation.

2.2 Build Specifications and Tests
Build speciûcations describe the items that are to built, the depen-

dencies between items and the actions to be taken per item. Exam-
ple speciûcations includeMakeûles and project ûles inMSBuild [9].
A codebase typically has multiple ûle-system directories with many
speciûcation ûles, typically one speciûcation ûle per build target. A
build target is a logical entity comprising a binary ûle and ancillary
ûles (e.g., debugging symbols).
Dependencies between build speciûcations are expressed by ref-

erencing the paths of other build specs, or the paths of ûles produced
by the targets.
Build speciûcations also describe the details of how to build a

particular target. _is is done either explicitly or by invoking rules
deûned in other ûles. For example, the rule to compile a dynam-
ically linked library from C++ source code would specify a set of
steps using any number of tools (compilers, linkers, etc.) as well
as command-line options. Compiler distributions and SDKs o�en
reference rule ûles that can be reused. However, teams or organi-
zations can customize these rule ûles to satisfy technical or policy
requirements. Further, many aspects of the common rules can be
parameterized, extended, or changed from within a build spec.

While CloudBuild supports in principle any build language that
declares which sources are read, which project-dependencies they
have, and which output directories they use, special handling is

 0
 0.2
 0.4
 0.6
 0.8

 1

 1 10 100 1000 10000

C
u

m
u

la
ti

v
e

Number of Tools

7 tools

51 tools 1388 tools

Frequency of Usage

Tool Rel. Freq.
perl 0.11
mkdir 0.09
echo 0.08
cmd 0.07
exportls 0.06
cl 0.05
binplace 0.04

Tool Rel. Freq.
nmake 0.03
buildoutput 0.03
copy 0.03
dfmgr 0.03
signtool 0.02
link 0.02
getfilehash 0.01

Figure 1: CDF of tools by usage and the names of themost frequently
used tools across all of Codebase A’s build speciûcations.

given to the twomajor build languages currently in use atMicroso�,
nmake [10] and MSBuild [9].
As described in the introduction, CloudBuild is also responsi-

ble for the execution of tests that follow compilation and linkage.
_e test execution is distributed in the same way as the build steps.
CloudBuild supports tests written in VSTest [18] and its ecosystem
of adapters for diòerent languages and unit test frameworks, includ-
ing nUnit and xUnit. CloudBuild also supports various code anal-
ysis frameworks.

2.3 Build Tools
Build speciûcations happen to use many kinds of tools. Figure 1

lists the top few tool names and their frequency in all of the build
speciûcations of codebase A.1 A total of 1388 diòerent tools are
used in codebase A. _e distribution of usage is heavy tailed; 50
tools (3.6% of all unique tools used) contribute 95% of the overall
usage. However, several of the most frequently used tools are script
invocators: perl and cmd for example. _e latter is Windows’ shell
invocator similar to sh or bash. _ere are also recursive calls such
as those to nmake. Hence, this characterization of tool frequency
under-estimates the diversity of tools. Yet, it suõces to show that a
wide variety of tools are used by typical codebases.
Asmentioned in the introduction, a key goal of CloudBuild is to

onboard existing build specs withminimal additional eòort. Hence,
CloudBuild has to support all of these tools. As some of the code
bases are quite old, the associated tools are equally old. But they are
so widely used that rewriting them is not easy. Further, several tools
depend on their environment in idiosyncratic and under-speciûed
ways that makes them a challenge to parallelize. Many of these tools
are also not deterministic, so reinvoking the tools could create dif-
ferent outputs; a typical cause of non-determinism is that tools may
have timestamps or randomly generated bits in their output.

3. DESIGN OF CloudBuild

3.1 Design Principles
_e primary goal of CloudBuild has been to reduce build times

and increase build reliability for as wide a range of Microso� teams
as possible with as little investment as necessary. To achieve that,
CloudBuild follows the following principles:

1While we anonymize the names of codebases, wewill relate various
aspects of the same codebase by consistently referring to them with
the same letter.

Codebase Speed-up Onboarding Time # Devs
B 1.6 3mm 1200
C 7.3 3mm 350
D 3.1 2mm 100
E 3.8 2mm 200

Table 1: Shows the ratio between the build times with and without
CloudBuild. Original build times ranged from 1 to 5 hours. _e
table also quantiûes onboarding eòort (mm denotes a man-month),
and the number of committers to each codebase.

Figure 2: An architecture diagram for CloudBuild

● Commitment to compatibility: CloudBuild was designed
to replace existing build pipelines, and as such should be sub-
stantially compatible with pre-existing build speciûcations,
tools, and SDKs. Given the size, age, and heterogeneity of
Microso� codebases, approaches that require rewrites or ma-
jor refactoring of build speciûcations were considered pro-
hibitive by most teams.

● Minimal new constraints: _e only prescriptions made and
changes demanded by CloudBuild are those that would oth-
erwise hinder parallelizing the build, ormake caching ineòec-
tive. _e system providesmechanisms to assist with onboard-
ing legacy speciûcations and, once onboarded, to maintain
those code bases within those constraints.

● Permissive execution environment: Safety under adversar-
ial inputs is not a goal. _at is, it is possible to write build
speciûcations or tools that result in unpredictable build be-
havior. However when used as intended, CloudBuild guar-
antees deterministic build output. Further, CloudBuild is
a multi-tenant service and limits the impact on a customer
from others that share the same caches or servers.

Table 1 provides data from experience to quantify the outcomes
of these principles. Each row is a codebase with hundreds of devel-
opers that now runs on CloudBuild. Speed-up is very diõcult to
compute because the underlying build speciûcations have evolved
substantially a�er onboarding. In every case, the new build specs
aremuchmore comprehensive than the historical ones that pre-date
CloudBuild. Nevertheless, we compare the build time before on-
boarding onto CloudBuild vs. the latest build times. _e table
shows that the speed-ups are sizable. _e table also shows that the
time to onboard each codebase was a couple man-months. It would
have not been possible to onboard as rapidly, i.e., move to a dis-
tributed cached build execution, if CloudBuild did not adhere to
the above principles.

3.2 Architecture Overview
CloudBuild builds on top of Microso�’s cluster management

system, Autopilot [33]. Autopilot (AP) manages the deployment of
services as well as themonitoring of hardware, operating system and
service health. AP applies automatic recovery techniques to deal

codebase LOC build targets Targets needing... Speciûcation ûles...
input annot. output annot. number type parse time

B 2.8 × 107 8263 2587 214 11300 mostly nmake 48.8s
C 4.8 × 106 2713 178 89 3539 mostly nmake 36.6s
D − 2076 269 112 2267 mostly msbuild 53.7s

Table 2: Build Targets and those that required explicit dependency annotations. Codebase B uses an automatic build migration tool that leads
to a higher-than-typical number of annotations. _e table also lists the number of speciûcation ûles parsed by CloudBuild for dependency
inference; this process takes only about one minute, even for some very large codebases.

Figure 3: Example illustrating hidden dependencies that break a par-
allel or cached build.

with hardware and so�ware faults, and aims to maintain high ser-
vice availability during maintenance and so�ware upgrades.
CloudBuild consists of a large number of worker machines

managed by small set of collaborating processes collectively referred
to as the cluster manager. Once Autopilot deploys the CloudBuild
runtime to a machine, the worker publishes its presence and state to
a Zookeeper [4]-like service. _is service maintains the list of avail-
able enlistments, machine allocation to ongoing builds, and ma-
chine readiness for new builds.

_e cluster manager can shrink or grow the number of workers
or enlistments per codebase. Workers interact with source con-
trol (§2.1) and package managers [11] to download the necessary
content into the enlistments.

_e cluster manager accepts build-initiation requests. _e input
includes a build deûnition that lists conûguration options such as:
output type (e.g., “build for 64-bit architecture”); parallelization set-
tings (e.g., “use between 5 and 7 nodes”); routing preferences (e.g.,
“prefer datacenters in US East region”). _e input also includes per-
request options (e.g., code base revision to be built). Build jobs are
logged and added to a build queue.
Build jobs remain in a pending state until they are matched up

with a suõcient number of workers with matching enlistments. If
many workers are available, the cluster manager selects those that
performed similar work recently, under the assumption that their
enlistments (and local caches) will be freshest. Chosen workers are
asked to update their enlistments to the desired source and pack-
age revisions. Such preparation happens in parallel. Once enough
workers are ready, the build job begins by spawning a build coordi-
nator and multiple builder nodes.
Architectural diòerences: _e architecture is largely similar to
other systems that schedule dependent sets of tasks such as Yarn [8],
Tez [3] and Cosmos [41]. A key diòerence thus far is the early choice
of machines for builds (maintaining a map frommachines to enlist-
ments and caches and using locality). In contrast, data-parallel sys-
tems place tasks on anymachine on the cluster. Sincemachines have
to be prepared (pull relevant sources from source control as well as
SDKs and other packages needed to build), CloudBuild is more
careful in picking machines for builds to amortize the prep cost and
improve cache hit rate. Furthermore, data-parallel systems need not
infer hidden dependencies (§3.3) since they are perfectly speciûed
by user queries and do not isolate various tasks at runtime (§3.4).
Diòerences in scheduling are described later (§3.6).

3.3 Extracting Dependency Graph
_e dependency graph of a build determines the order of execu-

tion. Existing build languages such as nmake [10] and MSBuild [9]
allow dependencies to be under-speciûed. Consider the example
in Figure 3. _e syntax is inspired by make. Each target has a list of
explicitly declared inputs and a corresponding set of commands. At
ûrst blush, the two targets appear unrelated. However, T2.dll uses
y.dll and z.conf which are produced as side-eòects of executing
T1.dll. Sequential builds, which the build spec was written for, will
succeed. However, a parallel engine that builds T2.dll ûrst will ei-
ther fail or produce outputs using stale versions of the dependencies.
A distributed engine that builds T2.dll on a diòerent machine will
behave similarly (i.e. either fail or use stale dependencies). Similarly,
cached builds would not know to fetch the correct inputs.

_e fundamental problem is that widely-used build languages do
not enumerate all of the inputs and the outputs of build targets. Nei-
ther do they explicitly call out the side-eòects and resource depen-
dencies of build commands.
A key component of CloudBuild is its ability to automatically

infer hidden dependencies. It does so in a pre-processing step before
the build. CloudBuild has a large set of rules to apply against the
build speciûcation ASTs that identify patterns for particular build
languages and SDKs, and then emit the anticipated inputs and out-
puts. In some cases, invocations of external commands are also
parsed. For example, when robocopy.exe [12] commands are used,
CloudBuild parses its command line to infer the inputs and out-
puts. _ere are invocation parsers formany of the tools listed in Fig-
ure 1. _ese parsers reduce porting overhead; they also substantially
reduce the need for manual annotations that are described next.

When implicit dependencies cannot be inferred, users can add
annotations. _ese are designed to blend into the build speciûcation
language in a way that is transparent, in case these speciûcations are
executed outside CloudBuild. _ere are also rules to detect con-
structs that CloudBuild does not understand, such as invocations
of external scripts; the system alerts the user, requesting that anno-
tations be added to describe their inputs and outputs.

In some cases, build tools use runtime context to determine their
inputs. Such context is unavailable in the pre-processing phase.
Where possible, CloudBuild’s parser over-approximates the list of
inputs: it may include all ûles that can be referenced via all branches
of the runtime logic; it may include whole directories, where the ex-
act set of accessed ûles is known only at runtime.

_e task dependency graph is constructed with one node per tar-
get. An edge is added between two nodes n1 , n2 whenever there is
overlap between n1 ’s output and n2 ’s inputs. Unresolved inputs, that
is those not found in source control and not output by any target, are
�agged as errors. Cycles in the dependency graph are also �agged
as errors.
Besides the task nodes emitted for each target, CloudBuildmay

emit additional nodes for derived tasks, including: execution of tests
and static analysis tools, aggregation of code coverage and analysis
reports, and uploading of build outputs to durable cloud storage.

Table 2 oòers some experience numbers from three large code-

Figure 4: Example illustrating sandboxes

 0
 0.2
 0.4
 0.6
 0.8

 1

 1 10 100 1000 10000 100000 1e+06

C
u

m
u

la
ti

v
e

Per Sandbox, num symlinks and setup time (ms)

Symlinks
Setup Time (ms)

Figure 5: Quantifying sandbox size (number of symbolic links) and
the time to setup sandboxes. _e gap between the CDFs is due to
our recycling of sandboxes. Sandboxes of medium size needs a few
thousand symbolic links and takes about 0.3s to setup. Some tar-
gets (MSIs) have > 105 inputs.

bases that run on CloudBuild. _e data is for a full build of each
codebase. We see that parsing the speciûcations to infer dependen-
cies takes only about oneminute, even for large codebases. _epars-
ing happens during a pre-processing step. We also see that the code-
bases have thousands of targets and about 1.2 times as many spec-
iûcation ûles. Recall that there can be many common or project-
speciûc speciûcations that list build rules, in addition to those that
refer to the targets. _e table also shows the number of cases that
require explicit annotation. Most of the work is handled by auto-
matic inference. _e remainder are ûxed by annotations. Codebase
B has amore-than-typical number of annotations because it uses an
auto-annotation tool.

3.4 Sandboxing Build Tasks
CloudBuild executes each task in a sandbox. A sandbox is a

directory with symbolic links for all of the task’s inputs, where in-
puts include sources from the enlistment and the outputs of parent
tasks. Additionally, the sandbox redeûnes a number of process en-
vironment variables which refer to the particular locations in the
enlistment. _e redeûnition steers the task to locations within the
sandbox for inputs, outputs and scratch folder locations. Figure 4
illustrates this design.

Sandboxes are introduced for three main reasons: dependency
veriûcation, output collection, and isolation.
Dependency Veriûcation: As we saw above, build speciûcations
can have dependencies that are not explicitly declared. _e infer-
ences of dependencies made by CloudBuild may therefore be in-
complete (§3.3). Mistakes in dependencies will lead to false cache
ûngerprints and hence false cache hits. To solve this, CloudBuild
populates a task’s sandbox with only its explicit and inferred depen-
dencies. _ereby, CloudBuild ensures that any missed dependen-
cies will be runtime errors – typically “ûle not found”. Such errors
are surfaced to the user, the sandbox’s outputs are discarded, and the
child tasks are not executed.

Since it is o�en prohibitively expensive to create symbolic links
to every single ûle, CloudBuild may create symbolic links to the
directories that contain the required ûles. CloudBuild uses De-
tours [32] binary injection to observe ûle system APIs, and record
the actual ûles accessed. Accesses beyond those predicted by the
dependency parser are surfaced as errors.

Output Collection: As also described above, build speciûcations
do not list all of their outputs. To determine the outputs for a task at
runtime, CloudBuild enumerates all directory entries in the sand-
box’s root directory. Any ûle entry that is not a symbolic link is
considered part of the task’s output, has its contents hashed, and is
moved into a build job-wide location, outside of the sandbox.
Isolation: Ideally, to avoid unpredictable behavior during parallel
execution, a build task should not mutate its inputs, nor should two
tasks produce outputs into the same ûle path. In practice neither of
these criteria were met in the build speciûcations that CloudBuild
aimed to support. _e sandboxing approach described above allows
the system to detect such con�icting writes, and attribute them to a
particular task, even when multiple tasks are executed at the same
time on the samemachine. CloudBuild has multiple policies to deal
with such cases: it can block any such con�icts; it can allow them,
provided con�icting accesses write identical content – this is sub-
optimal, but deterministic; it can even allow writes with diòerent
content, when the resulting non-determinism is acceptable by the
codebase owner.
Recycling: To minimize costly interactions with the ûle system,
CloudBuild recycles sandbox directories. It retains the sandbox di-
rectories that have been created for previous build tasks as well as an
in-memory representation of their ûle system state. When creating
a new sandbox, CloudBuild uses the in-memory representation
to locate the best ûtting sandbox directory. Using that as a starting
point, CloudBuild adds and removes symbolic links to re�ect the
dependencies of the incoming task.
Experience data: Figure 5 oòers some data about sandboxes. It
shows the number of symbolic links required and the time to set up
as a CDF over all sandboxes. Most sandboxes require between 102 -
105 symbolic links. Targets with many inputs tend to be those that
produce deployment packages or layouts. We see that the setup time
can o�en be much smaller than the number of symbolic links due
to our recycling of sandboxes. Most sandboxes are set up within a
few seconds.
Alternate designs: Fundamentally, CloudBuild requires three
properties from the ûle system environment in which the build tool
executes. First, build tasks should be isolated. _at is, a task should
behave as if it is the only one running a machine even though many
tasks are running in parallel. Second, all of the inputs and only the
inputs should be available to the build task. _ird, it should be pos-
sible to rapidly setup and tear down such an environment.

Operations like BSD’s [34] chroot jails would have been useful,
but were not available in our operating system of choice. Moreover,
the build speciûcation already expected a root directory to be es-
tablished through a process-speciûc environment variable; this al-
lows CloudBuild to do “application-level virtualization” by setting
up sandboxes. Virtual machines are expensive to setup and tear-
down especially since the virtual disk for each sandbox has diòer-
ent ûles (the inputs). We also considered using Drawbridge [22], a
lightweight process isolation container. While it allows for safe de-
touring of ûle system operations, the cost to on-board thousands
of build tools into Drawbridge was considered prohibitive. Copy-
on-write snapshots help reduce performance impact of moving data
into and out of sandboxes. Tool compatibility constraints have thus
far limited our ability to use a ûle system that supports this feature;
this continues to be an area of further work.

3.5 Distributed Cache of Build Outputs
To reuse the work of prior builds, CloudBuild uses a distributed

cache. Conceptually, the cache aims to map the entirety of the in-
put values presented to a task execution to the output emitted by

the task. If a future execution of the task is presented the same
inputs, it can be skipped and the cached outputs used instead. In
concrete terms, the cache is implemented as a dictionary mapping
CacheKeys, which encapsulate the values of task inputs, to output
bags describing the names and contents of emitted task outputs.

_e following sections will explore how the CacheKeys are com-
puted, the architecture of the distributed cache, and our strategies to
ensure consistent content is retrieved from cache, even in the pres-
ence of multiple concurrent builds and non-idempotent tools.

3.5.1 Cache Data Structures
Each output bag consists of an ID plus a set of (ContentHash f ,

Path f) tuples. _e ID is a pseudo-random number assigned to an
output bag at creation time to help with race conditions (see §4.3).
Each tuple describes the content and path for a ûle emitted during
the execution of the task described by the content bag.

Lookups into the cache are performed based on the inputs of a
task. _ese inputs are encoded into a compact CacheKey as de-
scribed inductively by the following equations. At a high level, FF
denotes a ûle or task ûngerprint, GF is a ûngerprint of the global set-
tings and the CacheKey of a target depends on the ûngerprints of
its inputs.

FFs = ContentHashs ⊕Hash(Paths) ∀ source ûles s
FFt = CacheKeyt ⊕ IDt ∀ tasks t

CacheKeyt = GF⊕ (⊕i∈inputst
FFi) ∀ tasks t

_e ûrst two equations show how to compute the ûngerprint FF
for each input source s and build task t respectively. File content
hashes can be retrieved from source control if available, or com-
puted from ûle content. _e ûle path is always used as part of its
ûngerprint, since path values are used as inputs to certain build
tasks such as those performing recursive structure-preserving di-
rectory copies. For the targets, the ûngerprint is derived from their
CacheKey and ID. _e third equation shows how to compute the
CacheKey for a task based on the ûngerprints of its inputs (both
sources and parent tasks). GF encodes global settings conûgured in
a build job, presumed to be inputs for every task.

3.5.2 Cache Service Design
CloudBuild’s caching layer is implemented in an architecture

that is similar to other distributed caching systems. _e mapping
from CacheKey to output bags is maintained by the Global Cache
Service (GCS). GCS is persistent and consistent. It is built using
Azure Tables. Each worker node runs a Local Cache Service (LCS)
which maintains a partial copy of this mapping. Together, LCS and
GCS also implement a distributed content addressable store (CAS),
with LCS storing replicas of each piece of content available in the
cache, andGCS serving as a cluster-wide tracker of such replicas. An
LCS keeps local replicas for all content that is referenced or created
by tasks on that node.

Reads from the cache are ûrst made to the local LCS. If the
CacheKey is present on the LCS, the corresponding CAS content is
returned to the caller, together with the associated (ContentHash f ,
Path f) tuples. Otherwise, the LCS queries the GCS and if present
fetches a copy of the contents of the output bag fromone of the repli-
cas to the local CAS.

Writes to the cache are handled in a write-through manner. _at
is, the LCS immediately pushes changes to the GCS and asks that
some number of replicas be created. We discuss races in §4.3.

When in active use, popular cache items can have hundreds of
replicas. Cache entries with no use are deleted a�er a period of time
(usually a few days). At times, it is possible that items present in the

GCS no longer have any valid replicas due to network partitioning,
hardware failure, and a small class of maintenance activities. Such
issues are detected during cache lookups, and result in the removal
of the invalid cache entry.

Experience data: _e load on the GCS is roughly O(105) reads
and O(103) writes per second. Recall that CloudBuild uses Azure
Tables to implement the GCS, thereby receiving a distributed table
store with persistence and strong consistency.

3.6 Build Scheduling
Each build job is controlled by a build coordinator. It works by

assigning individual tasks to builder nodes. For this, it tracks a list
of unblocked tasks, and tries to assign these whenever resources on
a builder are available.

_e build scheduler uses several sets of information:

● _e currently available, i.e., unblocked tasks for which all de-
pendencies are completed.

● An estimate of a task’s resource proûle based on task charac-
teristics inferred during parsing.

● Resource proûle and execution time for a task determined
from historical build data.

● _e longest path for each task to a leaf node.
● _e longest path overall, also called the critical path.

_e build scheduler uses the criticality of a task, deûned as the
longest sub-path from this task to any output of the DAG._ismea-
sure is used as the priority order in which tasks are scheduled.

_e scheduler only considers actionable tasks in the DAG. Ac-
tionable tasks are deûned as the subset of tasks who have not yet
run, but whose dependencies are met because their parent tasks ei-
ther ûnished or had matching CacheKeys. _e actionable tasks are
added to a queue of executable tasks, sorted by the above priority.

_e actual assignment of tasks to a speciûc worker depends on
input locality, the task’s resource proûle, and availability of resources
on builders. Per task – going by priority order – the coordinator
iterates over the available builders, and through a combination of
models tries to evaluate the fastest time to completion for this task.

Several factors in�uence the completion time. First, the setup
phase needs to copy over inputs that are not already available on
that machine. A builder that already contains a lot of the inputs will
have a shorter setup time than one that needs to copy all of them
over. Second, enough resources to run the task may be not available
at the machine until some time in the future. _e queuing delay is
calculated based on the modeled execution times of tasks running
already at the builder and those that are in the queue. Tasks are
queued at builders with the shortest expected execution time, i.e.
the sum of both numbers.
CloudBuild schedules tasks eagerly to overlap fetching of inputs

with the execution of other tasks. Such eager scheduling is done
carefully however to not make decisions far into the future.

Some classes of task execution errors are deemed retriable, and
depending on the nature of the failure, a policy may be set in the
task to seek retries in diòerent builder nodes. In this case, the build
coordinator excludes the previous execution site from the list of can-
didates for future placements of the task.
Eòectively, CloudBuild uses critical path scheduling [26] but

with added attention to multi-resource packing of build tasks and
eager queuing of tasks so that fetching inputs can overlap the exe-
cution of other tasks. In particular, tasks’ have a large number of
inputs and in a rather unstructured manner (as opposed to a reduce
task reading from every map task [8]). _is forces CloudBuild to
more carefully account for input locality by actually computing the

Figure 6: Arrival process of builds

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 20 40 60 80 100

C
u

m
u

la
ti

v
e

%age of targets hitting in cache

Build Targets
Test Targets

Figure 8: Cache hit rates for 405 builds of codebase B.

time to fetch the inputs; the corresponding issue is simpler in data-
parallel systems [3, 8, 21]. Much of our experiences with the build
scheduler are documented in §4.1.

3.7 Managing Build Outputs
CloudBuild needs to support multiple mechanisms to facilitate

access to build outputs. To oòer a backwards-compatible build out-
put storage, CloudBuild can persist build outputs into SMB ûle
shares [37]. _is has been the primary mode of storage in the old
Microso� build labs that CloudBuild seeks to replace. Cloud-
Build can also save build outputs into the Artifact Repository, an
internal content storage system designed on top of Azure Blob Stor-
age [23] and integrated into Microso�’s Visual Studio Online [36]
suite. _is system allows for progressive diòerential data uploads
during build execution; similarly, it oòers customers progressive dif-
ferential downloads, to reduce the end-to-end time to acquire all of
the content produced by a build.

4. EXPERIENCES
We want to share some of our experiences and lessons learned

from building and operating the service over the last few years.

4.1 Characterizing CloudBuild
CloudBuild runs in several datacenters and uses thousands of

servers. Roughly twenty thousand builds are launched per day. Fig-
ure 6 depicts the arrival process of builds. Demand is mostly di-
urnal, with peaks at 11AM and 4PM. During business days around
60% of the traõc is due to user requests; around 25% are continu-
ous integration builds that are triggered by a code check-in; 10% are
scheduled builds, conûgured to run at preset times.

Over 95% of the builds use the distributed cache, which is the de-
fault option. CloudBuild allows developers the option to not use
the cache which is useful for troubleshooting and onboarding new
branches. Cache hit rates vary substantially based on the codebase
being built. Figure 8 shows the cache hit rates for diòerent builds
of codebase B which as described in Table 2 is currently the largest
codebase by size and execution volume. For 90% of the builds, at
least 50% of the targets are cached, and for 50% of the builds, at
least 80% of the targets are cached. _e overall cache hit rate is 76%
which translates into signiûcant savings. Caching helps both cluster
throughput (builds per second) and build latency (time to ûnish a
build).

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

C
u
m

u
la

ti
v
e

Number of targets in build session

Figure 9: Targets in build job.

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 0.5 1 1.5 2 2.5

C
u
m

u
la

ti
v
e

Runtime (normalized to median)

Figure 11: How long does a build take? Above, we show a CDF of
the build times of codebase B.

To assess CloudBuild’s performance, we compare build execu-
tion times with the critical path of the build dependency graph (Fig-
ure 10a). _e distance in Figure 10a is on average about 20% of the
total build time. Some of the diòerence is due to copying of input
and outputs; aspects that are not accounted for in our critical path
calculation.

We also compare build execution times with an estimate of the
total work (Figure 10b) in the build DAG. _is metric is the maxi-
mum over all resources, the sum of task duration times the demand
for that resource divided by the available capacity of that resource. If
there were no other constraints, the total work is a lower bound on
the runtime. From Figure 10b, we see that the total work is between
10% and 20% of the actual running time. A look at the timelapse
of an example build of codebase B Figure 7a can explain why. _e
execution schedule shows several voids in which only a few tasks
are running. _is is because, naively generated dependency graphs
can have several “choke points” that limit parallelism. Choke points
are instances when all of the unscheduled tasks depend on all of the
previous tasks allowing a single outlier to prolong the build [21].
Figure 7b displays a similar view for codebase C. _is codebase

has been running distributed builds for a number of years; over time
its developers have optimized the build dependency graph to in-
crease parallelism, thus reducing the build times. Automatic iden-
tiûcation of choke points in our codebases is an area of additional
research.
Figure 11 shows that the maximum build time for codebase B is

nearly 4× the median build time. _e primary factor for this diòer-
ence is caching. _e range between min and max is about 10×. We
believe that shaving oò some of the ûxed overheads would stretch
this range further.

Table 3 shows the typical resource utilization of tasks. While on
average tasks use relatively few resources, the standard deviation is
high. From the maximum values, it can be seen that a one-size-ûts-
all approach to scheduling would not suõce. Multi-resource pack-
ing [28] could improve cluster throughput.

Table 4 takes a deeper look at the correlation between diòerent
kinds of task resources. It plots the covariance in usages of diòerent
resources. Overall, they do not correlate strongly except for the data
read and written by tasks. _ere is a weaker correlation between
memory and data read or written. _is is in contrast to tasks in
data parallel clusters which for the most part process one row a�er
another (joins are an exception). Many build tasks, such as com-

(a) Codebase B (unoptimized) (b) Codebase C (optimized over time)
Figure 7: Depicted above are two actual execution schedules for diòerent builds. Each dark grey block represents a task, and the tasks are
sorted by the machine on which they were executed. Figure 7a is an unoptimized build, while Figure 7b depicts a schedule for a diòerent,
optimized codebase.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.5 1 1.5 2 2.5 3

cr
it

ic
a
l
p

a
th

 (
n

o
rm

a
liz

e
d

)

real run-time (normalized)

Scatter plot of runtime vs critical path length

Equality
x = 1.1y
x = 1.3y

(a) Critical path

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.5 1 1.5 2 2.5 3

to
ta

l
a
re

a
 /

 p
ro

ce
ss

o
rs

 (
n

o
rm

a
liz

e
d

)

real run-time (normalized)

Scatter plot of runtime vs total area

Equality
x = 3y
x = 5y

x = 10y

(b) Area
Figure 10: _e ûgures above compare the runtimes of codebase B with two lower bounds: length of the critical path, and the area. _e ûgures
show that codebase B is dominated by work on the critical path and that CloudBuild’s scheduler is nearly optimal.

Resource Avg. Stdev. max
Cores 0.52 0.23 4

Memory (MB) 105 93 3622
Data read (MB) 40 141 5220
Data written (MB) 23 148 5355

Parents 9 43 3484
Children 9 67 2052
Duration (s) 21 25 725

Table 3: Resource proûles of tasks.

C M R W P CH
C –
M 0.415 –
R 0.178 0.459 –
W 0.103 0.390 0.875 –
P -0.011 0.039 0.443 0.320 –
CH 0.01 0.07 0.071 0.067 0.016 –

C: Cores, M: Mem., R: Data read, R: Data written, P: Parents, CH: Children

Table 4: Correlation between pairs of resource demands of the var-
ious tasks.

pilation, linking and tests may retain more of their inputs (binaries
and executables) in memory for the duration of the task. Overall,
however, the lack of correlation means that there is opportunity to
pack tasks with diverse demands, e.g. I/O intensive jobs with CPU
intensive jobs.

4.2 People Experiences

Customer Education: While CloudBuild was designed to be
highly compatible with old build speciûcations, it does impose addi-
tional constraints on what users specify. Because of sandboxing, the
execution environment can be somewhat diòerent from that of MS-
Build and nmake. Hence, builds can experience unique failures in
CloudBuild; even common failures may present themselves dif-
ferently in a distributed environment. As large engineer popula-
tions onboard into CloudBuild, we have had to fund substantial
user education eòorts, with both proactive documentation and trou-
bleshooting consultancy. We also have implemented functionality
to detect, triage and explain failures, and to correlate themwith per-
tinent documentation. Having said that, much work is still needed
to identify systems that can automatically surface the most relevant
content based on user-stated or implied needs. Another customer
education direction was in training to adapt build speciûcations to
forms that can be more eòectively parallelized. Figure 7 shows an
example where the build on the right is more easily parallellizable
than the one on the le� (less void cycles, more work oò the critical
path, etc.).
Virtuous but spiraling demand: As codebases are onboarded and
users see shorter build times, the demand for builds increases.
Builds that would be erstwhile executed on desktops are now of-
�oaded to CloudBuild. _e lower cost also means that developers
are much more inclined to submit “speculative builds” even where
there is little conûdence that the builds and tests will succeed. De-
velopers get to wait less and check-in more o�en, increasing the de-
mand of pre- and post-checkin build jobs. We also saw the number
of unit-tests consistently increase. _is is less of a problem though

since such tests typically add little to the critical path of the build.
CloudBuild continues to be substantially scaled out to accommo-
date all the dimensions of growth.
Evangelizing the best-of-breed: By becoming the most widely
adopted build solution atMicroso�, our teamhas exposure to a large
variety of codebases. _is has enabled the team to identify best-
of-breed tools, build speciûcations, patterns, and practices, and to
evangelize them across diòerent groups. We also funnel emerging
requirements back to tool owners, and allow them to validate tool
changes against their customer codebases on CloudBuild.

4.3 Technical Experiences
Races and Non-idempotence: It is possible that two concurrent
build jobs observe a cache miss and race to execute the same
task. Avoiding races requires serialization and hurts performance.
Hence, rather than prevent such races, CloudBuild optimistically
handles them a�er the fact. _e issue with races is that build tools
are not idempotent, i.e., running the same task twice can produce
diòerent outputs, for a variety of reasons. _e output can contain
environmental information such as machine-name or timestamp.
Or, it could have some uninitialized strings with random values. To
handle such races, CloudBuild only allows the ûrst writer, deemed
the winner, to update the cache. _e others receive an indication
that the task’s output is already available causing them to discard
their local output and to use the winner’s output instead.
Customers expect provenance relationships between outputs of

a build job to hold just as if the build had been performed on a
single machine without caching. For example, consider a build
where a task t1 emits ûle raw/file.dll and a child task t2 emits
compressed/file.dll.gz. A build output consumer can expect
that unzipping file.dll.gz yields a ûle that is bitwise-identical to
file.dll. Assume now that an earlier build job created cache en-
tries for t1 and t2 , but later t1 ’s entry was deleted for some reason.
If t1 is regenerated by a non-idempotent tool and t2 ’s output is re-
trieved from the cache, file.dll and file.dll.gz will no longer
match. To avoid this issue, CloudBuild includes the input’s content
bag identity when computing a target’s CacheKey. In this example,
t1 ’s content bag identity is used to obtain t2 ’s CacheKey which leads
to a cache miss and thus forces t2 to be re-built avoiding “Franken-
builds”.
Build Job Cohorts: For large codebases, build durations and re-
quest arrival processes are such that there are o�en many concur-
rent jobs building the same codebase. Most developers tend to
work close to the “head revision” in their codebase, so the major-
ity of source code is common across concurrent jobs. _e races de-
scribed above are therefore very common. Later-starting jobs are
more likely to catch up since they consume cached content created
by the earlier-starting jobs. Once they catch-up, they will patho-
logically race to execute further tasks (over common sources). _is
creates high demand for certain CacheKeys and causes load on the
GCS to spike. _is also wastes cluster resources in the work per-
formed by the race loser. Federating schedulers so as to minimize
races between diòerent build jobs is an area for further exploration.
Non-Deterministic Build Outputs: Prior to CloudBuild, code-
bases were built using a single machine. While parallelism was pos-
sible, task execution order were mostly stable across build jobs since
the relatively naïve scheduler had only the limited resources oòered
by a singlemachine. Con�icts between tasks can go unnoticedwhen
task execution order is stable. For example, suppose a spec allows
two tasks to output to the same ûle path but this would go unnoticed
if the stable execution order ensured that the same task always won
in single machine builds. Since CloudBuild schedules over many

machines and can receive variable amounts of cached outputs, the
execution orders are no longer deterministic. _is surfaced several
hidden or latent bugs. _e vast majority of onboarded codebases
had to be patched to remove latent bugs. CloudBuild’s consis-
tency policies (see §3.4) helped detect some of these issues. Sur-
prisingly, some codebase owners were happy to allow output non-
determinism – in some cases because the aòected output content
was not used by the application at run-time; on others because any
of the possible output values was acceptable.

5. RELATED WORK
Google’s Bazel [5] system solves a similar problem– parallel and

cached builds for large code bases. _e key diòerence is that Bazel
requires developers to write speciûcations and redesign their code
layout. It oòers a new build speciûcation language and requires a
speciûc directory structure. Both these decisions can simplify de-
pendency inference. In contrast, CloudBuild’s primary goal is to
quickly onboard teams with minimal changes to their existing build
specs and tools. Further distinctions are hard to draw since very
little information is publicly available about the operational aspects
of Bazel. _e released version only targets single machine builds.
How they cache or schedule builds, the extent of support for arbi-
trary build tools and their performance and time-to-onboard new
teams would all be very useful topics to compare in the future.
distcc [6] is another publicly available system. _e unit of work

is a preprocessed source code ûle that is sent over the network and
compiled remotely. A pump mode allows preprocessing to also be
executed on the distributed host. Compared to CloudBuild, it
misses several steps such as distributed linking or test execution.
Linking is executed on the main host, and test execution is not part
of its design. Further, distcc only supports gcc.

State-of-the-art build systems such as Maven [2], Ant [1] and
SBT [13] are neither distributed nor cache build outputs; some oòer
parallelization at a coarse granularity [2]. _e key ideas in Cloud-
Build improve upon ideas from prior work; our use of sandboxes is
similar to [20] and our cache for build outputs is akin to [29].

Somepriorwork describes newbuild speciûcation languageswith
formal properties [25, 30] and techniques to automatically migrate
legacy speciûcations [27]. Other work reduces “debt” [38] or pares
down build targets to only the outputs that are actually used [40].
CloudBuild is orthogonal to these eòorts. We believe that such
eòorts are needed and we are working towards these goals as well.

Yarn [8], Mesos [31], and other data-parallel computing infras-
tructures work with tasks that are already amenable to distributed
execution, i.e. tasks with deterministic and idempotent behavior.
_ese attributes also mean that they are easily runnable in paral-
lel. Many of the challenges that CloudBuild solves are towards
making build tools and speciûcations geared for single-threaded /
single-machine execution to work in a distributed setting.

_e build scheduling problem (§3.6) is closest to scheduling jobs
with dependencies (DAGs) as is common in data-parallel frame-
works such as Tez [3], Hive [39], and SCOPE [24]. _ere are a few
key diòerences however. First, due to caching, the subset of the build
DAG that needs to be executed varies dynamically. Second, unlike
data-parallel jobs where the data-in-�ight reduces dramatically with
each operation [19], build outputs are numerous and large in size.
Hence, scheduling build DAGs needs more careful handling of de-
pendencies.

6. FINAL REMARKS
CloudBuildwas started to enable Bing’s fast delivery cadence. It

has since been rapidly adopted bymany teams acrossMicroso�. _e

primary reason has been that instead of few builds per day, devel-
opers could suddenly do many builds and thus run many more ex-
periments. For instance, the number of builds for codebase B dou-
bled within sixmonths, despite the fact that the team did not change
its development process. Changing engineering processes can im-
prove agility further. For instance, a team that recently onboarded
has 2000 targets and executes 10× more builds per day than they
could two months ago using their old build-lab-based system.

Growing CloudBuild to support teams with diverse program-
ming cultures (e.g., Bing and Oõce) was not without challenge.
First, we struggled with the immense scale requirements. For in-
stance, our load exceeded existing binary storage and ûle-signing
solutions. While we could scale up or scale out some of the de-
pendent systems, others had to be redesigned. We created a new
content-addressable de-duplicated store in the cloud, which is cur-
rently used for drops, symbols, and packages. By exploiting Cloud-
Build’s cache hit rates we were able to reduce the ingress and egress
volume for various storage system by over 80%.
Another challenge was the requirement to integrate into the very

diòerent engineering work�ows that existed across groups. In some
cases, CloudBuild did not have proper abstractions for all integra-
tion points. When new requirements came up we followed the open
source model and allowed developers from other organizations to
contribute. _e resulting system slowly became fragile, because of
unintended feature interactions of the new dependencies. We took
various steps to address this issue: Work�ow integration now fol-
lows a publish/subscribe model, i.e. integration is done externally.
For simpler deployment, testing in production, anddependency iso-
lation, we are currently redesigning CloudBuild to follow a more
decoupled service design pattern. Finally, we have started to contin-
uously apply Chaos Monkeys to improve the resilience and recover-
ability of our services.

In spite of the rapid growth of CloudBuild to a service used by
thousands of engineers, CloudBuild continues to achieve its pri-
mary goal: improve the cycle time for the developers inner loop:
build, and test, and do so reliably and quickly.

7. ACKNOWLEDGMENTS
_e authors would like to thank current and past CloudBuild

staò members and contributors: Stephan Adler, Andrew Arbogast,
Jonathan Boles, Nick Carlson,Matthew Chu, Jacek Czerwonka, John
Erickson, Steve Faiks, Maksim Goleta, Dmitry Goncharenko, De-
dian Guo,Mario Guzzi, Jeòrey Hamblin, Cody Hanika, Kim Herzig,
Zach Holmes, Jinjin Hong, Fei Huang, Rui Jiang, Paul Jones, Jeò
Kluge, Ben Lieber, Eric Maino, Joshua May, Michael Michniewski,
Paul Miller, Nick Pizzolato, Michael Pysson, Josh Rowe, Zack Run-
ner, Vinod Sridharan, Stanislaw Szczepanowski, Carl Tanner, Suresh
_ummalapenta, Umapathy Venkatachalam, Christopher Warring-
ton, Rick Weber,Martha Wieczorek, Yancho Yanev, and Jet Zhao.

8. REFERENCES
[1] Apache ant project. ant.apache.org.
[2] Apache maven project. maven.apache.org.
[3] Apache Tez. http://tez.apache.org/.
[4] Apache zookeeper. zookeeper.apache.org.
[5] Bazel. http://bazel.io/.
[6] distcc. https://github.com/distcc/distcc.
[7] Git for visualstudio. http://bit.ly/1vqcDFe.
[8] Hadoop YARN Project. http://bit.ly/1iS8xvP.
[9] MSBuild. http://bit.ly/1Fwk6Ez.
[10] Nmake. http://bit.ly/1NgNzsE.

[11] Nuget. http://bit.ly/1OdeEJA.
[12] robocopy. http://bit.ly/1OdeEJA.
[13] Scala build tool. www.scala-sbt.org.
[14] Source depot. https://en.wikipedia.org/wiki/Perforce.
[15] Team foundation version control. http://bit.ly/1ES8VLm.
[16] TPC-DS Benchmark. http://bit.ly/1J6uDap.
[17] TPC-H Benchmark. http://bit.ly/1KRK5gl.
[18] VSTest. http://bit.ly/1L2nmPO.
[19] S. Agarwal et al. Re-optimizing data parallel computing. In

NSDI, 2012.
[20] G. Ammons. Grexmk: Speeding up scripted builds. In

Workshop on Dynamic Systems Analysis, 2006.
[21] G. Ananthanarayanan, S. Kandula, A. Greenberg, I. Stoica,

Y. Lu, B. Saha, and E. Harris. Reining in the outliers in
map-reduce clusters using mantri. In USENIX OSDI, 2010.

[22] A. Baumann et al. Shielding applications from an untrusted
cloud with haven. In OSDI, 2014.

[23] B. Calder et al. Windows azure storage: a highly available
cloud storage service with strong consistency. In SOSP, 2011.

[24] R. Chaiken et al. SCOPE: Easy and Eõcient Parallel
Processing of Massive Datasets. In VLDB, 2008.

[25] M. Christakis, K. Leino, and W. Schulte. Formalizing and
verifying a modern build language. In FM, Lecture Notes in
Computer Science. 2014.

[26] E. G. Coòman and R. L. Graham. Optimal scheduling for
two-processor systems. Acta Informatica, 1(3):200–213, 1972.

[27] M. Gliboric et al. Automated migration of build scripts using
dynamic analysis and search-based refactoring. In OOPSLA,
2014.

[28] R. Grandl, G. Ananthanarayanan, S. Kandula, S. Rao, and
A. Akella. Multi-resource Packing for Cluster Schedulers. In
SIGCOMM, 2014.

[29] A. Heydon, R. Levin, and Y. Yu. Caching function calls using
precise dependencies. In PLDI, 2000.

[30] J. Hickey and A. Nogin. Omake: Designing a scalable build
process. In FASE, 2006.

[31] B. Hindman et al. Mesos: a platform for ûne-grained resource
sharing in the data center. In NSDI, 2011.

[32] G. Hunt and D. Brubacher. Detours: Binary interception of
win 32 functions. In Usenix Windows NT Symposium, 1999.

[33] M. Isard. Autopilot: Automatic Data Center Management.
OSR, 2007.

[34] M. K. McKusick, K. Bostic, M. J. Karels, and J. S. Quarterman.
_e design and implementation of the 4.4 BSD operating
system. Pearson Education, 1996.

[35] Microso�. Azure Service Bus. http://bit.ly/1LjqUIf.
[36] Microso�. Introducing Visual Studio Online.

http://bit.ly/1OvpNez.
[37] Microso�. SMB Protocol and CIFS Protocol Overview.

http://bit.ly/1Crljd7.
[38] J. D. Morgenthaler et al. Searching for build debt: Experiences

managing technical debt at google. In Workshop on Managing
Technical Debt, 2012.

[39] A. _usoo et al. Hive- a warehousing solution over a
map-reduce framework. In VLDB, 2009.

[40] M. Vakilian et al. Automated decomposition of build targets.
In ICSE, 2015.

[41] J. Zhou et al. SCOPE: Parallel Databases Meet MapReduce. In
VLDB, 2012.

ant.apache.org
maven.apache.org
http://tez.apache.org/
zookeeper.apache.org
http://bazel.io/
https://github.com/distcc/distcc
http://bit.ly/1vqcDFe
http://bit.ly/1iS8xvP
http://bit.ly/1Fwk6Ez
http://bit.ly/1NgNzsE
http://bit.ly/1OdeEJA
http://bit.ly/1OdeEJA
www.scala-sbt.org
https://en.wikipedia.org/wiki/Perforce
http://bit.ly/1ES8VLm
http://bit.ly/1J6uDap
http://bit.ly/1KRK5gl
http://bit.ly/1L2nmPO
http://bit.ly/1LjqUIf
http://bit.ly/1OvpNez
http://bit.ly/1Crljd7

