
Verifying Relative Safety, Accuracy, and Termination
for Program Approximations

Shaobo He1, Shuvendu K. Lahiri2, and Zvonimir Rakamarić1

1 University of Utah, Salt Lake City, UT, USA
2 Microsoft Research, Redmond, WA, USA

Abstract. Approximate computing is an emerging area for trading off the accu-
racy of an application for improved performance, lower energy costs, and toler-
ance to unreliable hardware. However, developers must ensure that the leveraged
approximations do not introduce significant, intolerable divergence from the ref-
erence implementation, as specified by several established robustness criteria. In
this work, we show the application of automated differential verification towards
verifying relative safety, accuracy, and termination criteria for a class of program
approximations. We use mutual summaries to express relative specifications for
approximations, and SMT-based invariant inference to automate the verification
of such specifications. We perform a detailed feasibility study showing promise
of applying automated verification to the domain of approximate computing in a
cost-effective manner.

1 Introduction
Continuous improvements in per-transistor speed and energy efficiency are fading, while
we face increasingly important concerns of power and energy consumption, along with
ambitious performance goals. The emerging area of approximate computing aims at
lowering the computational effort (e.g., energy and runtime) of an application through
controlled (small) deviations from the intended results [12, 30, 28, 31]. These studies
illustrate a large class of applications (e.g., machine learning, web search, multime-
dia, sensor data processing) that can tolerate small approximations without significantly
compromising quality. Low-level approximation mechanisms include, for example, ap-
proximating digital logic elements, arithmetic, or sensor readings; high-level mecha-
nisms include approximating loop computations, generating multiple approximate can-
didate implementations, or leveraging neural networks.

There is a growing need to develop formal and automated techniques that allow
approximate computing trade-offs to be explored by developers. Prior research has
ranged from the use of type systems [31], to static analyses [6], and interactive the-
orem provers [5] to study the effects of approximations while also providing various
correctness guarantees. While these techniques have significantly increased the poten-
tial to employ approximate computing in practice, a drawback is that they often either
lack the required level of precision or degree of automation.

In this work, we describe the application of SMT-based (Satisfiability Modulo The-
ories [2]) automated differential program verifiers [3, 11] for specifying and verify-
ing properties of approximations. Such verifiers (e.g., SymDiff [14, 15]) leverage SMT

var src:[int]int, srcLen:int;
var dst:[int]int, dstLen:int;

procedure Strcpy() {
var i:int;
i := 0;

while(src[i] != 0) {
assert i<srcLen && i<dstLen;
dst[i] := src[i];

i := i + 1;

}

dst[i] := 0;

}

procedure StrcpyApprox() {
var i:int; var j:int;

i := 0; j := 0;

while(src[i] != 0) {
assert i<srcLen && j<dstLen;

dst[j] := src[i];

i := i + 1; j := j + 1;

if (src[i] == 0) { break; }
i := i + 1;

}

dst[j] := 0;

}

Fig. 1. Approximating string copy.

solvers to check assertions and semi-automatically infer intermediate program invari-
ants over a pair of programs. We describe three broad classes of approximation ro-
bustness criteria that are amenable to SMT-based automated checking: relative safety,
relative accuracy, and relative termination. Relative safety criteria ensure that approx-
imations preserve a set of generic (program agnostic) properties. For example, relative
assertion safety [5, 15] ensures that the approximation does not introduce any new asser-
tion failures over the base program (e.g., it is desirable to ensure that an approximation
does not introduce an array out of bound access). Similarly, relative control flow safety
ensures that the approximation does not influence the control flow of a program [31].
Relative accuracy criteria specify the acceptable difference between precise and approx-
imate outputs for specific approximations [5]. In addition to these established criteria,
we propose the concept of relative termination [11, 8] as another important (program-
agnostic) criterion for ensuring robustness of approximations. Intuitively, relative ter-
mination ensures that the approximation (such as loop perforation) does not change a
terminating execution to a non-terminating one. We illustrate these on a few concrete
examples next.

1.1 Motivating Examples

Relative Assertion Safety Fig. 1 describes two implementations of a string copy pro-
cedure: Strcpy is the precise version and StrcpyApprox is the approximate one. The
approximate version implements a variant of loop perforation (a well-known approx-
imation technique [19]) that only copies every other element from src to dst. The
changes are highlighted using the underlined statements. The original program scans
the src array until a designated end marker (0 in this example) is encountered, and
copies the elements to the dst array. The approximation introduces a fresh index vari-
able j for indexing dst and increments i twice every iteration (unless the loop exit
condition is true).

The memory safety of the program is ensured by a set of implicit assertions that
guard for out-of-bound access of the arrays (e.g., assert i < srcLen before the access
src[i]) — we only show a subset of assertions in the example. The bounds srcLen
and dstLen are additional parameters to represent the bounds of the arrays. It is not

var str:[int]int, x:int, y:int;
procedure ReplaceChar() {
call Helper(0);

}

procedure Helper(i:int) {
var tmp:int;
if (str[i] != 0) {

tmp := str[i];

havoc tmp;

str[i] := tmp==x ? y : tmp;

call Helper(i+1);
}

}

Fig. 2. Replacing a character in a string.

hard to see that the base program Strcpy satisfies memory safety under some non-
trivial preconditions. For example, a caller needs to ensure that src contains 0 within
its bounds, and that the dst array has enough capacity to copy src. In addition, the
client needs to ensure that the value of srcLen (resp. dstLen) is within the runtime
bounds of the src (resp. dst) array — such bounds are not readily available for low-
level languages such as C. In other words, the proof of (absolute) array bound safety of
Strcpy requires access to additional runtime state for bounds, non-trivial preconditions,
and loop invariants for the loop.

On the contrary, it is relatively simple to establish that the approximate version
StrcpyApprox is relative assertion safe with respect to Strcpy. We provide an almost
automatic proof using a differential verifier,3 without access to additional runtime states
or preconditions (§ 5). The intuition is that the approximation StrcpyApprox does not
access any additional indices that could not be accessed in Strcpy. At the same time,
the complexity of the example (loop exit condition depends on array content) and ap-
proximation (introducing a break statement) makes it difficult for any existing static-
analysis-based approaches (e.g., [19, 31]) to ensure the safety of the approximation.

Relative Termination Just like preserving assertions, preserving terminating execu-
tions is an important criteria for almost any approximation. In other words, if an in-
put leads to a terminating execution on the precise program, one needs to ensure that
the approximation does introduce a non-terminating behavior. Consider again proce-
dure StrcpyApprox from Fig. 1, and let us assume unbounded integers (i and j) and
unbounded arrays (src and dst). Let us also assume that assertion failure does not ter-
minate the program. In such a case, the base version Strcpy only terminates for those
inputs where src has 0 as its element — other inputs may cause non-termination. It is
desirable to ensure that StrcpyApprox at least terminates on all such inputs. For exam-
ple, if the line i := i + 1 is (mistakenly) replaced with i := i - 1, the verifier should reject
the approximation.

Similar to the proof of (absolute) assertion safety for Strcpy, a proof of (absolute)
termination would require (i) a non-trivial existentially quantified precondition about
the existence of 0 and (ii) a ranking function relating i with the first index containing 0,
among other ingredients. We show that we are able to avoid these complexities by rea-
soning about relative termination [11], instead of establishing each program terminates
in isolation.

Control Flow Safety The program in Fig. 2 replaces a given character x with y in a
character array str. The procedure Helper iterates over indices of the array until the

3 We required the user to provide a simple additional predicate and unroll the first loop once.

termination character (0 in this case) is reached. Consider the approximation of the
variable tmp indicated by the underlined statement — this models a case where the
variable tmp is stored in an unreliable memory that may trade off cost for accuracy [21].
Approximating statements that impact control flow often leads to serious problems in
unacceptably high corruptions in output data and program crashes. Hence, preservation
of control flow has been identified as a natural and useful relaxed specification for
approximations [31]. Since tmp flows into str that controls the conditional, a standard
dataflow-based analysis would mark the approximation as unsafe.

However, observe that the fragment of the array that stores the value in tmp in fact
never participates in the conditional. Our approach leverages differential verification to
check for control flow safety, which allows for precise analysis (§3.2). Interestingly,
we formalize the concept that an approximation does not affect control as a pair of in-
comparable relative properties: (i) a relative safety property that all pairs of terminating
executions follow same control flow sequence (§ 3.2), and (ii) a relative termination
property that the sets of terminating executions are identical in the two programs.

1.2 Our Approach

In this paper, we perform a feasibility study of using a differential verifier (§2) for ex-
pressing and verifying various relative specifications related to approximations (§3). We
are the first to propose and demonstrate the idea of relative termination to the problem
of verifying approximations. We leverage and extend the SymDiff infrastructure [14,
15, 11] to express and verify these specifications. We describe some of the extensions
needed to improve the automation for the benchmarks we considered (§4). Overall,
our verifier requires less than 1 manually supplied predicate on average to verify the
safety of the approximations (§5). This is due to the fact that most proofs require rela-
tively simple 2-program relational properties, as opposed to complex program-specific
invariants. Our results give us confidence to apply the prototype on original source code
written in languages such as C and Java, to serve as an independent validator for ap-
proximations introduced by approximate compilers (i.e., translation validation [20] for
approximate compilers such as ACCEPT [31]).

2 Background
2.1 Programs
A program P ∈ Programs consists of a set of procedures in Procedures and a set of
global variables. Each procedure p ∈ Procedures contains a list of input and output
parameters, local variables, and a body. A body for a procedure p is an acyclic control
flow graph with a set of nodes Nodesp and Edgesp ⊆ Nodesp×Nodesp, with an entry
node ne

p ∈ Nodesp and an exit node nx
p ∈ Nodesp. Each node n ∈ Nodesp in the control

flow graph contains one of the following statements in Stmts:

s, t ∈ Stmts ::= skip | assume e | assert e | havoc x |
x := e | call x1, . . .xk := q(e1, . . . ,en)

where x,xi represent program variables and e,ei ∈ Exprs are expressions. The precise
set of types of variables and the expression language are left unspecified. Types include
Booleans and integers, while expressions are built up using constants, interpreted (e.g.

arithmetic and relational operations) or uninterpreted functions. Arrays are modeled
using interpreted functions select and update from the logical theory of arrays [2].

We only sketch the semantics for the statements here — the semantics of programs
is built up using semantics of statements over control flow graphs and is fairly stan-
dard [1]. A state σ ∈ Σ is an assignment of values to variables in scope. To model
assertions, we introduce a ghost Boolean global variable OK, and model assert e as
an assignment OK := OK ∧ e. A state σ ∈ Σ for which OK evaluates to false under
σ is termed as an error state. Each statement s ∈ Stmts defines a transition relation
‖s‖ ⊆ Σ ×Σ , where skip represents the identity relation and (σ,σ) ∈ ‖assume e‖ if
σ evaluates the Boolean expression e to true. Moreover, (σ,σ ′) ∈ ‖x := e‖ if σ ′ is
obtained by updating the value of variable x with the valuation of e in σ. Similarly,
(σ,σ ′)∈ ‖havoc x‖ if σ ′ and σ agree on the value of all variables except x. The seman-
tics of a call statement is standard — it pushes the caller state on a call stack, executes
the callee q with values of ei as inputs, and upon termination pops the call stack and up-
dates xi variables with values of outputs of q. We denote a node n containing a call to q
as a callsite of q. Conditional statements are encoded using assume and skip statements
on the control flow graph [1]; loops are encoded using tail-recursive procedures.

An execution is a sequence 〈(n0,σ0), . . . ,(ni,σi), . . .〉 where either (i) (ni,ni+1) ∈
Edgesp (for some p) and (σi,σi+1) ∈ ‖si‖ where si is a non-call statement at ni, or (ii)
ni is a callsite of q, ni+1 equals ne

q (the entry node of q), and σi+1 is the input state
of q obtained from the caller state σi, or (iii) ni is nx

q (the exit node of q), ni+1 is the
unique successor of the corresponding callsite of q, and σi+1 is the caller state (after the
call) obtained from the output state σi. For each procedure p, we define its input-output
transition relation Tp as the set of pairs (σ,σ ′) such that there is an execution of p
starting in input state σ (with an empty call stack) and terminating in output state σ ′

(with an empty call stack). For the rest of the paper, we assume that we are given two
versions P1,P2 ∈ Programs of a program with disjoint set of procedures and globals.
We distinguish components of the two versions using subscripts 1 and 2 respectively.

2.2 Mutual Summary Specifications
Given two procedures p1 ∈ P1 and p2 ∈ P2, we define a 2-program input-output ex-
pression as an expression over inputs and outputs of p1 and p2. The inputs can refer to
the input parameters and globals (within an old(e) subexpression where the construct
old evaluates the subexpression at procedure entry), and outputs can refer to the out-
put parameters and globals. For example, if gi refers to global variables, xi (resp. yi)
refers to input (resp. output) parameters of a pair of procedures p1, p2, the expression
¬(old(g1 ≤ g2)∧ x1 ≤ x2∧g1 + y1 > g2 + y2) is a 2-program input-output expression
relating inputs and outputs of p1 and p2. Given such a 2-program input-output expres-
sion e, and two pairs of input-output states (σ1,σ

′
1)∈Tp1 and (σ2,σ

′
2)∈Tp2 , the value

of e is obtained by evaluating the inputs (resp. outputs) of fi under σi (resp. σ ′i).
Definition 1. (Mutual Summary [11]). Given two procedures p1 ∈ P1 and p2 ∈ P2, a 2-
program input-output Boolean expression e is a mutual summary for p1, p2 if the value
of e evaluates to true for every pair of input-output states in Tp1 ×Tp2 .

We use mutual summaries to express relative safety and accuracy specifications over
two programs. Intuitively, a mutual summary is a summary (or postcondition) for the
product procedure over the pair of procedures p1, p2.

2.3 Relative Termination Specifications
Given two procedures p1 ∈P1 and p2 ∈P2, we define a 2-program input expression as an
expression over inputs of p1 and p2. Such expressions do not contain old(e) since they
may only refer to the input globals. The expression (g1 ≤ g2∧ x1 = x2) is an example
of a 2-program input expression relating inputs of two procedures.

Definition 2. (Relative Termination Conditions [11]). Given two procedures p1 ∈ P1
and p2 ∈ P2, a 2-program input Boolean expression e is a relative termination condition
for p1, p2 if for each pair of input states σ1,σ2 of p1, p2 that evaluates e to true, if σ1
has at least one terminating execution for p1, then so does σ2 for p2.

Note that for inputs satisfying the relative termination condition, the procedure p2 ter-
minates at least as often as the procedure p1. This is helpful for specifying intermediate
relationships between recursive procedure pairs when p2 terminates in fewer iterations
than p1 under the same input.

3 Preserving Safety, Accuracy, and Termination
In this section, we first show that mutual summary specifications can be used to capture
both relative safety (assertion §3.1 and control flow §3.2) and relative accuracy (§3.3)
for approximations. Finally, we describe the use of relative termination specifications
for describing approximations (§3.4).

3.1 Preserving Assertion Safety
Recall from §1.1 that we informally describe relative assertion safety as a robustness
criterion that assertions in approximate programs should fail less often than their coun-
terparts in precise programs. We formalize this as follows:

A procedure p2 ∈ P2 has a differential error with respect to a procedure p1 ∈ P1
if there exists a common input state σ such that (σ,σ1) ∈Tp1 and σ1 is not an
error state, and there exists (σ,σ2)∈Tp2 such that σ2 is an error state. Relative
assertion safety of p2 with respect to p1 holds if there are no differential errors
in p2 with respect to p1.

Recall that assertions are desugared using a ghost variable OK (§2.1). Relative assertion
safety is then encoded as the following mutual summary specification for p1 and p2:
(old(

∧
x∈X x1 = x2))⇒ (OK1 ⇒ OK2), where X denotes the set of input parameters

and globals of p — each variable x ∈ X is named x1 (resp. x2) in program P1 (resp. P2).

3.2 Preserving Control Flow Safety
Preserving control flow safety has been identified as an important robustness criterion
for approximations (§1.1). Next, we show that we can use mutual summaries to capture
that the approximation does not affect control flow (modulo termination). We first define
an automatic program instrumentation for tracking control flow. Let a basic block be the
maximal sequence of statements that do not contain any conditional statements. We also
assume that each such basic block has a unique identifier associated with it. To track the
sequence of basic blocks visited along any execution, we augment the state of a program
by introducing an integer-valued global variable cflow. Then, we instrument every basic
block of the program with a statement of the form cflow := trackCF(cflow,blockID),

function RelaxedEq(x:int, y:int) returns (bool) {
(x <= 10 && x == y) || (x > 10 && y >= 10 && x >= y)

}

procedure Swish(max_r:int, N:int) returns (num_r:int) {
var old_max_r:int;
old max r := max r; havoc max r; assume RelaxedEq(old max r, max r);

num_r := 0;

while (num_r < max_r && num_r < N) num_r := num_r + 1;
return;

}
Fig. 3. Swish++ open-source search engine example.

where trackCF is an uninterpreted function defined as trackCF(int, int) returns int, and
blockID is the unique integer identifier of the current basic block.

Let p1 ∈ P1 and p2 ∈ P2 be the two versions of a procedure p in the original and the
approximate program. We denote with X the set of input parameters and globals of p
— each variable x ∈ X is named x1 (resp. x2) in program P1 (resp. P2). Then the mutual
summary (old(

∧
x∈X x1 = x2))⇒ (cflow1 = cflow2) states that if the two procedures

start out in the same state, the values of the cflow variables are equal on termination. If
p1 and p2 satisfy this mutual summary specification, then the following holds:

For any pair of executions (σ,σ1)∈Tp1 and (σ,σ2)∈Tp2 starting at the same
input state σ, the sequences of basic blocks in the two executions are identical.

Note that the specification only ensures that every pair of terminating executions from σ

follow the same control flow. It does not preclude p2 to not terminate on the input state
σ. We address this issue using relative termination specifications that further ensure that
(for deterministic programs) if p1 terminates on σ, then so does p2.

3.3 Preserving Accuracy
The accuracy criterion ensures that approximations do not cause unacceptable diver-
gence of outputs between two program versions. For example, a write operation to ap-
proximate memory may introduce a small error into the written value [21]. Such errors
can be amplified by a program (e.g., through multiplication by a large constant), and
lead to significant and unintended output difference between the original and approxi-
mate program. Hence, the accuracy criterion is used to capture the acceptable quantita-
tive gap between precise and approximate outputs. Mutual summaries naturally express
such specifications by relating the inputs and outputs of a procedure pair.

Fig. 3 gives the Swish++ open-source search engine example taken from a recent
approximate computing work by Carbin et al. [5]. It takes as input a threshold for
the maximum number of results to display max_r and the total number of search re-
sults N, and returns the actual number of results to display num_r bounded by max_r
and N. The approximation nondeterministically changes the threshold to a possibly
smaller number, without suppressing the top 10 results. This allows the search engine
to trade-off the number of search results to display under heavy server load, since users
are typically interested in the top few results. The predicate RelaxedEq denotes the
relationship between the original and the approximate value. We express and prove
the accuracy criterion (akin to acceptability property [5, 24]) as the mutual summary
old(max r1 = max r2∧N1 = N2)⇒ RelaxedEq(num r1,num r2).

3.4 Preserving Termination
We use relative termination conditions (§2.3) to specify that the approximate program
terminates at least as often as the base program, and we note the following. The relative
termination conditions for a procedure pair may not always be simple equalities over
input states. For the pair of Helper procedures in Fig. 2, the relative termination condi-
tion satisfied by the two versions is i1 = i2∧(∀ j :: j ≥ i1⇒ src1[j] = src2[j]) , since the
recursive calls may not preserve the segment of the array before i. In the presence of a
havoc statement in p2 (Fig. 2), the specification only guarantees that p2 has at least one
terminating execution on a common input to p1. To address this, we perform a standard
trick of modeling a havoc x statement as a read from a global stream of unconstrained
values [14]. This can be done using a global a array and a counter c into the array and
replacing havoc x with x := a[c++]. With this, the array becomes a part of the in-
put and the internal non-determinism is converted into an input non-determinism. For
the transformed program the relative termination specification ensures that none of the
terminating executions in p1 fails to terminate in p2.

4 Verifying Relative Specifications
In this section, we describe how we leverage and extend SymDiff [14, 15, 11], a dif-
ferential verifier for procedural programs that employs SMT-based checking and auto-
matic invariant inference. Although SymDiff already provided many building blocks,
we extended it to improve the automation of checking mutual summaries and relative
termination conditions. Previously, to verify the relative specifications on the (top-level)
entry procedures, the user had to fully annotate all intermediate mutual summaries and
relative specification conditions for every pairs of procedures [11]; SymDiff only pro-
vided a verifier for fully annotated pairs of procedures. We improve the automation in
three main directions:
1. We leverage a product program construction for procedural programs that allows in-

ferring relative specifications using off-the-shelf invariant inference tools [15]. This
product construction was already present in SymDiff but was customized for check-
ing a specific form of relative specifications (namely, relative assertion safety).

2. We use inferred preconditions for the product program as candidate relative termi-
nation conditions for intermediate procedure pairs.

3. We augment the specific invariant inference scheme used in SymDiff over the prod-
uct program to allow for the user to supply additional predicates.

We informally elaborate on these ideas next. The details of the product construction [15]
and checking relative termination conditions [11] are beyond the scope of this paper.

4.1 Procedural Product Programs
We recollect a particular product construction for procedural programs as implemented
in SymDiff [15]. The product construction is novel in several ways. First, it can handle
procedures (including recursion) in P1 and P2 unlike most other product constructions
that are intraprocedural [3]. Second, the product program can be fed to any off-the-shelf
invariant inference engine to infer mutual summaries over P1 and P2.

Given P1 and P2, the product program P1×2 consists of procedures in P1, P2 and a set
of product procedures described below. The set of globals of P1×2 is the disjoint union

of globals of P1 and P2. For a pair of procedures p1 ∈ P1 and p2 ∈ P2, we introduce a
product procedure p1×2 whose input (resp. output) parameters are the disjoint union of
input (resp. output) parameters of p1 and p2. The body of p1×2 is a sequential composi-
tion of bodies of p1 and p2 followed by a series of replay blocks. We informally sketch
these replay blocks using an example. Let q1 be a call within p1 body and q2 be a call
within p2 body. For any path in p1×2 where q1 and q2 are both executed with inputs
i1, i2 and produce outputs o1,o2 (where both inputs and outputs include global mutable
state), we constrain (o1,o2) to be the output of executing q1×2 over inputs (i1, i2) in the
product program. To perform the replay, each call site in p1 and p2 is instrumented to
record the inputs and outputs, and global state is set/reset in the replay code.

The resultant product program (which is just another program in Programs) has the
following property (we are the first to formalize this connection):

For any product procedure p1×2 ∈ P1×2, if a 2-program 2-state expression e is
satisfied by every (σ1×2,σ

′
1×2) ∈Tp1×2 , then e is a mutual summary specifica-

tion for (p1, p2).
In other words, if an expression e (over the two program states) is a valid summary (or
postcondition) for p1×2, it is a valid mutual summary for the pair of procedures p1 and
p2. This provides a sound rule for proving mutual summaries over P1 and P2: we can
express a mutual summary over p1 and p2 (e.g., any of the specifications in §3) as a
specification over the product procedure p1×2, and verify P1×2 using any off-the-shelf
program verifier.

4.2 Invariant Inference
To verify a mutual summary, we annotate the resultant product program P1×2 with a
summary of the top-level procedures, and let a program verifier infer intermediate spec-
ifications (preconditions and postconditions of intermediate q1×2 procedures). It was
noted in earlier work that most specifications on product procedures tend to be rela-
tional or 2-program (e.g., i1 ≤ i2), which requires exploiting the structural similarity
between P1 and P2. Running an invariant inference engine as is (e.g., Duality [17]) re-
sults in generation of one-program-specific invariants and fails to infer 2-program spec-
ifications. Therefore, SymDiff exploits the mapping between parameters and globals to
add candidate relational predicates such as i1 ./ i2, where ./∈ {≤,≥,<,>,⇐,⇒,=},
for copies of a variable i in two programs. Relational specifications can be generated by
composing these predicates using predicate abstraction [10] or Houdini [9]. The advan-
tage of Houdini (that only infers subsets of these predicates) is that it is typically fast
and predictable, and has been shown to scale to very large programs [34]. We leverage
the Houdini-based 2-program specification inference in SymDiff, but we also added a
facility for a user to augment the set of automatically generated predicates. Our study
shows that such a mechanism was useful in several cases to provide domain-specific
guesses for the required predicates.

4.3 Inferring Relative Termination Conditions
The product program P1×2 is not suitable for proving termination related properties as it
is meant for proving relative safety properties (on pairs of terminating executions). We
therefore fall back to the technique proposed for checking relative termination condi-
tions [11]. We briefly sketch the technique before highlighting the inference extension
we have implemented.

Given P1 and P2, we construct a product program P1⊗2 by creating product proce-
dures p1⊗2 for two versions of a procedure p. Let us assume that we have a relative
termination condition RTp1⊗2 for the procedure p1⊗2. Recall that RTp1⊗2 is an expres-
sion over inputs of p1 and p2 (§2.3). For each procedure p (in either version), we create
an uninterpreted relation Rp containing all the input-output state pairs of p (i.e., over-
approximates Tp). We add a background axiom encoding the assumption that if there
exists (σ1,σ

′
1)∈Rp1 and (σ1,σ2)∈RTp1⊗2 , then there exists σ ′2 such that (σ2,σ

′
2)∈Rp2 :

∀σ1,σ
′
1,σ2 ::

(
Rp1(σ1,σ

′
1)∧RTp1⊗2(σ1,σ2)

)
⇒ (∃σ ′2 :: Rp2(σ2,σ

′
2)).

Each procedure p1⊗2 starts by assuming the relative termination condition, followed by
the body of p1 and p2, all composed sequentially. Before any call (to say q2) inside p2’s
body, we add the assertion assert ∃σ ′2 :: Rq2(σ2,σ

′
2), where σ2 is the state of the input

to the call to q2 and σ ′2 is the output state of q2. Intuitively, such an assertion before
every call (which is the only way to avoid termination in the absence of loops) ensures
that a call to q2 must be preceded by a call to q1 in the path inside p1⊗2 — in other
words, q2 is called less often than q1 on any execution. If all such assertions hold for
the given RTq1⊗2 for all procedures q∈ P, then the relative termination of the entry level
procedures is established.

Although the relative termination condition for the top-level procedures is often
simple (equality of the input states), intermediate procedures may only satisfy weaker
relationships. For example, sometimes a relationship such as i1 ≤ i2 holds for a loop
index i to indicate that the second procedure terminates earlier. Also, recall the non-
trivial specification for the intermediate Helper procedure in §3.4 where only segments
of arrays are equal. Clearly, manually specifying all the RT can be quite cumbersome
in the presence of multiple procedures.

We leverage the product program P1×2 used earlier to heuristically guess possible
RT expressions. We have observed that the inferred preconditions to a product pro-
cedure p1×2 often represent sound relationships between inputs of p1 and p2 in any
execution. One can, however, construct examples where the inferred precondition is not
sound for relationship between inputs to p1 and p2 — e.g., due to non-termination or
fewer call-sites of a procedure in the new version. We heuristically install a precondition
to p1×2 (from P1×2) as RTp1⊗2 (in P1⊗2) and try verifying P1⊗2. If verification succeeds,
we have established the relative termination property. In the case study, we show that
this heuristic suffices for all but one of our benchmarks.

5 Case Study
In this section, we describe our feasibility study of using differential program verifica-
tion techniques for automatic verification of several classes of program approximations.

Benchmarks Table 1 lists our benchmarks and presents the results of verifying them
using our framework. We used the following benchmarks in our experiments:

– Case studies taken from previous work by Carbin et al. [5]: LU Decomposition,
Water, and Swish++. We provide the same guarantees as this previous work, and
in addition we prove relative termination for a modified version of Swish++.

– Array and string operations: Replace Character, Array Operations, Array Search,
String Hash, String Copy, Selection Sort, and Bubble Sort.

Table 1. Experimental results. LOC is the number of lines of Boogie code in approximate pro-
grams; Criterion is the verified property; #Preds is the number of predicates automatically gener-
ated by SymDiff; #Man is the number of manually provided predicates; Time is the total runtime
in seconds, including inference.

Benchmark LOC Criterion #Preds #Man Time(s)
Cube Root 7 Relative Termination 12 0 6.5
Loop Perforation 11 Relative Termination 10 0 4.8
Gradient Descent 17 Relative Termination 22 0 6.4

String Hash 19
Assertion Safety 25 0 7.8

Relative Termination 19 0 4.9

Swish++ 22
Accuracy 14 2 6.5

Relative Termination 14 0 4.8
Water 27 Assertion Safety 32 0 5.8
Pointer Perforation 28 Relative Termination 26 0 5.1

Replace Character 31
Assertion Safety 15 0 7.7

Control Flow Safety 15 0 7.9
Termination 5 0 5.1

String Copy 32
Assertion Safety 20 2 7.7

Relative Termination 14 0 6.5
LU Decomposition 33 Accuracy 32 2 5.7
Array Search 33 Relative Termination 30 0 7.1
Array Operations 43 Control Flow Safety 44 0 8.2
Sobel 49 Relative Termination 190 1 5.3
Selection Sort 57 Control Flow Safety 81 0 8.5

ReadCell 60
Assertion Safety 37 1 14.0

Control Flow Safety 37 1 14.0
Bubble Sort 67 Control Flow Safety 59 0 8.2
JPEG Quantization 96 Accuracy 19 3 6.3

– Loop approximation examples: Cube Root, Gradient Descent, Loop Perforation,
and Pointer Perforation.

– Image processing programs taken from the ACCEPT benchmark suite [29]: Read-
Cell (extracts information from the header of an image file), Sobel (implements a
Sobel image filter), and JPEG Quantization (quantization stage of a JPEG encoder).

We only prove important criteria for every benchmark since some either do not hold
or are trivial to prove. All experiments were performed on a 2.3 GHz Intel i7-3610QM
machine with 8GB RAM and running Microsoft Windows. Our extensions to SymDiff
and benchmarks are available at http://symdiff.codeplex.com (rt-feature branch).
Discussion As experimental results show, we successfully used our approach to verify
a variety of approximation robustness criteria. Verification of most benchmarks termi-
nates in under one minute, which indicates that our technique has potential to scale
to larger examples. Only two manual steps were occasionally needed to complete the
proof. First, in several benchmarks we had to unroll once tail-recursive procedures ex-
tracted from loops (e.g., String Copy, String Hash). Second, we had to provide addi-
tional predicates for the benchmarks with non-zero #Man field in Table 1. The need
for manual predicates can be broken down into roughly two categories: (i) simple non-
relational predicates such as j2 ≤ i2 (e.g., String Copy), and (ii) non-trivial relational

predicates that require arithmetic such as RelaxedEq (e.g., Swish++ in Fig. 3, LU).
These predicates are mainly used for proving domain-specific relative accuracy proper-
ties, and reusing the predicate RelaxedEq often suffices for the proof. Our study shows
that our inference techniques successfully generated most of the required specifica-
tions automatically, indicating that most relative specifications do not heavily depend
on complex program-specific invariants.

5.1 Experience
We describe next in more detail our experience verifying some of the listed benchmarks.

Replace Character and Sorting Recall the Replace Character example from Fig. 2,
where we wish to verify that the approximation maintains control flow safety. The main
challenge of this verification task is to capture the fact that control flow depends on only
a fragment of the array, which is identical in the two programs. We capture this property
by defining a quantified predicate template ArrayEqAfter(str1,str2, i1)

.
= ∀ j : int :: j ≥

i1 ⇒ str1[j] = str2[j], which is then automatically instantiated using our inference en-
gine. The proof of control flow safety for the selection sort example shown in Fig. 4 also
leverages this predicate. The selection sort algorithm sorts an array by pushing the max-
imum element of the [c . . .n− 1] subarray to the position c after every iteration. Once
an element has been pushed to the front, it does not play a part in determining future
control flow behavior Therefore, approximating such end elements does not influence
the control flow of the algorithm. In addition to selection sort, we also verified control
flow safety for a version of bubble sort containing a similar approximation. Unlike se-
lection sort where the leftmost index is approximated, the approximation in bubble sort
requires introducing an additional instruction to havoc the rightmost array element of
each iteration. A similar predicate ArrayEqBefore, specifying that the two arrays are
equal before some index, captures that fact that the subarray before each iteration is
precise and thus facilitates the proof.

JPEG Quantization Fig. 6 shows the source code of a JPEG encoder quantization
stage taken from the ACCEPT benchmark suite [29]. Each element in data gets its
quantized value stored in Temp by multiplying it with the corresponding element in
QuantTable, and dividing the result by 215 after adding 214 to it. This application is
suitable for an approximation that allocates data in approximate memory since the
error e introduced to the stored value (denoted by the predicate RelaxedEq) is masked
or reduced after division by 215. The approximation is introduced using the underlined
statements, and the following mutual summary expresses the desired relative accuracy
specification:

old(data1 = data2)⇒ (∀ i : int :: (i≥ 0∧ i≤ 63)⇒ RelaxedEq(Temp1[i],Temp2[i],2))

The most involved manually provided predicate RelaxedAfter(Temp1,Temp2, i) is simi-
lar to ArrayEqAfter. It is based on the observation that after each iteration of the loop,
all corresponding elements of the arrays Temp1 and Temp2 after index i should satisfy
RelaxedEq with the error bound of 2.

String Examples To prove relative assertion safety for the example from Fig. 1, we
had to manually unroll the loop in Strcpy once and provide two atomic predicates. Such
loop unrolling helps SymDiff to infer the equality between i1 and i2, which indicates

that the src arrays are accessed in the same way and thus implies relative assertion
safety. The manual predicates needed for this example relate indices of array dst, and
have the form j2 ≤ i2. With these predicates, relative assertion safety is established for
array dst since dst2 is accessed less often than dst1. In addition, we proved relative
termination of StrcpyApprox with respect to Strcpy. This required a simple relative
termination condition automatically inferred by SymDiff, src1 = src2 ∧ i1 = i2, since
we unrolled the loop in Strcpy once. Such bounded loop unrolling often facilitates the
verification of relative termination since it allows for the proof to be discharged using a
simpler relative termination condition.

Simple Cube Root Calculation We implemented a benchmark that calculates the in-
teger approximation r of the cube root of x by performing a simple iterative search
guarded with the nonlinear condition r*r*r<=x. We further approximate this compu-
tation by performing loop perforation, which speeds up the search at the expense of
losing precision, and potentially leads to non-termination. Automatically proving pro-
gram termination is especially hard when loop conditions contain nonlinear arithmetic,
which complicates generation of adequate ranking functions. We easily proved relative
termination of this benchmark using the simple relative termination condition r1 ≤ r2
that is automatically inferred.

6 Related Work
A number of complementary approaches have been recently proposed to reason about
approximations. These approaches can be roughly categorized (with overlaps) into (i)
language based, (ii) static analysis, and (iii) dynamic approaches. Language based ap-
proaches propose language constructs and annotations to make approximations ex-
plicit in a program [31, 5]. EnerJ [31] introduces approximate types and ensures that
such values do not impact precise computations, including conditional statements. AC-
CEPT [29] automatically searches for code regions that can be approximated based on
type annotation and static compiler analysis pass. Our work can be used to improve the
precision of the type-based analysis, as shown in §1.1.

Carbin et al. [5] develop a special-purpose language and constructs for introducing
approximations and relaxed specifications (based on relational Hoare logic [3]), and
prove correctness of transformations using the general purpose Coq theorem prover [7].
Each proof for their three benchmarks required roughly 330 lines of proof scripts ac-
cording to the authors. We provide the same guarantees for these three benchmarks
almost completely automatically (see § 5), thereby showing that mutual summaries and
SMT-based verification can significantly improve the automation for most transforma-
tions covered by this approach.

Rely [6] is a programming language that allows users to verify probabilistic quanti-
tative reliability guarantees under the impact of unreliable hardware on overall behavior
of a program with an associated static analysis. Chisel [18] is a synthesis framework that
generates optimal programs for execution on approximate hardware that satisfy given
accuracy and reliability specifications. Unlike our approach, Chisel can only establish
relative specifications for syntactically equivalent program versions. Moreover, Chisel
ensures control flow equivalence using a simple dependence analysis, which is less pre-
cise than our approach as illustrated in §1.1. On the other hand, Chisel can reason about

probabilities, which our approach currently does not support. ExPAX [22] is a frame-
work that generates a set of safe-to-approximate operations based on a dataflow taint
analysis. It develops an algorithm to compute the approximation level for each opera-
tion in the set so that energy consumption is minimized and reliability constraints are
satisfied. DECAF [4] combines static type inference, dynamic tracking, and runtime
check to give probabilistic guarantee on the quality of approximate programs.

Among dynamic approaches, fault injection at the source or intermediate represen-
tation level has been used to profile the sensitivity of output quality to approximations.
Fault injectors such as KULFI [32] and LLFI [33] approximate instructions at runtime.
Though these techniques achieve high levels of accuracy, they provide no formal cov-
erage guarantees, unlike our approach. Offline dynamic analysis techniques provide
information on dataflow and correlation difference (e.g., [25, 26]). The former may be
imprecise as it is based on static dataflow analysis, while the latter again does not pro-
vide formal guarantees. Although there are optimizations for selective instruction per-
turbation, such as statistical methods [27], the reasoning is only for a subset of all the
possible executions of the program.

Finally, our work is related to previous works on translation validation [23, 20] that
validate equivalence-preserving intraprocedural compiler transformations, using lock-
step symbolic execution and SMT solvers. However, mutual summaries and the product
construction allows for richer relaxed specifications other than equivalence, interproce-
dural reasoning [11], and leveraging off-the-shelf verifiers and inference engines.

7 Conclusions and Future Work
In this paper, we have described the application of automated SMT-based differential
verification for providing formal guarantees of approximations. The structural similarity
between original and approximate programs are leveraged to automate most interme-
diate relative specifications. Our extensions to SymDiff allowed us to verify a variety
of criteria that ensure robustness of approximate programs, including relative control
flow safety, assertion safety, accuracy, and termination. We are also first to propose rel-
ative termination as an important robustness criterion. Our feasibility study shows that
the techniques we developed can be effectively used to automatically prove program
approximations. We are currently working on automating predicate generation, using
more expressive inference engines such as interpolants [16] and indexed predicate ab-
straction [13] to infer remaining specifications.

References

1. Barnett, M., Chang, B.Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: A modular
reusable verifier for object-oriented programs. In: FMCO (2006)

2. Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB standard: Version 2.0. In: SMT (2010)
3. Benton, N.: Simple relational correctness proofs for static analyses and program transforma-

tions. In: POPL (2004)
4. Boston, B., Sampson, A., Grossman, D., Ceze, L.: Probability type inference for flexible

approximate programming. In: OOPSLA (2015)
5. Carbin, M., Kim, D., Misailovic, S., Rinard, M.C.: Proving acceptability properties of re-

laxed nondeterministic approximate programs. In: PLDI (2012)

6. Carbin, M., Misailovic, S., Rinard, M.C.: Verifying quantitative reliability for programs that
execute on unreliable hardware. In: OOPSLA (2013)

7. The Coq proof assistant. http://coq.inria.fr
8. Elenbogen, D., Katz, S., Strichman, O.: Proving mutual termination. Formal Methods in

System Design 47(2), 204–229 (2015)
9. Flanagan, C., Leino, K.R.M.: Houdini, an annotation assistant for ESC/Java. In: FME (2001)

10. Graf, S., Saı̈di, H.: Construction of abstract state graphs with PVS. In: CAV (1997)
11. Hawblitzel, C., Kawaguchi, M., Lahiri, S.K., Rebelo, H.: Towards modularly comparing

programs using automated theorem provers. In: CADE (2013)
12. Kugler, L.: Is ”good enough” computing good enough? Commun. ACM 58(5), 12–14 (2015)
13. Lahiri, S.K., Bryant, R.E.: Predicate abstraction with indexed predicates. ACM Trans. Com-

put. Log. 9(1) (2007)
14. Lahiri, S.K., Hawblitzel, C., Kawaguchi, M., Rebêlo, H.: SymDiff: A language-agnostic

semantic diff tool for imperative programs. In: CAV (2012)
15. Lahiri, S.K., McMillan, K.L., Sharma, R., Hawblitzel, C.: Differential assertion checking.

In: ESEC/FSE (2013)
16. McMillan, K.L.: An interpolating theorem prover. In: TACAS (2004)
17. McMillan, K.L.: Lazy annotation revisited. In: CAV (2014)
18. Misailovic, S., Carbin, M., Achour, S., Qi, Z., Rinard, M.C.: Chisel: Reliability- and

accuracy-aware optimization of approximate computational kernels. SIGPLAN Not. 49(10),
309–328 (2014)

19. Misailovic, S., Sidiroglou, S., Hoffmann, H., Rinard, M.: Quality of service profiling. In:
ICSE (2010)

20. Necula, G.C.: Translation validation for an optimizing compiler. In: PLDI (2000)
21. Nelson, J., Sampson, A., Ceze, L.: Dense approximate storage in phase-change memory. In:

Ideas and Perspectives session at ASPLOS (2001)
22. Park, J., Ni, K., Zhang, X., Esmaeilzadeh, H., Naik, M.: Expectation-oriented framework for

automating approximate programming. In: WACAS (2014)
23. Pnueli, A., Siegel, M., Singerman, E.: Translation validation. In: (TACAS) (1998)
24. Rinard, M.: Acceptability-oriented computing. In: OOPSLA (2003)
25. Ringenburg, M.F., Sampson, A., Ackerman, I., Ceze, L., Grossman, D.: Dynamic analysis of

approximate program quality. Tech. Rep. UW-CSE-14-03-01, University of Washington
26. Ringenburg, M.F., Sampson, A., Ceze, L., Grossman, D.: Profiling and autotuning for

energy-aware approximate programming. In: WACAS (2014)
27. Roy, P., Ray, R., Wang, C., Wong, W.F.: ASAC: Automatic sensitivity analysis for approxi-

mate computing. In: LCTES (2014)
28. Sampson, A.: Hardware and Software for Approximate Computing. Ph.D. thesis, University

of Washington (2015)
29. Sampson, A., Baixo, A., Ransford, B., Moreau, T., Yip, J., Ceze, L., Oskin, M.: ACCEPT:

A programmer-guided compiler framework for practical approximate computing. Tech. Rep.
UW-CSE-15-01-01, University of Washington

30. Sampson, A., Bornholt, J., Ceze, L.: Hardware-software co-design: Not just a cliché. In:
SNAPL (2015)

31. Sampson, A., Dietl, W., Fortuna, E., Gnanapragasam, D., Ceze, L., Grossman, D.: EnerJ:
Approximate data types for safe and general low-power computation. In: PLDI (2011)

32. Sharma, V.C., Haran, A., Rakamarić, Z., Gopalakrishnan, G.: Towards formal approaches to
system resilience. In: PRDC (2013)

33. Thomas, A., Pattabiraman, K.: LLFI: An intermediate code level fault injector for soft com-
puting applications. In: SELSE (2013)

34. Vanegue, J., Lahiri, S.K.: Towards practical reactive security audit using extended static
checkers. In: S&P (2013)

A Benchmarks

var array:[int]int, n:int;

procedure SelectionSort() {
var c:int, position:int, temp:int;
c := 0; position := 0; temp := 0;

while (c < (n - 1)) {
call position := Find(c);
if (position != c) {
temp := array[position];

array[position] := array[c];

havoc temp;

array[c] := temp;

}

c := c + 1;

}

}

procedure Find(c:int) returns (position:int) {
var d:int;
position := c;

d := c + 1;

while (d < n) {
if (array[position] > array[d]) {
position := d;

}

d := d + 1;

}

}

Fig. 4. Selection sort.

procedure CubeRoot(x:int)
returns(r:int) {

r := 1;

while (r*r*r <= x) r := r+1;
}

procedure CubeRootApprox(x:int)
returns(r:int) {

r := 1;

while (r*r*r <= x) r := r+2;
}

Fig. 5. Simple cube root calculation.

function RelaxedEq(x:int, y:int, e: int) returns (bool) {
x <= y + e && y <= x + e

}

function RelaxedEqAll(x: [int]int, y: [int]int, e: int)
returns(bool) {

(forall j: int:: (j>=0 && j<= 63) ==> RelaxedEq(x[j], y[j], e))
}

function RelaxedAfter(x: [int]int, y: [int]int, e:int, i: int)
returns (bool) {

(forall j: int:: (j>i && j<= 63) ==> RelaxedEq(x[j], y[j], e))
}

function ShortInt(x:int) returns (bool) {
x <= 32767 && x >= -32768

}

const QuantTable:[int]int;
var Temp:[int]int;

procedure quantization(data: [int]int)
modifies Temp;
requires (forall j: int :: ShortInt(data[j]));
{

var i : int; var value : int;
var data_old: [int]int;

data old := data; havoc data; assume RelaxedEqAll(data, data old, 16);

i := 63;

while(i >= 0) {
value := data[i] * QuantTable[i];

value := sdiv((value + 16384), 32768);

Temp[i] := value;

i := i - 1;

}

}

Fig. 6. JPEG quantization.

