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ABSTRACT

On acoustic modeling, recurrent neural networks (RNNs)
using Long Short-Term Memory (LSTM) units have recently
been shown to outperform deep neural networks (DNNs)
models. This paper focuses on resolving two challenges
faced by LSTM models: high model complexity and poor
decoding efficiency. Motivated by our analysis of the gates
activation and function, we present two LSTM simplifica-
tions: deriving input gates from forget gates, and removing
recurrent inputs from output gates. To accelerate decoding
of LSTMs, we propose to apply frame skipping during train-
ing, and frame skipping and posterior copying (FSPC) during
decoding. In the experiments, model simplifications reduce
the size of LSTM models by 26%, resulting in a simpler
model structure. Meanwhile, the application of FSPC speeds
up model computation by 2 times during LSTM decoding.
All these improvements are achieved at the cost of 1% WER
degradation.

Index Terms— Long Short-Term Memory, recurrent neu-
ral network, model simplification, decoding efficiency

1. INTRODUCTION

The application of deep neural networks (DNNs) has achieved
tremendous success for large vocabulary continuous speech
recognition (LVCSR) [1, 2, 3]. As an alternative to DNNs,
recurrent neural networks (RNNs) have also been studied ex-
tensively for the task of acoustic modeling [4]. RNNs are
characterized by recurrent connections on the hidden layers
which allow temporal information to be propagated through
many time steps. More recently, deep RNNs using Long
Short-Term Memory (LSTM) units (which we will consis-
tently refer to as LSTMs) have been shown to outperform
both DNNs and the conventional RNNs [5, 6, 7, 8]. As a
type of RNNs, LSTMs are effective in modeling long-term
temporal dependency without suffering from the optimization
hurdles that plague RNNs [9]. Although performing promis-
ingly, LSTMs have the drawback of a highly complex model
structure. In addition to the memory cells which store the
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temporal states, LSTMs also contain multiplicative gates to
control the information flow into and out of the memory cells.
The model complexity increases the cost of both training and
decoding of LSTM models. Another challenge for LSTMs
(and also for the conventional RNNs) involves the difficulty in
accelerating decoding. Decoding efficiency is a critical con-
sideration when acoustic models are deployed in real-world
applications. For DNNs, previous studies [10] have success-
fully applied frame skipping and posterior copying (FSPC) to
speed up decoding. However, this FSPC approach is not ap-
plicable to LSTMs, since frame skipping breaks the original
temporal dependency between neighbouring frames.

This paper focuses on tackling these two challenges. We
present two simplifications to the LSTM structure. First, by
visualizing statistics of the gates activation, the input and
forget gates are observed to display a negative correlation.
This motivates us to derive the activation of the input gates
from the activation of the forget gates. As a result, the com-
putation and model parameters attached to the input gates
can be eliminated. Second, we exclude the recurrent inputs
from the computation of the output gates. In the experi-
ments, these two simplifications, when applied separately,
reduce the model size by 16% and 10% respectively, with no
word error rate (WER) loss incurred. They can be combined
readily for further model size reduction. Furthermore, to
accelerate decoding of LSTMs, we propose to apply frame
skipping during training, and frame skipping and posterior
copying (FSPC) during decoding. With this strategy, WER
degradation caused by FSPC becomes negligible when every
1 out of 2 frame is skipped. Our final LSTM model, which
integrates the proposed techniques, contains 26% less param-
eters than the baseline LSTM. Meanwhile, applying FSPC
speeds up model computation by 2 times during decoding.
All these improvements are achieved at the cost of 1% WER
degradation.

2. VANILLA LSTMS

Fig. 1 depicts the vanilla LSTM that has been most commonly
used in literature. The central component in the architecture
is the memory cell. Three types of multiplicative gates (input,
output, forget) are added to control the flow of information.



Fig. 1. A memory block of the vanilla LSTM.

Furthermore, the LSTM is enriched with peephole connec-
tions [11] that link the memory cells to the gates to learn pre-
cise timing of the outputs. The LSTM outputs are recurrently
fed as the inputs. At the time step t, the vector formulas of
the computation can be described as:

it = σ(Wixxt + Wihht−1 + pict−1 + bi) (1a)
ft = σ(Wfxxt + Wfhht−1 + pfct−1 + bf ) (1b)

ct = ft � ct−1 + it � φ(Wcxxt + Wchht−1 + bc) (1c)
ot = σ(Woxxt + Wohht−1 + poct + bo) (1d)

ht = ot � φ(ct) (1e)

where xt is the input vector. The vectors it, ot, ft are the acti-
vation of the input, output, and forget gates respectively. The
W.x terms are the weight matrices for the inputs xt, the W.h

are the weight matrices for the recurrent inputs ht−1, and the
b. terms are the bias vectors. The pi, po, pf are parameter
vectors associated with peephole connections. The functions
σ and φ are the logistic sigmoid and hyperbolic tangent non-
linearity respectively. The operation � represents element-
wise multiplication of vectors.

A criticism of LSTMs lies in their highly complicated
model structure. The large number of components have com-
plex interactions where redundancy may exist. Therefore, the
vanilla LSTM may not be the optimal architecture for par-
ticular tasks, e.g., acoustic modeling. Attempts [12, 13, 14]
have been made to simplify the LSTMs, e.g., the Gated Re-
current Unites (GRU) [12]. However, these proposals are pri-
marily based on extensive architecture search, and justifying
the identified architecture remains difficult.

3. SIMPLIFIED LSTMS

In this section, we present two simplifications to the vanilla
LSTMs, specifically on the task of large-scale acoustic mod-
eling. These simplifications are based on our analyzing the
activation of the gates and identifying potential redundancy
in the vanilla LSTM structure.

3.1. Deriving Input Gates from Forget Gates

The first simplification is motivated by visualization of the
gates activation. On our experiment setup (Section 5), we

Fig. 2. Left: Saturation plot for 1024 input gates. Right:
Saturation plot for 1024 forget gates. Each gate is represented
by a red circle.

train a vanilla LSTM model as reviewed in Section 2. The
trained model is then applied to some development data for
a forward pass. We dump the activation of the gates in the
highest LSTM layer, and visualize their statistics by follow-
ing the method in [15]. Specifically, a gate is defined to be
right or left-saturated if its activation is greater than 0.9 or
smaller than 0.1 respectively. For each gate, we compute two
statistics: the fraction of the data points on which this gate
is right-saturated and the faction on which it is left-saturated.
These two statistics serve as the coordinates to position the
gate on a 2-dimensional plane. In Fig. 2, the 1024 input gates
are depicted on the left and the 1024 forget gates on the right.

These visualizations reveal the distributions of the gates
activation in the saturation regime. We can see that the ac-
tivations of the input and forget gates are not entirely inde-
pendent. Instead, they roughly show a negative correlation.
The input gate activations distribute along the vertical axis,
and the forget gate activations along the horizontal axis. This
negative correlation also complies with the design purpose of
the gates in the vanilla LSTMs: the input gates control how
much of new information is absorbed from the inputs to up-
date the memory cell states, whereas the forget gates control
how much of the old information is kept in the memory cell.

Such an observation motivates us to couple the input and
forget gates, rather than compute them independently. Mean-
while, the forget gates have been previously proved to be in-
dispensable for the LSTMs to function [16]. We thus propose
to derive the input gates it from the forget gates ft. The com-
putation of the input gates is simplified from Eq. (1a) to:

it = 1− ft (2)

This simplification eliminates the model parameters (and the
computation) of the input gates in the vanilla LSTMs. The
direct mapping from the forget to the input gates, however, is
likely to be too arbitrary. To allow for more flexibility, we add
a weight vector wif to 1 − ft, which gives us another variant
of the simplification:

it = wif � (1− ft) (3)

where � is element-wise multiplication. The weight vector
wif is learned together with other model parameters during



Fig. 3. The structure of the simplified LSTM (sLSTM).

training. The increase of model parameters coming from the
introduction of wif is negligible. For simplicity of formula-
tion, we refer to these two variants as iFromf and iFromf w
respectively.

3.2. Removing the Recurrent Inputs from Output Gates

The second simplification involves the computation of the
output gates. In the vanilla LSTMs, the output gates, as with
the input and forget gates, rely on both the original inputs xt
and the recurrent inputs ht−1. However, we argue that it is re-
dundant to include ht−1 in the output-gate computation. This
is because the output gates are placed at the end of the LSTM
computation, simply acting to regulate the memory cell states
into the final LSTM outputs. Since the history information
has been sufficiently modeled by the memory cells, includ-
ing ht−1 in the output gates brings no additional benefits. As
a result, we remove ht−1 from the output gates, and thereby
simplify the computation to Eq. (4). We refer this variant as
NoOH.

ot = σ(Woxxt + poct + bo) (4)

The two aforementioned simplifications can be integrated into
the final simplified LSTM (sLSTM) model whose structure is
depicted in Fig. 3.

4. FAST DECODING OF LSTMS

Decoding efficiency is a critical challenge for real-world de-
ployment of LSTMs. For DNNs, an effective strategy to ac-
celerate decoding is the frame skipping and posterior copy-
ing (FSPC) technique [10]. In [17], this frame sub-sampling
idea is employed for fast training of connectionist temporal
classification (CTC) models with CD phones. Fig. 4 shows
how FSPC is ported to LSTMs. During decoding, we are not
performing LSTM computation on every frame. Instead, we
compute the model on selected frames (one frame out of ev-
ery two in Fig. 4) and skip the remaining frames. The senone
posteriors of a skipped frame are copied from the posteriors
of the nearest non-skipped frame before it. Note that skipping
a frame means skipping the computation of the entire model,
not just the computation of the softmax classification layer.

However, direct application of FSPC to LSTM decod-
ing results in severe degradation. Empirical evidence can

Fig. 4. Application of FSPC to decoding of LSTMs. The blue
bar represents the senone posteriors at each frame.

be found in Section 5.2. This is because frame skipping
breaks the original temporal dependency between neigh-
bouring frames (xt−1 and xt, xt and xt+1), and artificially
establishes dependency between xt−1 and xt+1. This depen-
dency pattern is mismatched with the dependency modeled
by the LSTM during training. To mitigate this mismatch,
we propose to train the LSTMs also with frame skipping.
On the training data, frame skipping is carried out to split
each training utterance into multiple shorter utterances. The
senone labels of the frames are selected accordingly. The
configuration (the number of frames to be skipped) of frame
skipping on the training data has to be consistent with that
on the decoding data. For instance, with 1 frame skipped,
the odd and even frames of every training utterance are se-
lected into two separate utterances. This doubles the number
of training utterances, but keeps the amount of training data
unchanged.

5. EXPERIMENTS

The proposed model simplifications and decoding accelera-
tion are evaluated using a Microsoft internal Windows Phone
short message dictation task. The training data consist of 375
hours of US-English speech, and the test set contains 125k
words. The input features to LSTMs are 29-dimension log-
filter-bank features with their first and second-order deriva-
tives. The system has 6k senones which have been determined
by the GMM/HMM system. Training of LSTMs is carried out
with the CNTK toolkit [18]. Our baseline LSTM model con-
tains 4 LSTM layers which are followed by a fully-connected
layer for classification. With a projection layer inserted [6],
every LSTM layer has 1024 memory cells and 512 output
units (the dimension of the projection layer). The baseline
LSTM model amounts to 20 million parameters and achieves
the WER of 15.35% on the test set. A standard 5-layer DNN
with 2048 nodes in each hidden layer has 17.13% WER.

5.1. Experiments on Model Simplifications

The comparisons of the various LSTM variants are shown
in Table 1. It is worth noting that the first simplification



(Section 3.1) is applied only to the higher 3 LSTM hidden
layers. In the lowest LSTM layer, the input gates are al-
ways independent of the forget gates. This allows the tem-
poral dependency from the raw acoustic features to be mod-
eled more reliably. The NoOH simplification is applied to
all the LSTM layers. We observe that the two types of sim-
plifications, when used separately, cause no WER degrada-
tion. Meanwhile, they bring 16% and 10% model size re-
duction respectively, compared to the baseline model with the
vanilla LSTM. The two variants of the first simplification per-
form comparably in terms of WERs. However, the training
of iFromf w is found to converge faster than the training of
iFromf, partly because the weight vector wif in Eq. (3) en-
ables the gates coupling to be learned more easily. The sim-
plified model sLSTM, which combines iFromf w and NoOH,
gets a 26% model size reduction and negligible WER loss
(from 15.32% to 15.42%).

For more complete evaluations, we also show the results
of three comparison models. Instead of coupling the input and
forget gates, NoI removes the input gates entirely. That is, the
activation of the input gates is constantly set to 1. The WER
in this case rises to 16.03%. In contrast, our iFromf model
is more effective due to the compensation of the input gates
from the forget gates. Another comparison model consists
of 3 (instead of 4) vanilla LSTM layers and reduces the size
of the baseline model by 23%. However, this model gives a
worse WER (16.04%) than the sLSTM. This indicates that the
simplifications proposed in this work simplify LSTMs from
a structural perspective, instead of purely reducing model pa-
rameters to prevent overfitting in the training stage. We finally
compared the sLSTM model with the GRU [12]. The GRU
network contains 4 GRU layers each of which has 700 cells.
Table 1 shows that applying GPUs gets the comparable model
size reduction to the sLSTM. However, the WER deteriorates
to 17.57%, a 14% degradation from the baseline.

Table 1. Comparisons of the various LSTM variants. MSR
refers to the percentage of model size reduction compared to
the baseline LSTM model.

LSTM Variants WER% MSR
Baseline (4 vanilla LSTM layers) 15.35 0%

sLSTM(iFromf) 15.32 16%
sLSTM(iFromf w) 15.29 16%

sLSTM(NoOH) 15.29 10%
sLSTM(iFromf w + NoOH) 15.42 26%

sLSTM(NoI) 16.03 16%
3 vanilla LSTM layers 16.04 23%

GRU 17.57 27%

5.2. Experiments on Fast Decoding with FSPC

In this subsection, we employ the vanilla LSTMs without
any simplifications to examine the effectiveness of FSPC in

speeding up decoding. The results are presented in Table
2. Applying FSPC directly to the original LSTM model
degrades the WER dramatically (up to 60% with 1 frames
skipped), which is consistent with our postulation in Section
3. In contrast, when the LSTM model is trained with frame
skipping, FSPC starts to perform reasonably well. In par-
ticular, with 1 frame skipped, FSPC can accelerate the stage
of model computation by 2 times during decoding, while
degrading the WER by 1% (15.54% vs 15.35%).

Table 2. %WER of the baseline LSTM model when FSPC is
applied for decoding acceleration.

Configuration Skip 1 Frame Skip 2 Frame
FSPC in Decoding 59.79 92.71
Frame Skipping in Train-
ing & FSPC in Decoding

15.54 16.03

5.3. Combining Simplified LSTMs and FSPC

We finally integrate model simplifications and FSPC into
a unified setup. The sLSTM(iFromf w + NoOH) model is
trained with frame skipping, and decoded using the FSPC
technique. This final model, as stated in Section 5.1, contains
26% less parameters than the baseline LSTM. This roughly
saves 26% runtime computational cost. Meanwhile, when 1
frame is skipped, FSPC further speeds up model computation
by 2 times during decoding. Table 3 shows that all these
benefits are achieved at the cost of 1% WER degradation.

Table 3. Comparisons between the baseline LSTM and our
final sLSTM model. The sLSTM is trained with frame skipping
and decoded with FSPC.

LSTM Variants FSPC Setting WER%
Baseline LSTM Skip 0 Frame 15.35

sLSTM(iFromf w + NoOH) Skip 1 Frame 15.52

6. CONCLUSIONS AND FUTURE WORK

This paper proposes two simplifications to the highly complex
LSTM acoustic models. These simplifications reduce the size
of LSTM models significantly, while at the same time causing
no performance degradation. Also, to accelerate decoding,
we present a simple yet effective strategy: train the LSTM
models with frame skipping, and decode them with FSPC.
By adopting these techniques, our final acoustic model en-
joys a simpler structure and faster decoding speed. Currently,
we have successfully applied singular value decomposition
(SVD) of weight matrices, as proposed in [19], to LSTMs.
It is straightforward to combine SVD together with the pro-
posed simplification for further model size reduction. Also,
we are interested to apply the simplified LSTMs as acoustic
models in end-to-end ASR pipelines [20].
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[17] Haşim Sak, Andrew Senior, Kanishka Rao, and
Françoise Beaufays, “Fast and accurate recurrent neural
network acoustic models for speech recognition,” in Six-
teenth Annual Conference of the International Speech
Communication Association (INTERSPEECH). ISCA,
2015.

[18] Dong Yu, Adam Eversole, Mike Seltzer, Kaisheng Yao,
Zhiheng Huang, et al., “An introduction to computa-
tional networks and the computational network toolkit,”
Tech. Rep., Tech. Rep. MSR, Microsoft Research, 2014,
https://cntk.codeplex.com/, 2014.

[19] Jian Xue, Jinyu Li, and Yifan Gong, “Restructuring
of deep neural network acoustic models with singular
value decomposition.,” in Fourteenth Annual Confer-
ence of the International Speech Communication Asso-
ciation (INTERSPEECH). ISCA, 2013.

[20] Yajie Miao, Mohammad Gowayyed, and Florian Metze,
“EESEN: End-to-end speech recognition using deep
RNN models and WFST-based decoding,” in Automatic
Speech Recognition and Understanding (ASRU), 2015
IEEE Workshop on. IEEE, 2015.


