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Influence Maximization in Social Networks

• Influence maximization: selecting important nodes in a network 

to maximize the influence coverage [Kempe et al.’03]

• Applications of Influence Maximization 

– Viral marketing

– Outbreak detection

– Rumor monitoring and control

• In this work, we consider the robustness in Influence 

Maximization.
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Motivating Example

• A company is to carry out the promotion campaign for their 

product, by sending free samples to initial users.
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• Nodes are users, and edges are their relation.
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Independent Cascade (IC) Model
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Influence spread 𝜎𝜽(𝑆): expected number of activated nodes 
given seed set 𝑆 and edge parameters 𝜃
Influence Maximization Problem [Kempe et al.’03]: Given 𝐺 =
(𝑉, 𝐸, 𝜽), find 𝑘 nodes 𝑆 ⊆ 𝑉 as seeds to maximize 𝜎𝜽(𝑆).
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Independent Cascade (IC) Model
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Greedy Algorithm: achieves 1 − Τ1 e − 𝜖 approximation ratio
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Robustness in Influence Maximization
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But where are these 
influence parameters from?

[0.61,0.79]

[0.58,0.62]

[0.45,0.55]

[0.07, 0.13]

[0.19, 0.21]

[0.05,0.35]

[0.65,0.75][0.39, 0.41]

[0.27, 0.33]

Learned from actual cascade data; 
Ground-truth never known;
using confidence intervals is more realistic

Will influence maximization 
still work with these 
intervals?

Robust Influence 
Maximization
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• Probability of information diffusion is usually learned from data.

• Uncertainty caused by insufficient samples, noise, etc.

• What if the estimation error occurs?
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0.7 [0.65, 0.75]

(exact probability) (with estimation error)

The true probability is somewhere in [0.65, 0.75] 
and is unknown.
No distribution assumption made for ground truth 
within the interval

Model and Problem
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[0.61,0.79]

[0.58,0.62]

[0.45,0.55]

[0.07, 0.13]

[0.19, 0.21]

[0.05,0.35]

[0.65,0.75][0.39, 0.41]

[0.27, 0.33]

𝚯 ≔×𝑒∈𝐸 [𝑙𝑒 , 𝑟𝑒]Parameter space:

𝑔(𝚯, 𝑆) ≔ min
𝜽∈𝚯

𝜎𝜽(𝑆)

𝜎𝜽(𝑆𝜽
∗)

Robust ratio:

Model and Problem
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Given solution

Optimal solution

The worst-case

𝜎𝜽 𝑆𝜽
∗ = max

𝑆 =𝑘
𝜎𝜽 𝑆

Assume that the probability on edges 
is given with their uncertainty.
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(≈ 63%)

Robust Influence Maximization (RIM)

• Given 𝐺 = (𝑉, 𝐸, 𝚯), find 𝑘 nodes 𝑆 ⊆ 𝑉 as seeds to maximize the 
robust ratio 𝑔(𝚯, 𝑆)

• Follow the robust optimization approach in operation research

• Theorem 1. RIM is NP-hard, and it is NP-hard to achieve RIM with 
robust ratio 1 − Τ1 e + 𝜖 for any 𝜖 > 0. 

15

𝑆𝚯
∗ ≔ arg max

𝑆⊆𝑉, 𝑆 =𝑘
𝑔(𝚯, 𝑆) = arg max

𝑆⊆𝑉, 𝑆 =𝑘
min
𝜽∈𝚯

𝜎𝜽(𝑆)

𝜎𝜽(𝑆𝜽
∗)

Maximize the worst-case value
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𝜽− = 𝑙𝑒 𝑒∈𝐸 , 𝜽
+ = 𝑟𝑒 𝑒∈𝐸

LUGreedy for RIM with Solution-Dependent Bound
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Upper Greedy 𝑆
𝜽+
𝑔

Lower Greedy 𝑆𝜽−
𝑔

0.79

0.62

0.55

0.13

0.21

0.35

0.750.41

0.33
0.61

0.58

0.45

0.07

0.19

0.05

0.650.39

0.33

Select the maximum based 
on the lower probability

𝜎𝜽− 𝑆𝚯
𝐿𝑈 = max

𝑆∈ 𝑆𝜽−
𝑔
,𝑆
𝜽+
𝑔

𝜎𝜽− 𝑆

Demonstration of LUGreedy
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• Define gap ratio:

• Theorem 2. LUGreedy outputs a seed set 𝑆𝚯
𝐿𝑈 such that:
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𝛼 𝚯 ≔
𝜎𝜽− 𝑆𝚯

𝐿𝑈

𝜎𝜽+ 𝑆
𝜽+
𝑔 =

max 𝜎𝜽− 𝑆𝜽−
𝑔

, 𝜎𝜽− 𝑆
𝜽+
𝑔

𝜎𝜽+ 𝑆
𝜽+
𝑔 .

𝑔 𝚯, 𝑆𝚯
𝐿𝑈 ≥ 𝛼 𝚯 ⋅ 1 −

1

e
.

LUGreedy solution

Example: When 𝛼(𝚯) is large (e.g.,  ≥ 0.7), then the result is reasonably good!

Solution-Dependent Bound
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Worst-case Bound on Robust Ratio

• Unfortunately, a good input 𝚯 =×𝑒∈𝐸 [𝑙𝑒 , 𝑟𝑒] is required (when the graph is 
bad)
– Argument related to sharp threshold for the emergence of giant components in 

Erdös-Rényi Graphs

• How to improve this?
– Sampling to improve 𝚯
– Study on the impact of graph structures?
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Theorem 3. For RIM, denote 𝛿 = max
𝑒∈𝐸

|𝑟𝑒 − 𝑙𝑒| as the maximum interval width.

• No constraint on 𝛿. There exists a graph, such that  max
𝑆⊆𝑉, 𝑆 =𝑘

𝑔(𝚯, 𝑆) = 𝑂
𝑘

𝑛
;  

• Restrict 𝛿 = 𝑂
1

𝑛
. There exists a graph, such that  max

𝑆⊆𝑉, 𝑆 =𝑘
𝑔(𝚯, 𝑆) = 𝑂

log n

𝑛
;  

• Restrict 𝛿 = 𝑂
1

𝑛
and allow random seeds ǁ𝑆. There exists a graph, such that  

max
Ω

min
𝜽∈𝚯

𝔼 ሚ𝑆~Ω
𝜎𝜽( ሚ𝑆)

𝜎𝜽(𝑆𝜽
∗)

= 𝑂
log n

𝑛
.
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• Intuition: sampling edges to shrink the confidence intervals in 𝚯

– Law of large numbers

Empirical mean Ƹ𝑝𝑡 =
1

𝑡
σ𝑖=1
𝑡 𝑋𝑖,  true mean lim

𝑡→∞
Ƹ𝑝𝑡 = 𝑝.

– “Tail probability diminishes fast”

• Sampling method

– Uniform sampling: every edge has the same number of samples

– Non-uniform / adaptive sampling
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Sampling for Improving RIM
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• Based on the additive and multiplicative relationship between 

influence spread error bound and sampling complexity:
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Theorem 6. For any ϵ, 𝛾 > 0, denote empirical vector 𝜽 = 𝑝𝑒 𝑒∈𝐸 ,
𝑉 = 𝑛, and 𝐸 = 𝑚. Then,

(1) Set 𝑡 =
2𝑚2𝑛2ln(2𝑚/𝛾)

𝑘2𝜖2
, and 𝛿𝑒 =

𝑘𝜖

𝑛𝑚
; 

(2) Or, assume that the lower bound 𝑝′: 0 < 𝑝′ < min
e

𝑝e. Set 𝑡 =

3 ln(2𝑚/𝛾)

𝑝′

2𝑛

ln( Τ1 1−𝜖)
+ 1 , and 𝛿𝑒 =

1

𝑛
Ƹ𝑝𝑒ln(1/𝛾).

We have 
𝑔 𝚯𝑜𝑢𝑡, 𝑆𝑜𝑢𝑡 ≥ (1 − 1/e)(1 − ϵ)

and
Pr 𝜃 ∈ 𝚯𝑜𝑢𝑡 ≥ 1 − 𝛾.

𝚯𝑜𝑢𝑡 =×𝑒∈𝐸 [𝑙𝑒 , 𝑟𝑒]

𝑙𝑒 = max {0, Ƹ𝑝𝑒 − 𝛿𝑒}

𝑟𝑒 = min {1, Ƹ𝑝𝑒 + 𝛿𝑒}

Theoretical Result on Uniform Sampling (US)
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• Idea: important edges should be sampled more; edges appear in 

cascades may be more important
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not sampled1 1

1

1

0

0

0

0

seed

Given threshold 𝜖 > 0.
repeat:

• Call LUGreedy to get seeds 𝑆𝑖
𝑔

.

• Starting from seeds 𝑆𝑖
𝑔

, do information cascade and 

sample touched edges.
• 𝚯𝑖+1 ← Update(𝚯𝑖); 𝑖 ← 𝑖 + 1;
until (𝛼 𝚯𝑖 > 1 − 𝜖)

return 𝚯𝑜𝑢𝑡 ← 𝚯𝑖+1, 𝑆𝑜𝑢𝑡 ← 𝑆𝑖
𝑔

In practice, we samples 𝜏 times of information cascade, 
then change the seed set.

Adaptive Sampling: Information Cascade Sampling (ICS)
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• The information cascade naturally samples edges along its trace. 

Adaptive Sampling: Influence Cascade Sampling (ICS)
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not sampled1 1

1

1

0

0

0

0

seed

Use LUGreedy to select seeds, and sample the trace of the information cascade. 

Sampled edges

Adaptive Sampling: Influence Cascade Sampling (ICS)
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seed

Next time, we may sample different seeds and information cascade. 

1

0

1

1

0

0

0

0

0

Adaptive Sampling: Influence Cascade Sampling (ICS)
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seed

From time to time, we can refine parameter space 𝚯𝑜𝑢𝑡.

1

0

1

1

0

0

0

0

0

Given any ϵ, 𝛾 > 0, when the algorithm stops, it outputs 𝑆𝑜𝑢𝑡 with robust ratio

𝑔 𝚯𝑜𝑢𝑡, 𝑆𝑜𝑢𝑡 ≥ 1 −
1

e
1 − ϵ ,

with probability Pr 𝜃 ∈ 𝚯𝑜𝑢𝑡 ≥ 1 − 𝛾.

Update(𝚯): ×𝑒∈𝐸 [𝑙𝑒 , 𝑟𝑒]

𝑙𝑒 = max 0, ෝ𝑝𝑒 +
𝑐𝑒
2

2
− 𝑐𝑒

𝑐𝑒
2

4
+ Ƹ𝑝𝑒

𝑟𝑒 = min 1, ෝ𝑝𝑒 +
𝑐𝑒
2

2
+ 𝑐𝑒

𝑐𝑒
2

4
+ Ƹ𝑝𝑒

𝑐𝑒 =
3

𝑡𝑒
ln(2𝑚/𝛾)

Ƹ𝑝𝑒: empirical mean

𝑡𝑒: estimated number

Adaptive Sampling: Influence Cascade Sampling (ICS)
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Empirical Evaluation

• Datasets
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Name Description # of nodes # of edges Edge probability

NetHEPT Academic 

collaboration 

network

15233 62774 Weighted cascade 

(synthetic)

Flixster (topic 8) Movie rating 

induced 

network

14473 64934 Learned from trace

Flixster (Mixed, 

topics 1 & 4)

Movie rating 

induced 

network

7118 23252 Learned from trace, 

then evenly mixed 

between topics 1 & 4



𝛼: gap ratio (lower bound)

ത𝛼: upper bound (estimated)
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𝑘 = 50

Trend for Gap Ratio vs. Interval Width

KDD'2016, Aug. 15, 2016



29

Flixster (Mixed)Flixster (Topic 8)NetHEPT

Sampling Algorithm:
US: Uniform sampling      ICS: Information cascade sampling OES: Outgoing edge only sampling

Comparison of Different Sampling Algorithms
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Related Works

• [Saito et al.’08] [Tang et al.’09] [Rodriguez et al.’11] etc., on methods to 
learn the probability on edges.

• [Chen et al. ‘09, ‘10] [Borgs et al. 14] [Tang et al. ‘14 ‘14] etc., on 
scalable influence maximization

• [He & Kempe’15] attempt to address the uncertainty by using a 
different model.

• [Krause et al.’08]: the hardness of general robust submodular 
optimization on a finite set of submodular functions; and bi-criteria 
solution

• [He & Kempe’16] (next talk): same objective function, but
– Using the bi-criteria approach of [Krause et al’08]

– For finite number of possible choices of diffusion models
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• We propose

– the RIM problem to handle data uncertainty

– the LUGreedy algorithm with a provable bound 

– the information cascade based sampling method to reduce the uncertainty 
and increase the robustness.

• Future work

– The upper bound of the best robust ratio given a graph?

– How to provide confidence intervals for a learning algorithm (e.g. MLE)?

– The big data challenge for social influence analysis 
• Data is not big enough!

• How to do better sampling, better model learning, and better optimization under the 
data constraint?
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Conclusion and Future Work
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Thank You!
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