Urban Water Quality Prediction based on Multi-task Multi-view Learning
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Abstract

Urban water quality is of great importance to our
daily lives. Prediction of urban water quality help
control water pollution and protect human health.
In this work, we forecast the water quality of a
station over the next few hours, using a multi-
task multi-view learning method to fuse multiple
datasets from different domains. In particular, our
learning model comprises two alignments. The
first alignment is the spaio-temporal view align-
ment, which combines local spatial and temporal
information of each station. The second alignment
is the prediction alignment among stations, which
captures their spatial correlations and performs co-
predictions by incorporating these correlations. Ex-
tensive experiments on real-world datasets demon-
strate the effectiveness of our approach.

1 Introduction

Urban water is a vital resource that affects various aspects
of human, health and urban lives. Urban water quality,
which serves as “a powerful environmental determinant” and
“a foundation for the prevention and control of waterborne
diseases” [Organization, 2004], refers to the physical,
chemical and biological characteristics of a water body, and
several chemical indexes (such as residual chlorine, turbidity
and pH) can be used as effective measurements for the water
quality in current urban water distribution systems [Rossman
et al., 1994]. With the increasing demand for water quality
information, several water quality monitoring stations have
been deployed throughout the city’s water distribution system
to provide the real-time water quality reports in a city.
Besides water quality monitoring, predicting the urban water
quality plays an essential role in many urban aquatic projects,
such as informing waterworks’ decision making (e.g., pre-
adjustment of chlorine from the waterworks), affecting
governments’ policy making (e.g., issuing pollution alerts or
performing a pollution control), and providing maintenance
suggestions (e.g., suggestions for replacements of certain
pipelines).
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However, predicting urban water quality is very challeng-
ing due to the following reasons. First, the water quality of
a station is affected by multiple complex factors, including
spatial factors (e.g., pipe attributes) and temporal factors
(e.g., flow and pressure). Capturing these complex factors
as well as the spatio-temporal heterogeneity simultaneously
is a tough challenge. Existing hydraulic models-based
approaches try to model water quality from physical and
chemical perspective, but such hydraulic models can hardly
capture all of those complex factors.  Moreover, the
parameters in models are hard to get, which makes it difficult
to extend to other water distribution systems. Second, as
all the stations are connected through the pipeline system,
the water quality among different stations are mutually
correlated by several complex factors, such as attributes in
pipe networks and distribution of Points of Interests (POIs).
Therefore, characterizing such relatedness globally is another
challenge. Traditional hydraulic models-based approaches
build hydraulic models for each station and ignore their
spatial correlations, and thus their performance is far from
satisfactory.

To address the aforementioned issues, in this paper, we
predict the water quality of a station through a data-driven
perspective using a variety of data sets, including water
quality data, hydraulic data, meteorology data, pipeline
networks data, road networks data, and POIs. In particular,
we present a novel spatio-temporal multi-task multi-view
learning (stMTMV) framework to fuse the heterogeneous
data from multiple domains and jointly capture each station’s
local information as well as their global information. It co-
regularizes the following factors: (1) Spatio-temporal View
Alignment. The water quality of each station is characterized
by a spatial view and a temporal view. Since both views
describe the water quality of a station, their prediction results
should be similar. Thus, the view alignment is employed
to penalize their disagreements. (2) Global Prediction
Alignment. The prediction of water quality at each station
is a treated as a task. As all the stations are connected via the
pipe network, two stations that are near tend to have similar
readings compared to two stations that are far. Therefore,
a graph Laplacian regularizer is introduced to capture the
spatial correlation among tasks, which is also consistent with
Toblers first law of geography [Tobler, 1970]. (3) Feature
Learning. Features extracted from spatial and temporal views



are usually in high-dimension spaces. We employ a group
Lasso [Yuan and Lin, 2006] to identify the discriminant task-
specific and task-sharing features automatically.

We summarize the contributions as follows:

e We present a novel data-driven approach to co-predict
the future water quality among different stations with
data from multiple domains. Additionally, the approach
is not restricted to urban water quality prediction, but
also can be applied to other multi-locations based co-
prediction problem in many other urban applications.

e We present a novel spatio-temporal multi-view multi-
task learning framework (stMTMYV) to integrate multi-
ple sources of spatio-temporal urban data, which pro-
vides a general framework of combining heterogeneous
spatio-temporal properties for prediction, and can also
be applied to other spatio-temporal based applications.

2 Framework Overview

Figure 1 presents the framework of our approach, consisting
of two major components. One is local spatio-temporal
view alignment within a station (node), and the other is
global prediction alignment among stations (nodes). In
particular, after constructing the spatial and temporal views
by extracting spatial- and temporal-related features for each
station from spatial datasets (e.g., water pipe network, POIs)
and temporal datasets (e.g., water quality data, hydraulic
data), we predict the water quality from each station’s local
information by combining its spatial and temporal views.
Meanwhile, as the water quality among stations are mutually
correlated through the complex water distribution system,
we thus can co-predict the water quality over all stations by
capturing their spatial correlations, which is encoded by the
structure of water distribution system.
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Figure 1: The framework of our approach. FEach node
corresponds to a water quality monitor station.

3 Data Analysis

Urban water quality refers to the physical, chemical and
biological characteristics of a water body [Rossman et al.,
1994]. In current urban water distribution systems, three
important quality indexes, i.e., residual chlorine, turbidity

and pH, are used as effective measurements for the water
quality [Organization, 2004]. In this paper, we consider
Residual Chlorine (RC) as the water quality index since it is
widely employed as the major quality index in environmental
science [Organization, 2004; Rossman et al., 1994].

The concentration of RC is influenced by multiple
temporal factors, such as turbidity, pH, flow, pressure and
meteorology [Rossman et al., 1994; Monteiro et al., 2014].
For instance, turbidity normally exhibits opposite trend
with RC since the chemical reactions of RC with pipe
and bulk fluid will consume RC and increase the turbidity
in water [Castro and Neves, 2003], where this negative
correlation can also be observed from data as shown in Figure
2(a). As another example, water flow is also closely related to
water quality, which has been identified in the environmental
research [Rossman and Boulos, 1996; Castro and Neves,
2003]. The reason is that flow affects the time that water
stays in the system and longer stay will result in a higher
consumption of RC when compared to shorter stay.
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Figure 2: Illustration of correlation analysis.

Besides temporal factors, the water quality also depends
on several spatial factors, such as pipe network structures,
POls, road networks [Rossman and Boulos, 1996; Castro and
Neves, 2003]. For example, the categories of POIs and their
distributions in a region indicate the functionality as well as
the water usage patterns in that region, therefore affecting
the water quality of that region. Figure 2(b) depicts the
correlation between POI density and RC from data, where
each pillar denotes a station and the height of a pillar means
the POI density around a station. From this figure, it can be
seen that a high density of POIs can cause the concentration
of RC to be high in that region. Similarly, the attributes
of pipe network, such as length, diameter and age, are also
factors that influence the water quality.

4 Spatio-temporal Views Construction
4.1 Temporal View

The temporal view of a station is constructed by incorporating
its local temporal information, which consists of historical
water quality indexes, historical hydraulic characteristics
and meteorological information. In particular, we use the
latest 12 hours temporal data in a station, such as water
quality data (RC, Turbidity, pH) and water hydraulic data
(flow, pressure), and treated them as time series signals.



To capture the characteristics of the signal comprehensively,
we extract statistical features (mean, variance, maximum,
minimum, skewness and kurtosis), and time series features
(autocorrelation, PAA [Lin et al., 2003], PLA [Luo et al.,
2015]) for each of the time series above. Moreover, we
also extract frequency related features (FFT and DWT) for
each time series, where we only use the top 3 coefficients
and discard others. In addition, we employ temperature,
humidity, barometer pressure, wind speed, and weather as the
meteorological features. The temporal view is constructed by
concatenating all the temporal features above into a single
feature vector.

4.2 Spatial View

The spatial view of a station is built by integrating its local
spatial information, comprising pipe network structures, road
network structures and distribution of POIs. In particular,
for a given station, we extract the pipe attribute features
(length, diameter and age), POI features (distribution of
POIs), road network features (road segment density, road
length). Moreover, the water quality of a station is also
affected by its neighbors since RC are dispersed through
the water distribution system. The impact of other stations
on a particular station depends on multiple complex spatial
factors, such as their connectivity in the pipe network and
their geographical similarity. To encode such effects, we
consider the water quality and hydraulic characteristics from
a station’s neighborhood, which can also capture the spatial
information of a station. More specifically, we find k nearest
neighbors for a given station and aggregate its neighbors’
temporal features via the geographical similarity, where the
geographical similarity is computed by the sum of top-k
shortest paths between two stations. Therefore, the spatial
view is constructed by concatenating all the spatial features
as well as the aggregated surrounding temporal features into
a single feature vector.

S Urban Water Quality Prediction

5.1 Notations

We first define some notations. In particular, we use bold
capital letters (e.g., X) and bold lowercase letters (e.g., X) to
denote matrices and vectors, respectively. We employ non-
bold letters (e.g., X) to represent scalars, and Greek letters
(e.g., \) as parameters. Unless stated, otherwise, all vectors
are in column form.

Let us assume that we have M nodes for the water quality
prediction and each node is aligned with a task. Meanwhile,
each node [ is described by its spatial view X; € RN xDs =
X} 1,X5 5, ,x; 5,7 and temporal view X| € RV*Pr —
Xf 1,X] 95+, X] ], where x7; € RP: and xj; € R
denote the spatial feature and temporal feature extracted from
the node [ at time point 7. NN is the number of samples at
node [, and D, and D is the feature dimension of the spatial
view and temporal view, respectively. The whole feature
matrix at node [ can be written as X; = [X{,X!] € RN xD,
where D = D¢+D,. The target vector at node [ is denoted
asy, = {y,.1,¥12,---»Yi.n} € RM, which represents the
water quality of node [ observed at the discrete time points

1,2,....,N. N = Zgl Nj is the total number of samples
over all tasks.

5.2 Problem Formulation

The prediction at each node [ consists of spatial prediction
and temporal prediction, i.e., f7(X]) = Xjw; for spatial
prediction and f}(X!) = X!w! for temporal prediction, where
wj € RPs and wi e RP: denote the linear mapping function
for the task (node) [ with spatial view and temporal view,
respectively. In this paper, linear function is employed for
simplicity. However, the model can be easily extended to
other convex, smooth and non-linear prediction functions.
Without prior knowledge on the contributions of spatial and
temporal view, we assume that both contribute equally. Thus,
the final prediction model of both spatial and temporal view
for task (node) [ is obtained by the following late fusion:

Fi(Xe) = 307 (X0) + LKD) = 3 (Xiwi +Xiwh) = SXow,
1
where w' € RP is the weight vector for task [. The
weight matrix over M tasks (nodes) is denoted as W =
[Wi,wa,...,wy] € RPXM,

Information distributed in spatial and temporal views in
fact describes the inherent characteristics of the same node
from various aspects, we thus can reinforce the learning
performance of individual views by enforcing the agreement
on the their prediction results. Considering the least-squares
loss function, we can define the following objective function:

1 M 1 M
min o ; ly, = 5 Xawill + A; IXiwi = Xiwi[3. @

In a real pipeline system, each node is not only affected
by its local information, but also affected by the information
from its neighbors or other nodes. To consider the global
impact on node [, we expand the model in Eqn. (2) to
incorporate a graph Laplacian penalty among node [ and
the other nodes. This penalty ensures a small deviation
between two nodes that are near in the pipeline system,
and incorporates the domain knowledge about the spatial
correlations of the water quality among different nodes in
the pipeline systems. Moreover, the dimension of features
for prediction is usually very high, but not all features are
sufficiently discriminative for water quality prediction. To
select a common set of discriminative features among all
tasks, we employ a group Lasso penalty, which can identify
the top sharing features automatically. The overall objective
function can be restated as

1 M 1 M
H},\i,n 5;”)’1 - 5X;w;|\§+A;|\Xfwf —XfoH%

M
+y Z Stom||Wi = Wan||3 + 0| W]

l,m=1

2,1, 3)

where S; ,,, is the geographical similarity between task (node)
[ and task (node) m, and measures the spatial autocorrelation
between task ! and m. Intuitively, if S ., is large, the graph
Laplacian regularizer term will force w; to be as similar
as w,,. Thus, this graph Laplacian penalty automatically
encodes Toblers first law of geography [Tobler, 1970].



In implementation, we can pre-compute S; ,, through the
structure of pipe network. In particular, the pipe network
can be seen as a weighted graph, where the weight for
a pipe p is computed from its diameter p.d, length p.len
and age p.age by If'edn * p.age. Given two stations P
and P,,, as there are multiple different paths between P,
and P,,, their geographical similarity .S ,,, is computed by
the sum of top-k shortest paths between them. A\, ~,6 are
regularization parameters. The {5 ;-norm of a matrix W is
defined as |[Wllo, = S22, Zfil W7 In particular, /5 ;-
norm applies an /y-norm to each row of W and these /o-
norms are combined through an /;-norm. As we assume that
only a small set of features are predictive for a prediction
task, the £ 1-norm encourages all tasks to select a common
set of features and thereby plays the role of group feature

selection [Yuan and Lin, 2006]. Figure 3 illustrates the main
idea of our approach.
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Figure 3: Illustration of our stMTMYV model.

5.3 Optimization
The optimization of Eqn.(3) is convex with respect to W.
First, we can rewrite the graph Laplacian term in Eqn.(3) as
M
> Simlwi— w5 = tr(W(D - S)W") = tr(WLW") (4)
l,m=1
where D is a diagonal matrix with D; ; = Zm Si,m. S is the
similarity matrix, and L = D — S is known as the Laplacian
matrix. We define

1 M 1 M
2 S__ S t__t(12
h(W) = 3 ; lly, - §Xlwl||2 + )\; (IX;w; — Xywi |3
+tr(WLWT), (5)
g(W) = 0[W]z. (6)

The optimization in Eqn.(3) can be rewritten as
minw h(W) + g(W), where h(W) is smooth and g(W) is
non-smooth. We can thus use the Fast Iterative Shrinkage-
Thresholding Algorithm (FISTA) [Beck and Teboulle, 2009]
or Accelerated Gradient Descent [Nesterov, 2013] to solve it.

6 Experiments

6.1 Experimental Settings

Datasets
We evaluate our method with six datasets collected from
August 2011 to August 2014 in Shenzhen City, China:

e Water quality data: We collected water quality data
every five minutes from 15 water quality sites in
Shenzhen City. It comprises Residual Chlorine (RC),
turbidity and pH. In the experiment, we only use RC as
the index for water quality.

e Hydraulic data: Hydraulic data consists of flow and
pressure, which are collected every five minutes from
13 flow sites and 14 pressure sites, respectively.

e Road networks data: Each road segment is associated
with two terminal points and some properties, such as
level, capacity and speed limit.

e Pipe attributes data: It describes the pipe attributes in
water distribution system, and the attributes of a pipe
consist of diameter, length, age, material, etc.

e Meteorology data: Meteorological data consists of
weather, temperature, humidity, barometer pressure,
wind strength, which is collected every hour.

e POIs: There are 185,841 POIs of 20 categories. Each
POI has a name, category, address and geo-coordinates.

Ground Truth and Metrics

We can predict the water quality of a site from its historical
data, and the ground truth is obtained from its later readings.
In particular, we evaluate the predictive performance with
respect to its readings in next 1, 2, 3, 4 hours, and the
performance is evaluated in terms of their root-mean-square-

error (RMSE): RM SE = \/ﬁ le\il(yl -¥,)%

6.2 Learning Model Comparison

To validate our stMTMV model, we compared it with the
following six baselines:

e RC Decay Model (Classical): Residual Chlorine (RC)
decay model is a classical model in environmental
science to model and predict chlorine residual in water
supply systems [Monteiro er al., 2014; Rossman and
Boulos, 1996]. This model describes both bulk and
wall chlorine consumption via first order decay kinetics
% = —kC, where k is the first order chlorine decay

constant that depends on the distribution systems.

o ARMA: Auto-Regression-Moving-Average (ARMA) is
a well-known model for predicting time series data,
which makes predictions solely based on historical data.

e LR: Linear Regression (LR) is applied for each node
individually, which is a single-task learning method.

o LASSO: Lasso [Tibshirani, 1996] tries to minimize the
objective function %Zf\il ly, — X;wi||3 + «||W]|; and
encodes the sparsity over all weights in W. It keeps task-
specific features but ignores the task-sharing features.

e MRMTL: As a typical example of traditional multi-
task learning, Mean-Regularized Multi-Task Learning
(MRMTL) [Evgeniou and Pontil, 2004] assumes all
tasks are related and penalizes the deviation of each task

from their mean by optimizing 1 Zgl lly, — Xowi||2 +
M M
Aty W = 3 Yoy W13 + O WIIE



e regMVMT: The regularized multi-view multi-task learn-
ing model (regMVMT) [Zhang and Huan, 2012]
jointly regularizes view consistency and uniform task
relatedness.

The experimental results are demonstrated in Table 1.
From this table, we have the following observations: 1) The
prediction accuracy of all models shows a decrease trend for
the next four hours. This is consistent with the intuition that
the distant future tends to be more difficult to forecast than
the near future. 2) The last four multi-task learning methods
outperform the first three single-task learning methods, which
verifies that the tasks are not independent and capturing their
relatedness can improve learning performance. Moreover, it
is not unexpected that RC Decay Model achieves the worst
performance since it may fail to capture the real dynamics
of the RC in the system. 3) The accuracies of MRMTL are
slightly lower than other multi-task learning methods. This
may be caused by the inappropriate assumption of penalizing
the deviation of each task from their mean, since these tasks
tend to be spatially autocorrelated. 4) As compared to MTL,
our model and regMVMT achieve higher performance due
to the fact that SstMTMV and regMVMT can incorporate
heterogeneous information from spatial and temporal views,
which may help to improve overall performance. 5) The
stMTMV model shows superiority over regMVMT, which
underscores the importance of incorporating structure of
the water distribution system and this structure can further
improve performance.

Table 1: Performance comparison among various approaches.

[ Model Comparison [[ Thour [ 2hour [ 3hour | 4hour |

RC Decay Model 3.51e-1 | 3.53e-1 | 3.59¢e-1 | 3.68e-1
ARMA 1.86e-1 | 2.18e-1 | 2.46e-1 | 2.78e-1

LR 1.68e-1 | 1.99e-1 | 2.09e-1 | 2.10e-1
LASSO 1.23e-1 | 1.42e-1 | 1.52e-1 | 1.56e-1
MRMTL 1.32e-1 | 1.48e-1 | 1.56e-1 | 1.58e-1
regMVMT 1.06e-1 | 1.15e-1 | 1.18e-1 | 1.19e-1
StMTMV 9.33e-2 | 9.66e-2 | 9.80e-2 | 9.90e-2

6.3 Evaluation on Model Components

To evaluate each component of the stMTMV model, we
compared it with three different variants of sStMTMV:

e stMTMV-us: In this variant, uniform spatial correlation
is used to evaluate the importance of spatial correlation
among tasks. We can derive it by setting S = I.

o stMTMV-ws: This is a derivation of stMTMV without
group sparsity. We can derive it by setting § = 0.

o stMTMV-sv: This derivation is to evaluate the impor-
tance of spatio-temporal view alignment. We can derive
it by setting A = 0.

The experimental results are demonstrated in Figure 4.
From this figure, it can be seen that stMTMV-us achieves
the worst performance, which demonstrates the effectiveness
of graph Laplacian component in the stMTMYV model. This
further verifies that the tasks are mutually correlated and

the spatial autocorrelation plays an important role in the co-
prediction tasks. Moreover, sStMTMV-ws achieves the second
worst performance, which justifies the importance of group
sparsity in the sStMTMV model. This also provides evidence
for the assumption that only a small set of features are
predictive for the water quality prediction tasks. Compared
to StMTM V-ws and stMTM V-us, the effect of spatio-temporal
view alignment tend to be weaker, and this is observed by the
superior performance of stMTMV-sv over other two variants.
However, stMTMV outperforms stMTMV-sv since spatio-
temporal view alignment can combine heterogeneous spatio-
temporal information and further boost performance.
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Figure 4: Performance comparison on model components.

6.4 Evaluation on Views

To demonstrate the descriptiveness of each view, we com-
pared our stMTMYV model over the following combinations.

e t-view: Only temporal view (¢-view) is used.
o s-view: Only spatial-view (s-view) is used.

e st-view-na: Both spatio-temporal views are used, but
there is no s-f view alignment within each station.

e st-view: Both spatio-temporal view are used and the s-¢
view alignment is employed for each station.
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Figure 5: Performance comparison over view combinations.

The results are presented in Figure 5. From this figure,
we observe that: 1) the combinations of spatial and temporal
views outperform each individual one. This observation
reveals that the more views fed to our model, the better
the performance will be. 2) the st-view outperforms sz-
view-na, which implies that aggregating information from
spatial and temporal views can achieve better performance
than concatenating them together. This also verifies that the
heterogeneous information distributed across spatial and tem-
poral views is usually complementary rather than conflicting,
and appropriate aggregation of these can provide a better way



to capture each station’s characteristics comprehensively, and
consequently boost the performance.

6.5 Water Quality Predictions

Figure 6 depicts the predictive results of our method over
the next one hour against the ground truth in Shenzhen from
October 2012 to November 2012. In general, our model is
very accurate in tracing the ground truth curves (including
sudden changes) of the water quality in Shenzhen City, which
demonstrates the effectiveness of our approach.
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Figure 6: Predictions of stMTMYV against the ground truths.

6.6 Computational Complexity Analysis

In this section, we discuss the computational complexity for
solving the stMTMV model. For the optimization of W,
the complexity for each iteration in the FISTA algorithm is
O((D+M)DM). Moreover, the FISTA algorithm converges
within O(1/¢€2) iterations, and the total time cost of FISTA

for solving StMTMV is O((Diﬂ), where e is the desired
accuracy. Thus, the stMTMYV model can be solved efficiently.
Since the per-iteration complexity of FISTA for solving
stMTMYV is independent of NV, which shows that our model
can potentially scale to large-scale urban data.

7 Related Work
7.1 Classical Model-based Approaches

It is worth mentioning that several research efforts have been
dedicated to model-based approaches for urban water quality
prediction [Rossman ef al., 1994; Monteiro et al., 2014,
Rossman and Boulos, 1996]. The main idea behind this
kind of approaches is to utilize the first-order or higher-
order kinetics to model the chlorine decay along the water
distribution system. However, the mechanisms of the chlorine
decay is quite complicated, which comprise of reactions
with bulk fluid, pipe and natural evaporation. Hence, the
accurate mathematical modelling of chlorine decay along
the water supply system is a tough problem that has not
been fully solved [Castro and Neves, 2003]. Moreover, the
developed decay model requires extensive human labors to
perform model calibration with pipe networks, and it depends
heavily on the pipe internal surface materials, temperatures,
network structure, which makes it difficult to extend to other
cities” water distribution systems. Compared to model-based
approaches, data-driven based approaches demonstrate their
advantages in both flexible and extendibility in many other
ubiquitous applications [Zheng et al., 2014; Zheng, 2015;
Liu et al, 2015; 2016a; Zheng et al., 2015b], such as

urban air quality forecast [Zheng et al., 2015al, destination
prediction [Xue er al., 2013; Zheng, 2015], and traffic
prediction [Wang et al., 2014]. However, to the best of our
knowledge, the literature on urban water quality prediction
from the data-driven perspective is relatively sparse.

7.2 Multi-task Multi-view Learning

Multi-task learning is a learning paradigm that jointly learns
multiple related tasks and has demonstrated its advantages
in many urban applications, such as transportation and event
forecasting [Zheng and Ni, 2013; Zhao et al., 2015; Zheng
et al., 2014]. In particular, it is more effective in handling
those with insufficient training samples [Evgeniou and Pontil,
2004; Liu et al., 2015; 2016b]. However, most of the existing
approaches only explore the task relatedness, but ignore
the consistency information among different views within a
task. Multi-view learning has been proposed to leverage the
information from diverse domains or from various feature
extractors, and combining the heterogeneous properties from
different views can better characterize objects and achieve
promising performance [Zhang et al., 2013; Liu et al.,
2016b; Zheng, 2015; Zheng et al., 2015b]. Nevertheless,
existing multi-view learning approaches discard the label
information from other related tasks, which usually leads
to suboptimal performance. Thus, multi-view multi-task
learning is proposed to explore both task relatedness and
view relatedness simultaneously within a learning frame-
work [Zhang and Huan, 2012; Liu et al., 2016b; He and
Lawrence, 2011]. For example, He er al. [2011] proposed
a graph-based iterative framework (GraM?) for multi-view
multi-task learning and obtained impressive results in text
categorization applications. However, as far as we know,
the literature on spatio-temporal based multi-task multi-view
learning is relatively sparse. To the best of our knowledge,
our approach is the first work on spatio-temporal based
multi-task multi-view learning, which can incorporate spatio-
temporal heterogeneities via a multi-task multi-view learning
framework and is able to applied to other spatio-temporal
based applications.

8 Conclusion and Future Work

This paper presents a novel spatio-temporal multi-view
multi-task learning framework to forecast the water quality
of a station by fusing multiple sources of urban data.
It consists of two alignments. The first alignment is
spaio-temporal view alignment. It works toward local
information aggregation for each station. The second one is
global prediction alignment, which incorporates the spatial
correlations among stations and performs co-prediction over
all stations using these correlations. Extensive experiments
on real-world data show significant gains of these two
alignments and their overall performance as compared to
state-of-the-arts methods. The code has been released at:
http://research.microsoft.com/apps/pubs/?id=264770.

In future, we will extend our model to learn the source
confidence adaptively. = Moreover, we will explore the
problem of water quality inference through a limited number
of monitor stations in the urban water distribution systems.
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