
Advances in Unit Testing: Theory and Practice

Tao Xie
University of Illinois at
Urbana-Champaign

Urbana, IL 61801, USA
taoxie@illinois.edu

Nikolai Tillmann
Microsoft

Tools for Software Engineers
Redmond WA 98052, USA
nikolait@microsoft.com

Pratap Lakshman
Microsoft

Developer Division
Hyderabad, India

pratapl@microsoft.com

ABSTRACT
Parameterized unit testing, recent advances in unit testing,
is a new methodology extending the previous industry prac-
tice based on traditional unit tests without parameters. A
parameterized unit test (PUT) is simply a test method that
takes parameters, calls the code under test, and states as-
sertions. Parameterized unit testing allows the separation of
two testing concerns or tasks: the specification of external,
black-box behavior (i.e., assertions or specifications) by de-
velopers and the generation and selection of internal, white-
box test inputs (i.e., high-code-covering test inputs) by tools.
PUTs have been supported by various testing frameworks.
Various open source and industrial testing tools also exist
to generate test inputs for PUTs. This technical briefing
presents latest research on principles and techniques, as well
as practical considerations to apply parameterized unit test-
ing on real-world programs, highlighting success stories, re-
search and education achievements, and future research di-
rections in developer testing.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

Keywords
Parameterized Unit Testing, Test Generation, Test Oracles

1. TECHNICAL BRIEFING’S TOPIC
Unit testing has been widely recognized as an important

and valuable means of improving software reliability, as it
exposes bugs early in the software development life cycle.
However, manual unit testing is often tedious and insuffi-
cient. Testing tools can be used to enable economical use
of resources by reducing manual effort. Parameterized unit
testing [9, 4] is a new methodology extending the current in-
dustry practice based on closed, traditional unit tests (i.e.,
test methods without input parameters). A parameterized

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICSE ’16 May 14-22, 2016, Austin, TX, USA
c© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4205-6/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2889160.2891056

unit test (PUT) is simply a test method that takes param-
eters, calls the code under test, and states assertions. Test
methods are generalized by allowing parameters. This gen-
eralization serves two main purposes. First, parameterized
test methods are specifications of the behavior of the meth-
ods under test: they not only provide exemplary arguments
to the methods under test, but ranges of such arguments.
Second, parameterized unit tests describe a set of tradi-
tional unit tests that can be obtained by instantiating the
parameterized test methods with given argument sets. Pa-
rameterized unit testing allows the separation of two testing
concerns or tasks: the specification of external, black-box
behavior (i.e., assertions or specifications) by developers and
the generation and selection of internal, white-box test in-
puts (i.e., high-code-covering test inputs) by tools. PUTs
have been supported by various testing frameworks. Var-
ious open source and industrial testing tools also exist to
generate test inputs for PUTs.

This technical briefing presents latest research on princi-
ples and techniques, as well as practical considerations to
apply parameterized unit testing on real-world programs,
highlighting success stories, research and education achieve-
ments, and future research directions in developer testing.
The technical briefing aims to help improve developer skills
and knowledge for writing PUTs and give overview of tool
automation in supporting PUTs. Attendees can acquire the
skills and knowledge needed to perform research or conduct
practice in the field of developer testing and to integrate
developer testing techniques in their own research, practice,
and education.

2. TECHNICAL BRIEFING’S INTEREST TO
COMMUNITY

With recent advances in test generation research such as
dynamic symbolic execution [3, 5], powerful test generation
tools are now at the fingertips of developers in software in-
dustry. For example, Microsoft Research Pex [7, 8], a state-
of-the-art tool based on dynamic symbolic execution, has
been shipped as IntelliTest in Visual Studio 2015, benefit-
ing numerous developers in software industry. Such test
generation tools allow developers to automatically generate
test inputs for the code under test, comprehensively covering
various program behaviors to achieve high code coverage.
These tools help alleviate the burden of extensive manual
software testing, especially on test generation.

Although such tools provide powerful support for auto-
matic test generation, by default only a predefined limited
set of properties can be checked, serving as test oracles for

these automatically generated test inputs. Violating these
predefined properties leads to various runtime failures, such
as null dereferencing or division by zero. Despite being valu-
able, these predefined properties are weak test oracles, which
do not aim for checking functional correctness but focus on
robustness of the code under test. Parameterized unit tests
serve as strong test oracles to complement these powerful
test generation tools in research and practice.

The technical briefing is targeted at three groups of audi-
ence, which are broad in the software engineering commu-
nity.

• Software practitioners. Practitioners can learn the
state of the art in conducting developer testing. The
technical briefing aims to demonstrate various practi-
cal applications of methodology, techniques, and tools
for parameterized unit testing, so that practitioners
could apply the learned skills and knowledge to con-
duct effective developer testing in their industrial set-
ting environments, such as effectively cooperating with
test-generation tools [11, 13]. Software developers and
practitioners are encouraged to bring their own prob-
lems to the discussion after the technical briefing so
that both researchers and software practitioners can
share their experience, exchange ideas, and collaborate
on industry relevant research.

• Testing researchers. Both software testing researchers
in general and those working on specific subareas on
developer testing can find the technical briefing in-
formative and inspiring. After attending this techni-
cal briefing, the testing researchers can gain good un-
derstanding of research problems in developer-testing
practice, research methodology in helping write PUTs [6,
2], and test generation techniques for PUTs [10]. Re-
searchers can acquire the knowledge needed in order
to apply advanced test generation techniques such as
dynamic symbolic execution to assist developer test-
ing.

• Testing educators. Software testing educators or
software engineering educators in general can find the
technical briefing helpful in improving their skills in
teaching developer testing [12]. After attending this
technical briefing, the educators can learn ways of teach-
ing and training students or practitioners in writing
PUTs. Educators can also learn the first-hand expe-
rience of teaching students in writing PUTs and learn
how to leverage the teaching materials at the wiki site
for teaching PUT/Pex [1].

Acknowledgment
This material is based upon work supported by the Mary-
land Procurement Office under Contract No. H98230-14-C-
0141. Tao Xie’s work is also supported in part by NSF grants
CCF-1349666, CCF-1409423, CNS-1434582, CCF-1434596,
and CNS-1513939, and a Google Faculty Research Award.

3. REFERENCES
[1] Wiki site for teaching/learning parameterized unit

testing/Pex, 2016.
https://sites.google.com/site/teachpex/.

[2] M. Boshernitsan, R. Doong, and A. Savoia. From
Daikon to Agitator: Lessons and challenges in

building a commercial tool for developer testing. In
Proceedings of the 2006 International Symposium on
Software Testing and Analysis (ISSTA 2006), pages
169–180, 2006.

[3] P. Godefroid, N. Klarlund, and K. Sen. DART:
Directed automated random testing. In Proceedings of
the 2005 ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI 2005),
pages 213–223, 2005.

[4] D. Saff, M. Boshernitsan, and M. D. Ernst. Theories
in practice: Easy-to-write specifications that catch
bugs. Technical Report MIT-CSAIL-TR-2008-002,
MIT Computer Science and Artificial Intelligence
Laboratory, Cambridge, MA, January 14, 2008.

[5] K. Sen, D. Marinov, and G. Agha. CUTE: a concolic
unit testing engine for C. In Proceedings of the 10th
European Software Engineering Conference Held
Jointly with 13th ACM SIGSOFT International
Symposium on Foundations of Software Engineering
(ESEC/FSE 2005), pages 263–272, 2005.

[6] S. Thummalapenta, M. R. Marri, T. Xie, N. Tillmann,
and J. de Halleux. Retrofitting unit tests for
parameterized unit testing. In Proceedings of the 14th
International Conference on Fundamental Approaches
to Software Engineering (FASE 2011), pages 294–309,
2011.

[7] N. Tillmann and J. De Halleux. Pex: White box test
generation for .NET. In Proceedings of the 2nd
International Conference on Tests and Proofs (TAP
2008), pages 134–153, 2008.

[8] N. Tillmann, J. de Halleux, and T. Xie. Transferring
an automated test generation tool to practice: From
Pex to Fakes and Code Digger. In Proceedings of the
29th ACM/IEEE International Conference on
Automated Software Engineering (ASE 2014), pages
385–396, 2014.

[9] N. Tillmann and W. Schulte. Parameterized unit tests.
In Proceedings of the 10th European Software
Engineering Conference Held Jointly with 13th ACM
SIGSOFT International Symposium on Foundations
of Software Engineering (ESEC/FSE 2005), pages
253–262, 2005.

[10] X. Xiao, S. Thummalapenta, and T. Xie. Advances on
improving automation in developer testing. In
Advances in Computers, volume 85, pages 165–212.
2012.

[11] X. Xiao, T. Xie, N. Tillmann, and J. de Halleux.
Precise identification of problems for structural test
generation. In Proceedings of the 33rd International
Conference on Software Engineering (ICSE 2011),
pages 611–620, 2011.

[12] T. Xie, J. de Halleux, N. Tillmann, and W. Schulte.
Teaching and training developer-testing techniques
and tool support. In Proceedings of the 25th Annual
ACM Conference on Systems, Programming,
Languages, and Applications: Software for Humanity
(SPLASH 2010), Educators’ and Trainers’
Symposium, pages 175–182, 2010.

[13] T. Xie, L. Zhang, X. Xiao, Y. Xiong, and D. Hao.
Cooperative software testing and analysis: Advances
and challenges. Journal of Computer Science and
Technology, 29(4):713–723, 2014.

