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ABSTRACT

In recent years, online programming and software engineer-
ing education via information technology has gained a lot of
popularity. Typically, popular courses often have hundreds
or thousands of students but only a few course staff mem-
bers. Tool automation is needed to maintain the quality
of education. In this paper, we envision that the capabil-
ity of quantifying behavioral similarity between programs is
helpful for teaching and learning programming and software
engineering, and propose three metrics that approximate the
computation of behavioral similarity. Specifically, we lever-
age random testing and dynamic symbolic execution (DSE)
to generate test inputs, and run programs on these test in-
puts to compute metric values of the behavioral similarity.
We evaluate our metrics on three real-world data sets from
the PEX4FUN platform (which so far has accumulated more
than 1.7 million game-play interactions). The results show
that our metrics provide highly accurate approximation to
the behavioral similarity. We also demonstrate a number of
practical applications of our metrics including hint genera-
tion, progress indication, and automatic grading.

1. INTRODUCTION

In recent years, with the advance of information technol-
ogy, online programming and software engineering educa-
tion has gained a lot of popularity. Introductory program-
ming courses are among the most popular Massive Open
Online Courses (MOOC). Many MOOC providers, such as
edX, Coursera, and Udacity, have offered programming and
software engineering courses, in which thousands of stu-
dents worldwide are enrolled. In addition to MOOC, other
forms of online programming and software engineering edu-
cation have also attracted a lot of attentions. For instance,
PEX4FUN [28], along with its recent successor Code Hunt [6],
are online educational platforms for teaching and learning
programming and software engineering via gaming. So far
the PEX4FUN platform has had over 1.7 million game-play
interactions made by players around the world.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

ICSE ’16 Companion, May 14-22, 2016, Austin, TX, USA
© 2016 ACM. ISBN 978-1-4503-4205-6/16/05. .. $15.00
DOL http://dx.doi.org/10.1145,/2889160.2889204

2xsxiao@nec-labs.com, >nikolait@microsoft.com

One challenge of online programming and software engi-
neering education is to allow large-scale classes while main-
taining the quality of the education. Typically, popular
courses often have hundreds or even thousands of students
but only a few course staff members. The limited num-
ber of staff members poses challenges in providing quality
education. On instructors’ side, many tasks, such as grad-
ing and providing customized feedback on programming as-
signments, require instructors to go through and understand
students’ code. The workload of these tasks is prohibitively
huge. However, skipping or delaying such tasks prevents in-
structors from keeping track of students’ performance. On
students’ side, it is difficult for them to get prompt, cus-
tomized feedback and help from the instructors. Although
students may seek help from peers, peers are often not capa-
ble of helping or providing valuable feedback in many cases.
Instructors or peers cannot always sit with students while
the students are coding or provide prompt hints when the
students encounter problems.

To alleviate this issue, we propose using tool automation
to reduce instructors’ burden in the teaching process and
improve students’ learning experiences in programming and
software engineering courses. We envision that the capabil-
ity of automatically quantifying the behavioral similarith]
between programs can be helpful in many aspects. For in-
stance, it can assist instructors in evaluating students’ pro-
grams. The behavioral similarity between students’ pro-
grams and a sample solution program can be used as a fac-
tor in grading. Higher similarity generally implies a higher
score. In addition, it can be used as a progress indicator
during students’ coding process. Our tool automation can
constantly compute and display the behavioral similarity be-
tween the students’ current program and the solution pro-
gram so that students can keep track of their progress. A
series of increasing similarity scores achieved by a student in-
dicates that the student is moving towards the solution while
a significant drop may indicate that the student is modifying
the code in a wrong way or reverting correct code. Such in-
formation can help students realize potential problems early
and avoid further deviations. Moreover, behavioral simi-
larity can also be used to detect similar programs across
different students. These similar programs from other stu-
dents can be used to generate hints for the next step when
students need help on some task. We describe such broad
applications in detail in Section [6]

!Behavioral similarity is also referred to as semantic simi-
larity. In contrast to syntactical similarity, behavioral simi-
larity concerns about input/output behaviors of programs.
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However, in general, it is challenging to precisely quantify
the behavioral similarity. Ideally, the behavioral similarity
between two programs can be measured by computing the
proportion of inputs producing the same output on both
programs (referred to as agreed inputs) over the entire input
domain. A straightforward approach that enumerates all in-
puts in the input domain and runs each input against both
programs to compare the outputs is impractical or infeasi-
ble for programs with a large or infinite input domain. To
practically measure behavior similarity, we propose running
representative inputs instead of all inputs on programs to ap-
proximate their behavioral similarity based on two insights.
The first insight is that by uniformly sampling a significant
portion of inputs from the input domain, the behavioral sim-
ilarity computed based on the sampled inputs can provide a
good approximation to the actual behavioral similarity. The
second insight is that using inputs that exercise different pro-
gram paths as representatives can also provide a good ap-
proximation, as these different program paths usually repre-
sent different program behaviors. Dynamic symbolic execu-
tion (DSE) [11}23]/26] is a technique that executes a program
both symbolically and concretely to collect constraints from
branches and systematically negates part of the collected
constraints to generate new program inputs. With the ad-
vent of powerful constraint-solving tools |9], DSE has shown
promising results in generating test inputs that achieve high
code coverage. We can leverage DSE to systematically gen-
erate high-covering test inputs, and use the generated test
inputs to explore program paths efficiently.

Based on these two insights, we present three metrics for
using test generation techniques to measure behavioral sim-
ilarity. Our first metric, Random Sampling (RS), is com-
puted by using random test generation to generate inputs
uniformly distributed over the input domain. Then we run
both programs separately on each test input to compare
their outputs. The proportion of the agreed inputs over
the sampled inputs is the value for RS. The metric Single-
program Symbolic Ezecution (SSE), based on the second in-
sight, is computed by using one program as the reference
program, and employing DSE to generate test inputs that
capture the behaviors of the reference program. We then
run the other program under analysis on these test inputs
and compute the proportion of agreed inputs over the gener-
ated inputs as the value of SSE. Since the test generation is
based on only the reference program and not sensitive to the
program under analysis, the generated test inputs may fail to
exercise some behaviors in the program under analysis. Our
third metric, Paired-program Symbolic Execution (PSE), ad-
dresses this limitation by constructing a paired program [25)|
from the two programs. The input domain of the paired pro-
gram is exactly the same as that of the two programs. The
paired program runs the two programs on the same input
and asserts their outputs to be the same. Then we lever-
age DSE to generate test inputs on the paired program and
compute the proportion of test inputs that pass the asser-
tion over the generated inputs as the PSE value. Since the
test generation for PSE is performed on the paired program,
which is constructed from both programs, PSE is also sensi-
tive to the program under analysis and likely to reveal more
behavioral differences than SSE does.

We implement a tool to measure these three metrics of be-
havioral similarity for C# programs. We implement random
test generation to compute RS, and use Pex [26/27] (a state-

of-the-art DSE engine recently released as the IntelliTest fea-
ture in Visual Studio 2015) to implement SSE and PSE. We
evaluate our metrics on student code artifacts produced in
three real-world courses from the PEX4FUN platform. The
evaluation results show that, in general, RS provides highly
accurate approximations to the behavioral similarity, but it
may not be able to distinguish small behavioral differences.
As a complement, PSE is highly effective in detecting such
small behavioral differences but does not provide as good
approximations as RS does. Such results suggest that these
two metrics can be used in a complementary way to provide
better approximation. We also demonstrate practical ap-
plications of our metrics including hint generation, progress
indication, and automatic grading.
Our paper makes the following major contributions:

e Three metrics that accurately quantify the behavioral
similarity between programs. These metrics can com-
plement each other in producing further better results.

e An open source tool that implements these three met-
rics based on the Pex tool. Our tool can be accessed
from the project Websiteﬂ

e Evaluations on code artifacts from three real-world
courses on the PEX4FUN platform, showing that our
metrics RS and PSE are highly effective in measuring
behavioral similarity.

e Demonstrations of applying our three metrics for pro-
gramming and software engineering education.

The rest of the paper is organized as follows. Section
gives a brief introduction to the test generation techniques
used in our metrics. Section [3| gives an overview of mea-
suring behavioral similarity, including some definitions and
illustrating examples. Section [4] describes our metrics in de-
tail. Section [5] presents our evaluation results. Section [f]
demonstrates practical applications of our metrics to pro-
gramming and software engineering education. Section |Z|
discusses major threats to validity. Section [§] discusses re-
lated work and Section |§| concludes the paper.

2. BACKGROUND

Random Test Generation. Typically, random test gen-
eration treats the program under test as a black box and
randomly chooses inputs from the input domain of the pro-
gram. A straightforward technique of random test gener-
ation is to generate inputs by randomly sampling a value
from the input domain according to the uniform distribu-
tion. There are also other advanced strategies for sampling
inputs, e.g., adaptive random testing [7] and feedback-based
techniques [21] for object-oriented programs. Since random
test-generation techniques do not analyze the program, their
costs are relatively low, making random test generation effi-
cient. However, a common limitation of random techniques
is that they often fail to generate inputs for corner cases.
For our random metric, we use a simple random technique
to uniformly sample inputs from the input domain.

DSE-based Test Generation. DSE [11]23]/26] explores
feasible paths of the program under test and generates test
inputs to exercise the paths. DSE starts with an arbitrary
or default concrete input, and symbolically executes the pro-
gram along the path led by the concrete input. During the
execution over the path, DSE collects the conditions from

Zhttps:/ /sites.google.com/site/behavsim/



public static string isFancyYear(int i) {

if (i < 1000 || i > 9999)

return "not a fancy year”;
int digit = i % 10;
while (i 1= 0) {

if (i % 10 != digit)

return "not a fancy year”,
i /=10;

W N e
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10 return "fancy year”,

11}

(a) A program that checks “fancy year” using a loop

1 public static string isFancyYear(int i) {
2 if (i == 1111) return "fancy year”;
3 if (i == 2222) return "fancy year";
4 if (i == 3333) return "fancy year”;
5 if (i == 4444) return "fancy year”
6  if (i == 5555) return "fancy year”;
7 if (i == 6666) return "fancy year”;
8 if (i == 7777) return "fancy year”,
o  if (i == 8888) return "fancy year”;
10 if (i == 9999) return "fancy year”;
11 return "not a fancy year”;

(b) A program that checks “fancy year” by enumerating valid values

Figure 1: An example of behavioral equivalence

the taken branches as the path constraint. Then DSE sys-
tematically negates part of the path constraint to form new
path constraints, and leverages constraint solvers to solve
these path constraints for obtaining new test inputs. These
new test inputs steer the future explorations towards dif-
ferent paths of the program. Iteratively, DSE collects new
path constraints and generates new test inputs for achieving
high structural coverage, such as statement coverage and
branch coverage. With the advances of research on con-
straint solvers, e.g., Z3 [9], DSE-based tools, such as Pex [|26]
and SAGE [12], have shown promising results in structural
testing and security /system testing [12}|23}26].

3. OVERVIEW

To quantify the behavioral similarity of two programs, we
formally define the behavioral similarity and related con-
cepts, and use examples to illustrate these definitions. We
start with formally defining program execution.

DEFINITION 1
a program P is a function exec : P x I — O that maps an
input i € I to an output o € O, where I is the input domain
of P and O is the output domain of P.

Using the definition of program execution, we further de-
fine behavioral equivalence and difference between programs
as well as behavioral similarity that measures how similar
the behaviors of two programs are on the input domain.

DEFINITION 2 (BEHAVIORAL EQUIVALENCE). Two pro-
grams Py and P» that share the same input domain I are be-
haviorally equivalent, denoted as exec(Pi,I) = exec(Pa,I),
if Vi € I, exec(Py,i) = exec(Pa,1).

Figure [I] shows two programs that implement the same
functionality, i.e., behave equivalently. These two programs

(PROGRAM EXECUTION). An execution of

accept an integer as input, and return a string “fancy year”
if the number is between 1000 and 9999, and all digits of the
number are the same. The first program, in Figure im-
plements this functionality via explicit bound checking and
a loop iterating through each digit. The second program,
in Figure enumerates all possible fancy years and checks
the input against these values. A cursory inspection of the
two programs can determine that on all possible inputs, the
outputs of the two programs always agree. Although the
two programs syntactically look very different, they behave
equivalently.

DEFINITION 3 (BEHAVIORAL DIFFERENCE). Two prog-
rams P1 and P that share the same input domain I are
behaviorally different, denoted as exec(Py,I) # exec(Ps,I),
iff Ji € I, exec(Pr,i) # exec(Pa,i).

DEFINITION 4  (BEHAVIORAL SIMILARITY). The behav-
toral stmilarity between two programs Py and P that share
the same input domain I is |I|/|I|, where Is C I, exec(Pr, Is)
= exec(P2, Is), and Vj € I'\ I, exec(P1,j) # exec(Pa,j),

Often the time, certain inputs in I are more important
than the other inputs. For example, some inputs exercising
the main functionality of the program and being used more
frequently might be more important than the other inputs.
To handle such scenarios, we further extend behavioral sim-
ilarity as weighted behavioral similarity: the weighted be-

I, I
havioral similarity between P; and Ps is (‘Z‘ wg)/( ‘i W),

k=1 n=1
where Vi, € I, w, is the weight for iy,

We further define a partial order relation, subsumption,
over two programs with respect to a reference program. The
relation can be used to determine which program is more
similar to the reference program.

DEFINITION 5 (BEHAVIORAL SUBSUMPTION). Assuming
two programs P11, P> and a reference program P, all share the
same input domain I, P> behaviorally subsumes P; with re-
spect to Pr, denoted as (Py <p, P»), iff 3i € I, exec(Pa,i) =
exec(Py,i)Nexec(P1,i) # exec(Py,i), and Bj € I, exec(P1, )
= exec(Pr,j) N exec(Pa,j) # exec(Pr, ).

Intuitively, a program P> behaviorally subsumes a program
P if and only if the set of inputs correctly handled by P
is a proper subset of that correctly handled by P>. An in-
put is correctly handled by a program P; with respect to
the reference program P, if and only if P; and P, produce
the same output on this input. Figure |2| shows an exam-
ple illustrating behavioral similarity and subsumption. The
reference program is shown in Figure 2a] and the programs
in Figures and are incomplete in the sense that they
produce the correct outputs for only a subset of the input
domain. The three programs behave the same on the inputs
satisfying Conditional 1, but behave differently on inputs
not satisfying Conditional 1. Moreover, all inputs correctly
handled by Program 1 are also correctly handled by Program
2, but not vice versa because Program 2 correctly handles
the input value 383 while Program 1 does not. Thus, Pro-
gram 2 makes more progress towards the reference program
than Program 1. By our definition, we say that Program
2 behaviorally subsumes Program 1 with respect to the ref-
erence program. In other words, Program 2 is behaviorally
more similar to the reference program than Program 1 is.



(a) Reference program

(b) Program 1

1 public int Reference(int x) { 1 public int Program1(int x) { 1 public int Program2(int x) {
2 if (x % 7 == 0) return 8; // Conditional 1 2 if(x % 7 == 0) return 8; 2 if(x % 7 == 0) return 8;
3 return x % 7; // Conditional 2 3 if(x == 1009) return 1; 3 if(x == 1009) return 1;
4 4 return x; 4 if(x == 383) return 5;

5 5 5 return x;

6 } 6 } 6 }

(c¢) Program 2

Figure 2: An example of behavioral subsumption

4. METRICS FOR BEHAVIORAL SIMILAR-
ITY

To compute the precise behavioral similarity between two
programs defined in Section [3] a naive approach is to run
two programs on every input in the input domain, compare
the outputs of the two programs, and then compute the por-
tion of the agreed inputs. Such approach is impractical and
infeasible for domains with infinite inputs. In fact, there are
many programs, even very simple ones, whose input domain
is infinite. For example, any program taking an unrestricted
string as the input has an infinite input domain because the
length of the string could be arbitrarily long. Enumerating
every input for these programs is simply impossible. Even
when the input domain is finite, in most cases, it is still im-
practical to compute the behavioral similarity by definition
due to the sheer size of the input domain. A program tak-
ing one 32-bit integer as the input has an input domain of
size 232. If there are other parameters, the size of the input
domain would be the product of the input domain size of
each parameter, blowing up very quickly.

To address these issues, we make a trade-off between the
precision and the cost of computing behavioral similarity.
We propose three practical metrics that compute approxi-
mate behavioral similarity between two programs. The goal
of these metrics is to provide highly accurate approxima-
tions to the actual behavioral similarity at a low cost. We
next describe the three metrics in detail. For each metric,
we describe why we propose this metric, how to compute it,
and the strength and weakness of this metric.

4.1 Random Sampling (RS)

Since computing the behavioral similarity via enumerat-
ing all possible inputs from the input domain is prohibitively
expensive or infeasible, we instead use the randomly sam-
pled inputs to approximate the computation, thus reducing
the cost. The insight behind RS is that by uniformly sam-
pling a significant portion of inputs from the input domain,
the behavioral similarity computed based on the sampled
inputs can provide an accurate approximation to the actual
behavioral similarity. To compute the value for RS, we first
use random test generation to generate inputs uniformly dis-
tributed over the input domain. Then we run both programs
on each test input separately to compare their outputs. The
proportion of the agreed inputs over the sampled inputs is
the value for RS. The formal definition of RS is as follows:

DEFINITION 6  (RS). P- and P. are two programs shar-
ing the same input domain I. Let Is be a set of inputs ran-
domly sampled from I, and I, be a subset of Is such that Vi €
I,,exec(Pr,i) = exec(P.,t) and Vj € I\ Ia,exec(Pr,j) #
exec(P:,7). The RS metric is defined as Mprs(Pr, P;) =
[Lal/|Ls|-

RS is a straightforward yet effective and efficient (i.e., low
cost) metric for approximating behavioral similarity. When
the input domain is huge, or even infinite, RS can always
sample an affordable portion of inputs to compute a reason-
ably good approximation to the actual behavioral similarity.
Since RS treats the program as a black box, and does not
analyze the program for test generation, the cost of gener-
ating test inputs and measuring RS is rather low or even
negligible. On the other hand, due to the black-box test
generation, it may miss some inputs (e.g., corner cases) that
reveal small behavioral differences between programs, and
thus cannot distinguish slightly different programs.

4.2 Single-program Symbolic Execution (SSE)

The Single-program Symbolic Execution (SSE) metric ap-
proximates behavioral similarity based on the insight that
the number of program paths is typically much smaller than
the size of the input domain. The program paths can be
viewed as a more succinct representation of program be-
haviors. If we pick one input for each path in the program,
then these inputs explore the representative behaviors of the
program. Hence, it is less costly to measure the behavioral
similarity by running the program under analysis on only
the representative inputs of the reference program and com-
paring their outputs. Thanks to the recent advance of DSE,
we leverage DSE techniques to efficiently explore program
paths. To compute SSE, we choose one program as the ref-
erence program, and apply DSE to generate test inputs that
capture the behaviors of the reference program. We then
run the other program on these test inputs and compute the
proportion of agreed inputs over the generated inputs as the
value of SSE. The formal definition of SSE is as follows:

DEFINITION 7 (SSE). P and P. are two programs shar-
ing the same input domain I, and P, is the reference pro-
gram. Let I, be the set of inputs generated by DSE on Py,
and I, be a subset of I, such that Vi € I,,exec(Pr,i) =
exec(Pe,t) and Vj € I\ I, exec(Pr,j) # exec(P.,j). The
SSE metric is defined as Mssg(Pr, P.) = |1a|/|Ls|.

In contrast to RS, SSE explores different feasible paths
to generate test inputs. Thus, these test inputs are more
likely to cover those corner cases of the program. Reveal-
ing such corner cases is helpful in distinguishing programs
with small behavioral differences. But still, SSE has some
limitations. First, SSE never considers the program under
analysis, but generates test inputs based on only the refer-
ence program. The generated test inputs do not necessarily
capture all behaviors of the program under analysis. It is
possible that all the generated test inputs agree on both
programs, but the program under analysis still has some
additional behaviors (not revealed by the test inputs) that
are different from those of the reference program. In such



1 public void PairedProgram (object[] args) {
2 Debug.Assert(Programl(args) == Program?2(args));

s}

Figure 3: The template of paired programs

cases, SSE would incorrectly consider these two programs
to be behaviorally equivalent. Second, programs may have
infinitely many paths when there are loops in the program
whose iteration count depends on unbounded inputs [30].
For these programs, it is also infeasible to enumerate all
program paths. To alleviate this issue, we can either bound
the input domain or the loop iteration count to enumerate
a subset of program paths as an approximation.

4.3 Paired-program Symbolic Execution (PSE)

To address the limitation that SSE may fail to reveal be-
haviors in the program under analysis, our Paired-program
Symbolic Execution (PSE) metric is computed by construct-
ing a paired program |25 from the reference program and the
program under analysis, and generating test inputs by ex-
ploring the paths in the paired program. Figure [3]shows the
template for constructing the paired program. The paired
program shares the same input domain with the two pro-
grams, and it feeds the same input to both programs and
asserts the outputs of the two programs to be the same.
When generating test inputs based on the paired program,
DSE attempts to generate test inputs passing and failing
the assertion, respectively. The inputs passing the assertion
indicate that the two programs produce the same output on
these inputs, while the inputs failing the assertion indicate
that the two programs produce different outputs. Hence, we
compute the proportion of test inputs that pass the asser-
tion as the value of PSE. The definition of PSE is as follows:

DEFINITION 8  (PSE). Given two programs P, and P.
sharing the same input domain I, we construct the paired
program P, in the form of assert(exec(Pr,I) = exec(Pe, I)),
where assert is a function that accepts a condition as input
and asserts that the condition is true. Let exec(Pp,i) = T
denote the execution of an input i on P, that passes the
assertion. Let Is be the set of inputs generated by DSE on
Py, and I, be a subset of I, such that Vi € I, exec(Pp,i) =
T and 3 € I\ I, exec(P,,§) = T. The PSE metric is
defined as Mpsg(Pr, Pe) = |1a|/|1s]-

Since the test generation for PSE is based on the paired
program constructed from both programs, PSE improves
SSE by avoiding the situations where the generated test in-
puts capture behaviors of the reference program but not the
program under analysis. However, PSE still faces the same
challenge of handling infinite paths in some paired programs.
To alleviate this issue, we can again bound the input do-
main or loop iteration counts. In addition, the paths to be
explored by PSE in the paired program are the combination
of paths in both programs. Thus, PSE has a higher cost in
path exploration than SSE does.

5. EVALUATIONS

We evaluate the effectiveness of our proposed metrics on
code artifacts produced in three real-world data sets from

Table 1: Evaluation subjects

Subject #Tasks | #Students | #Submissions
CSharp4Fun 11 80 1724
APCS 156 37 4116
ICSE2011 30 29 6129
Total 197 146 11969

the PEX4FUN platform [1]. Our evaluations intend to answer
the following two research questions:

e RQ1: How effective are our metrics in ordering pro-
grams based on their progress towards the reference
program?

e RQ2: How accurate are our metrics in approximating
the behavioral similarity?

The answer to RQ1 shows the effectiveness of our metrics
in determining behavioral equivalence and subsumption be-
tween programs. The answer to RQ2 shows how accurately
our metrics can be used to quantify behavioral similarity
between programs.

5.1 Subjects and Evaluation Setup

Subjects. PEX4FUN allows teachers to pose a set of pro-
gramming tasks, each associated with a secret solution pro-
gram. Students keep submitting their programs until the
submitted program behaves the same as the solution pro-
gram does. We construct three data sets from three real
courses on the PEX4FUN platform, namely CSharp4Fun,
APCS, and ICSE2011. CSharp4Fun is a short course that
introduces the basics of C#, with a set of tasks exercising
basic programming concepts. APCS is a companion course
with a series of exercises for advanced placement computer
science students. ICSE2011 is a set of programming tasks
used in the contest of PEX4FUN held at ICSE 2011. These
courses contain various programming tasks, ranging from al-
gorithmic problems and object-oriented design problems to
testing problems. For each task in a course, we collect both
the reference program and a sequence of programs submitted
by students. Typically, the size of the submitted programs
and the reference programs of these tasks ranges from a few
lines to a hundred lines of code. We then filter out those sub-
missions with syntactic errors because our evaluations focus
on the behaviors of the programs. Note that one sequence
in our data sets corresponds to a sequence of submissions
for one task from one student. Table [I] shows the details
of our subjects, including the number of tasks, the num-
ber of students, and the number of programs submitted by
students.

Evaluation Setup. To answer RQ1, we randomly sam-
ple sequences of programs from our data sets, with each
sequence satisfying either of the following properties: (1)
the sequence has a later program behaving equivalently as
an earlier program; (2) the sequence has a later program be-
haviorally subsuming an earlier program with respect to the
reference program. In other words, the sequence is ordered
in that an earlier program is either behaviorally equivalent
with or subsumed by a later program. Due to the significant
manual efforts required in the selection process, we select 60
such sequences (20 for each data set) for our evaluations.

To measure the effectiveness of each metric in ordering
programs based on their progress towards the reference pro-



gram, we compute all three metric values for each program
in each sequence, and verify whether the computed values of
a metric over a sequence conform to the sequence order. In
other words, two equivalent programs should have the same
value, and a program subsuming the other should have a
higher value than the other. A metric is marked as correctly
indicating the progress over the programs in the sequence if
the computed values of the metric conform to the order of
the sequence. We use the percentage of sequences on which
a metric produces the correct order to show the effectiveness
of the metric in indicating the progress over programs. A
higher percentage for a metric indicates that the metric is
more accurate in indicating the ordering of programs.

To answer RQ2, we select tasks that are feasible for manu-
ally computing behavioral similarity between two programs,
and then check how accurately our metric values approx-
imate the manually computed behavioral similarity. For
RQ2, we also randomly sample 60 sequences (20 for each
data set) from these tasks. For each program in the se-
quences, we manually compute the behavioral similarity be-
tween the program and the reference program. To assure
the reliability of the manually computed behavioral similar-
ity, we have at least two authors agree on every manually
computed result. If the input domain of the programs is
infinite, we provide bounds to the input domain. We bound
integers within the interval [-2147483648, 2147483647] (i.e.,
32-bit integers). We bound the length of a string to be 10,
and each character in the string to be from only the ASCII
table (i.e., 8-bit characters). We also bound the length of
an array to be 10. In addition, we exclude any task that
accepts floating-point numbers as inputs because we cannot
enumerate floating point numbers even with bounds. We
plan to design other means to evaluate our metrics on pro-
grams taking as input floating point numbers in future work.

With a bounded finite input domain, for any program P;
in a sequence @Q);, we compute the actual behavioral similar-
ity Si; (manually) between P; and its reference program as
well as the values of each metric M;; on these two programs
using our tool. We measure the accuracy of each metric by
absolute error between the manually computed behavioral
similarity and the metric values as follows:

eij = |Sij — Mij|

We further compute the average absolute error of all pro-
grams in each subject data set and its standard deviation to
show the overall effectiveness of our metrics in approximat-
ing behavioral similarity.

5.2 RQ1: Effectiveness of Indicating Progress

Table [] shows the summary of our evaluation results on
RQ1. Column “Subject” shows the subject data sets. Col-
umn “#Seq.” shows the number of program sequences se-
lected from each data set. Column “#Tasks” shows the num-
ber of distinct tasks included in the selected sequences. Col-
umn “#Avg. Length” shows the mean number of programs
contained in each sequence. Columns “#CO of RS”, “#CO
of SSE”; and “#CO of PSE” show the number of sequences
on which RS, SSE, and PSE produce the correct order based
on behavioral similarity, respectively.

As shown in the table, PSE performs the best in order-
ing the sequences. For 52 out of 60 sequences (87%), it
successfully produces the correct order. The reason for its
good performance is that it does path exploration on the

paired program, combining both the reference program and
the submitted program. Thus, PSE is sensitive to changes
in the submitted program. In general, there are two kinds
of changes in the submitted program that can be effectively
detected by PSE: (1) control-flow changes that result in dif-
ferent or additional paths in the paired program; (2) non-
control-flow changes that make previously infeasible paths in
the paired program feasible. PSE can detect these changes
because the path exploration on these two paired programs
(before and after changes) identifies two different sets of
paths. The metric values computed based on the path explo-
ration are then different. If such changes in the submitted
program correctly handle more inputs, PSE could typically
generate more passing test inputs and thus increase the met-
ric value. In this way, PSE effectively indicates the progress
between programs. The other two metrics, RS and SSE,
do not work well on producing the correct orders over the
sequences, because they are not sensitive to the changes of
the submitted program (not generating test inputs based on
the submitted program). In other words, given a reference
program, they both run any submitted program on a fixed
set of test inputs. Hence, they often fail to distinguish two
submitted programs with slight behavioral differences.
Figure[dshows a simple example from our data sets, where
PSE successfully indicates the progress between programs.
Figures [4a] [4b] and [Ad] respectively show the reference
program, two submitted incorrect programs (Submissions 1
and 2), and a template of paired programs constructed by
PSE. It can be observed that Submission 1 correctly handles
exactly one input (0), and Submission 2 correctly handles
exactly two inputs (0 and 42). By the definition of Behav-
toral Subsumption, Submission 1 is behaviorally subsumed
by Submission 2 with respect to the reference program (i.e.,
Submission 2 makes progress over Submission 1). Although
the behavioral differences between these two submissions are
very small (on only one input), PSE can still correctly indi-
cate the progress because there are control-flow changes from
Submission 1 to Submission 2. PSE constructs two paired
programs PP; and PP» by replacing the Submission method
in the template with Submissions 1 and 2, respectively. PSE
then explores paths in both PP, and PP, and finds that
there are two feasible paths in PPy, one of which leads to
the violation of the assertion. Similarly, PSE finds that one
out of the three feasible paths in PP» leads to the violation
of the assertion. Thus, the metric values of Submissions 1
and 2 are 0.5 = 1/2 and 0.67 = 2/3, which correctly reflect
the order between Submissions 1 and 2. However, both RS
and SSE fail on the example in Figure[d] In order to distin-
guish Submissions 1 and 2, they need to generate the test
input x = 42. The probability that RS generates 42 for z is
1/232, which is close to 0. For SSE, since it generates test in-
puts based on only the reference program, it generates only
one input z = 0 (the default value for integers) in this case
because there is only one path in the reference program.
There are in total 8 sequences on which PSE produces
wrong orders, corresponding to 8 failures. We investigate
these wrong orders and identify two major reasons. For 3
out of the 8 failures, PSE fails to detect the behavioral dif-
ferences because the changes do not modify the control flow
of the paired program. Consider an extreme example where
the reference program takes as input an integer x and always
returns 1 regardless of the input. Suppose that an earlier
submission P; simply returns z, and a later submission P



Table 2: Results on ordering programs based on behavioral similarity

Subject #Seq. | #Tasks | #Avg. Length | #2CO of RS | #CO of SSE | #CO of PSE
CSharp4Fun 20 5 3.5 15 (75%) 10 (50%) 18 (90%)
APCS 20 17 4.2 11 (55%) 9 (45%) 17 (85%)
ICSE2011 20 7 4.7 10 (50%) 7 (35%) 17 (85%)
Total 60 29 4.1 36 (60%) 26 (43%) 52 (87%)
1 int Reference(int x) { 1 int Submissionl(int x) { 1 int Submission2(int x) { 1 void PairedProgram(int x) {
2 2 2 if (x == 0) return 42; 2 Debug.Assert
3 return 42 — x; 3 return 42; 3 if (x == 42) return 0; (Reference(x) ==
4 4 4 return 0; Submission(x));
5 } 5 } 5 } s}

(a) Reference Program (b) Submission 1

(c) Submission 2 (d) Paired Program

Figure 4: A simple example where PSE works but neither RS nor SSE works

returns 2 instead. It is easy to see that neither programs
are equivalent to the reference program, but P, subsumes
P1 because P> correctly handles the input -1 in addition to
the input 1. However, when computing the metric value of
PSE, both paired programs for P; and P have two paths,
and one of the paths violates the assertion. Hence, PSE gen-
erates two test inputs exercising both paths for each paired
program, and gives the same metric value of 0.5 to both P;
and P,. Essentially, since the control flow of the paired pro-
gram and the feasibility of each path remain the same, the
percentage of the generated passing test inputs remains the
same. The other major reason (for 4 out of the 8 failures)
is that the control-flow changes in the paired program actu-
ally lower the percentage of passing test inputs. In general,
the changes allow the current program to correctly handle
additional inputs, the metric value should increase. How-
ever, in some corner cases, the control-flow changes affect
the path exploration of Pex and lower the percentage of the
passing test inputs. For instance, although Pex generates
more passing test inputs, it may generate even more failing
test inputs, and thus makes the metric value decrease.

5.3 RQ2: Effectiveness of Quantifying Behav-
ioral Similarity

Table [3] shows the summary of our evaluation results of
RQ2. Column “Subject” shows the subject data sets. Col-
umn “#Seq.” shows the number of submission sequences
selected from each data set. Column “#Tasks” shows the
number of distinct tasks included in the selected sequences.
Column “#Avg. Length” shows the mean number of pro-
grams contained in each sequence. Columns “AE/SD of RS”,
“AE/SD of SSE”, and “AE/SD of PSE” represent the aver-
age absolute errors and their standard deviation for RS, SSE,
and PSE, respectively.

As shown in Table [3] RS approximates the actual behav-
ioral similarity much better than the other two metrics. Its
overall average absolute error (0.017) and standard devia-
tion (0.044) are very close to 0. The reason for its accurate
approximation is that RS ensures that the randomly gener-
ated inputs are uniformly distributed across the input do-
main. Consider the input domain I as two big partitions,
one partition I, containing all agreed inputs, and the other
partition I; containing all non-agreed inputs. The behav-
ioral similarity is computed as |Io|/|I|. Since RS uniformly
samples inputs, the possibility of sampling an agreed input
is also |I,|/|I|. Hence, when RS samples a significant num-
ber of inputs, the percentage of the sampled agreed inputs
(the metric value for RS) would be very close to |I.|/|I].

SSE and PSE do not approximate the behavioral simi-
larity well because they compute the metric values based

on only path exploration. They implicitly give an equal
weight to each path by doing simple path counting. How-
ever, the corresponding input partition of each path may
vary in size. In order to provide a more accurate approxi-
mation, we would need to assign a weight to each path based
on the size of its corresponding input partition. In future
work, we plan to investigate how the probability of executing
a path [10] can be used to improve SSE and PSE.

It is interesting to observe that, in some cases, SSE and
PSE provide extremely accurate approximations (e.g., pro-
duce perfect values for behavioral similarity). In such cases,
the input domain of the program is typically very small
(possible for the DSE engine to enumerate within its time
bound), and each input leads to a unique path in the pro-
gram. When DSE exhaustively explores all the paths in the
program, it actually enumerates all the inputs from the input
domain. The generated test inputs are the set of all possible
inputs. Hence, the metric values computed for SSE and PSE
are exactly the actual behavioral similarity. Figure 5] shows
such an example from our data sets where both SSE and
PSE produce perfect metric values for behavioral similarity.
The program in Figure[5a]is the reference program, and the
programs in Figures and are an incorrect submission
and a correct submission, respectively. It can be seen that
every input of the reference program leads to a unique path.
Since the value range of a byte argument is from 0 to 255,
there are in total 256 paths in the reference program. When
generating test inputs based on the reference program, SSE
can easily explore all the paths and generate 256 test in-
puts, consisting of every byte value from 0 to 255. Similarly,
the paired programs for Submissions 1 and 2 also have 256
paths. PSE exhaustively explores all the 256 paths and gen-
erates the same test suite as SSE does. Since the generated
test inputs for both SSE and PSE are the set of all possible
inputs, the computed metric values are exactly the actual
behavioral similarity.

The cost of computing the three metrics is acceptable. As
expected, RS has lower cost than the other two metrics. The
major cost for computing RS is running the sampled inputs
on two programs. Since we focus on introductory programs,
the time for running one input on these programs ranges
from milliseconds to a second. The cost of computing RS
for a pair of programs is typically less than one minute (in
many cases, just a few seconds). We can further reduce the
cost of RS by controlling the size of the sample set. For
SSE and PSE, the major cost is input generation. The cost
of generating inputs includes both the analysis cost (e.g.,
symbolic execution, constraint solving) and the execution
cost (e.g., concrete execution). Since DSE actually performs
the concrete execution, we get not only the inputs but also



Table 3: Results on quantifying behavior similarity

Subject #Seq. | #Tasks | #Avg. Length | AE/SD of RS | AE/SD of SSE | AE/SD of PSE
CSharp4Fun 20 5 3.5 0.020 / 0.031 0.184 / 0.224 0.085 / 0.158
APCS 20 17 4.2 0.027 / 0.072 0.225 / 0.309 0.177 / 0.141
ICSE2011 20 7 5.1 0.007 / 0.014 0.390 / 0.456 0.293 / 0.270
Total 60 29 4.3 0.017 / 0.044 0.289 / 0.374 0.202 / 0.240
1 public static int Puzzle(byte number) { 1 public static int Puzzle(byte number) { 1 public static int Puzzle(byte number){
2 int ct = 0; 2 2 var sum = 0;
3 while (number != 0) { 3 3 for (inti=0;i<8;i++)
4 if (number % 2 > 0) ct++; 4 return (int) (number / 2); 4 {
5 number >>= 1, 5 5 sum += (number >> i & 1);
6 } 6 6
7 return ct; 7 7 return sum;
s } s } s }

(a) Reference Program

(b) Submission 1

(¢) Submission 2

Figure 5: An example from our data sets where SSE and PSE produce perfect metric values for behavioral similarity

their outputs after the input generation. Thus, we do not
need to run the generated inputs again to obtain the outputs.
We set a two-minute time bound for the input generation of
a program. Thus, the cost of computing SSE and PSE is
at most slightly over two minutes. Typically, the cost of
computing SSE and PSE for a pair of programs ranges from
ten seconds to one minute.

6. APPLICATIONS OF BEHAVIORAL SIM-
ILARITY

There are broad applications of our behavioral similar-
ity metrics for improving online programming and software
engineering education. We next discuss three practical ap-
plications in detail.

Progress Indication. Our metrics can be used as a
progress indicator during students’ coding process. We can
constantly compute metric values in the background while
students are coding, and display the metric values in real
time as a progress indicator. Note that we do not com-
pute metric values for the code with syntactic errors, as
such code cannot be run. We believe that such an indicator
is useful to students so that they are able to keep track of
their progress. Generally, if they observe increasing metric
values, they know that they are moving along the right di-
rection. Thus, they may feel more confident in their coding.
If they observe a significant decrease, it is very likely that
they are doing something wrong. They may stop early and
avoid making further mistakes.

As shown in our evaluations, PSE is most effective in
distinguishing small behavioral differences while RS is very
effective in approximating the actual behavioral similarity.
We can combine these two metrics to produce a more in-
formative progress indicator. In particular, we can use PSE
to indicate whether there is any progress and RS to indicate
how substantial the progress is. Consider the example in Fig-
ure[2] Although Program 2 makes progress over Program 1,
the progress is small and Program 2 actually moves along a
wrong direction towards the reference program (overfitting
some specific inputs). If we compute PSE for the two pro-
grams against the reference program, the result values are
0.67 and 0.80 for Programs 1 and 2, respectively, indicating
that Program 2 is making substantial progress over Program
1. Similarly, if we also compute the metric values of RS, the
result values are the same as 0.13 for both programs, indi-
cating that Program 2 does not make any progress over Pro-
gram 1. Thus, neither PSE nor RS alone provides accurate

information on the actual progress. However, if we combine
these two metrics as suggested, we can come to the correct
conclusion that although Program 2 is making progress over
Program 1 (Program 2 has a higher metric value of PSE),
the progress is not substantial (Programs 1 and 2 have the
same metric value for RS).

Automatic Grading. To reduce the grading burden on
instructors, we can use our metrics to improve syntactical
approaches [2/24] to automatic grading. The behavioral sim-
ilarity between a student’s program and the reference pro-
gram can be a factor in grading. Higher similarity gener-
ally indicates a higher grade. Since our metrics are purely
based on program semantics, we can combine our metrics
with other syntactical approaches [2,[24] to produce a bet-
ter automatic grader. The syntactical approaches address
the limitations of our metrics in cases where students’ pro-
grams are syntactically very similar to the reference program
but semantically quite different (e.g., missing sanity check
on a large input domain). Our metrics address the limita-
tions of the syntactical approaches in cases where students’
programs are semantically very similar to the reference pro-
gram but syntactically quite different (e.g., the programs
in Figure [I). There are various ways of integrating syn-
tactic and semantic approaches to produce the final grade.
For instance, we can use a sum of weighted behavioral and
syntactic similarities as the final grade. Alternatively, we
can also use the maximum value of behavioral and syntactic
similarities as the final grade.

In addition, our metrics also provide the flexibility of adding
weights to the input. Typically, in practice, not every in-
put is of the same importance. Some inputs that exercise
the main functionality of the task may carry higher weights
while some other inputs filtered by sanity checks may carry
lower weights. Our weighted behavioral similarity allows in-
structors to easily specify the weights over the input domain.

Hint Generation. We can also use our metrics to gen-
erate hints for students during their coding process. Since
students cannot always get prompt help from others, it is
beneficial to automatically generate hints based on their
current code when they encounter problems. The idea, in-
spired by crowdsourcing, is to leverage our metrics to find
behaviorally similar programs from other students as hints.
Specifically, suppose that a student S; needs help on their
current program P;. We can first compute the behavioral
similarity M; between P; and the reference program P, us-
ing RS. Then we search among other students’ submissions
and find one submission Pf (from a student S; who has suc-



cessfully completed the task), whose similarity M]’-c against
P, is equal or closest to M;. k denotes the k" submis-
sion of a submission sequence. Next, we further look into
the submission sequence of the student S;, and select as a
hint program the first submission P} such that £ < n and
Mf < Mj". Intuitively, the hint program P}" contains the
immediate progress made over the program Pf . Since P; is
similar to P]k7 by looking at P}, the student S; may get a
hint on the next step towards the solution. We may even
use DSE to generate some hint inputs, which produce differ-
ent outputs on P; and P}", so that the student knows what
inputs to handle in the next step. Note that it is desirable
to combine this technique with syntactical analysis. When
searching for Pf, it is also important to find a syntactically
similar program. If Pf is syntactically very different from
P;, the student may need to spend more time understanding
the hint program. More importantly, the next step may not
be applicable to P;.

7. THREATS TO VALIDITY

Threats to external validity primarily lie in the generality
of the data sets used in our evaluations. All three data sets
are collected from the PEx4FuN platform, and all programs
are written in C# only. Although such data sets are rep-
resentative for the PEX4FUN platform and object-oriented
languages, they may not be representative for other plat-
forms (e.g., MOOC) and programing languages (e.g., script-
ing and functional languages). In future work, we plan to
evaluate our metrics on data sets from various platforms,
and also develop metrics of behavioral similarity for other
types of programming languages.

Threats to internal validity are mostly potential human
errors in our evaluations. There is a significant amount of
manual effort required to accurately determine the subsump-
tion relations for answering RQ1. In addition, the manual
computation of behavioral similarity used in the evaluation
of RQ2 may be complex and error-prone. These threats are
mitigated by double-checking all the manual work. The re-
sults are individually verified and cross-checked by at least
two authors. There may also be some faults in our software
evaluation framework, and these faults could affect the va-
lidity of our results. This threat is mitigated by extensively
testing the system before conducting the evaluations.

8. RELATED WORK

Automatic Grading. Alur et al. [2] propose an ap-
proach that compares students’ incorrect deterministic fi-
nite automatons (DFAs) with the reference DFA. Their ap-
proach assigns partial grades using techniques that capture
both syntactic differences based on syntactic edit distance
and semantic differences based on the accepted string inputs.
Although both their approach and ours use similar notions
for semantic similarity, their approach works on DFAs while
our metrics work on programs.

Singh et al. [24] propose an approach that automatically
determines the minimal fixes to make a student’s incorrect
solution match the behavior of a reference solution. Their
approach focuses on providing feedback on how to fix the
incorrect solutions via computing the minimal syntactic dis-
tance to the reference solution, while our metrics focus on
quantifying how similar the semantics of two programs are

based on input/output behaviors. Our metrics can identify
similar programs with different syntactic structures.

There also exists previous work leveraging the semantic
similarity of students’ programs and reference programs [29|.
Such approach performs semantic-preserving transformation
to standardize both the students’ programs and the reference
programs, and compares their system dependence graphs to
compute similarities. Instead of comparing system depen-
dence graphs, our approach compares input/output pairs of
programs for computing behavioral similarities, and thus can
identify similar programs with different system dependence
graphs.

Equivalence Checking. There exist several approaches
that check semantic/behavioral equivalence of programs us-
ing program dependence graphs [3}/5], input-output depen-
dence [14], symbolic summaries |22, and side-effect sum-
maries [19]. All these approaches yield a boolean answer to
the equivalence checking, and some of them also produce the
behavioral delta. However, in addition to equivalence check-
ing, our approach also quantifies how similar two programs
are. To the best of our knowledge, we are the first to pro-
pose an approach for quantifying the behavioral similarity
of programs.

Jiang et al. |16] propose an approach to identify function-
ally equivalent code fragments via random testing. Their ap-
proach considers two code fragments equivalent based on in-
put/output behaviors rather than syntactic structures. Our
RS metric is similar to their approach in regard to using
random testing. However, we propose two additional met-
rics, which use DSE-based test generation and outperform
the RS metric in detecting small variations between code
fragments.

Test-Case-Based Feedback. Hext et al. |13| propose
an approach that automatically grades simple program exer-
cises by comparing the stored data with the data generated
by executing incorrect programs. Jackson et al. [15] pro-
pose an approach that automatically checks the correctness
of programs and programming styles such as modularity,
complexity, and efficiency. PEX4FUN uses DSE to gener-
ate test inputs that cause the incorrect programs and the
correct program to produce different outputs. All of these
approaches produce feedback by showing the test inputs of
the failing test cases, while our metrics measure the propor-
tion of inputs producing the same output on the students’
program and the reference program, and can be used for
progress indication and hint generation.

Code-Clone Detection. Researchers have proposed ap-
proaches that compute similarities of various representations
of code fragments to automatically identify code clones, such
as tokenized statements [17], abstract syntax trees [4], pro-
gram dependence graphs [18], and metrics based on syntac-
tic units (e.g., classes and functions) [8,20]. These clone-
detection approaches focus on fragments of source code and
compute similarities based on the syntactic or semantic rep-
resentations of code fragments. Unlike these static approaches
that compute similarities by statically analyzing code arti-
facts, ours is a dynamic approach that computes similarities
by running programs to produce input/output pairs.

9. CONCLUSION

In this paper, we have presented three metrics, namely RS,
SSE, and PSE, to approximate the behavioral similarity be-
tween programs. We leverage test-generation techniques to



generate inputs and compute metric values by running the
inputs on the programs. We have implemented our metrics
based on Pex and evaluated them on three data sets from
the PEX4FUN platform. The evaluation results show that
RS provides the best approximation to the behavioral simi-
larity with an average absolute error of 0.017, but may not
be able to indicate small progress over programs. As a com-
plement, PSE is effective (correct in 87% cases) in ordering
programs based on behavioral similarity, but does not pro-
vide as good approximations as RS does. In future work,
we plan to integrate these two metrics into one metric that
provides both good approximation and sensitivity. We have
also demonstrated a number of applications of our metrics
for online programming and software engineering education
including progress indication, automatic grading, and hint
generation.
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