
Gamifying Software Security Education and Training
via Secure Coding Duels in Code Hunt

Tao Xie
University of Illinois at
Urbana-Champaign

Urbana, IL, USA
taoxie@illinois.edu

Judith Bishop
Microsoft Research
Redmond, WA, USA

jbishop@microsoft.com

Nikolai Tillmann,
Jonathan de Halleux

Microsoft Research
Redmond, WA, USA

nikolait@microsoft.com
jhalleux@microsoft.com

ABSTRACT

Sophistication and flexibility of software development make it easy

to leave security vulnerabilities in software applications for attack-

ers. It is critical to educate and train software engineers to avoid in-

troducing vulnerabilities in software applications in the first place

such as adopting secure coding mechanisms and conducting secu-

rity testing. A number of websites provide training grounds to train

people’s hacking skills, which are highly related to security test-

ing skills, and train people’s secure coding skills. However, there

exists no interactive gaming platform for instilling gaming aspects

into the education and training of secure coding. To address this

issue, we propose to construct secure coding duels in Code Hunt,

a high-impact serious gaming platform released by Microsoft Re-

search. In Code Hunt, a coding duel consists of two code segments:

a secret code segment and a player-visible code segment. To solve

a coding duel, a player iteratively modifies the player-visible code

segment to match the functional behaviors of the secret code seg-

ment. During the duel-solving process, the player is given clues as

a set of automatically generated test cases to characterize sample

functional behaviors of the secret code segment. The game aspect

in Code Hunt is to recognize a pattern from the test cases, and to

re-engineer the player-visible code segment to exhibit the expected

behaviors. Secure coding duels proposed in this work are coding

duels that are carefully designed to train players’ secure coding

skills, such as sufficient input validation and access control.

1. INTRODUCTION
Sophistication and flexibility of software development make it

easy to leave security vulnerabilities in software applications for

attackers. Approaches such as anti-virus applications and network

firewalls offer comparatively secure protection at the host and net-

work levels, but not at the software application level. It is critical to

educate and train software engineers to avoid introducing vulnera-

bilities in software applications in the first place such as adopting

secure coding mechanisms and conducting security testing.

In the “hacker” community, a number of websites (such as Hack-

ThisSite [3] and Hacker Test [2]) provide training grounds to train

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the Owner/Author.
Copyright is held by the owner/author(s).
HotSoS ’15, Apr 21-22, 2015, Urbana, IL, USA
ACM 978-1-4503-3376-4/15/04.
http://dx.doi.org/10.1145/2746194.2746220.

Figure 1: User interface of game playing in Code Hunt

people’s hacking skills, which are highly related to security test-

ing skills. To train people’s secure coding skills, Gera’s website on

Insecure Programming by example [1] offers a list of vulnerable

code examples with increasing difficulty. However, there exists no

interactive gaming platform for instilling gaming aspects into the

education and training of secure coding.

To address this issue, we propose to construct secure coding

duels in Code Hunt (https://www.codehunt.com/) [4], a

high-impact serious gaming platform released by Microsoft Re-

search. Since its release in early 2014, Code Hunt has attracted over

100,000 users and accumulated their contributed solutions when

playing coding duel games. In April 2014, Code Hunt was used

at a very large competition called Beauty of Programming in the

Greater China Region. In three rounds, 2,353 students scored in

the game, with an average 55.7% puzzles solved across this large

number. Code Hunt is being offered for more competitions, as

ongoing efforts. The Code Hunt Challenge being run as part of

Microsoft Imagine Cup (https://www.imaginecup.com/

codehunt) has hundreds of participants per month from all around

the world. Code Hunt’s predecessor Pex4Fun [10, 11] also gained

popularity in the community: since it was released to the public in

June 2010, the number of clicks of the “Ask Pex!” button (indi-

cating the attempts made by users to solve games at Pex4Fun) has

reached over 1.6 millions as of January 2015.

2. CODE HUNT
Coding duel [10] is the main game type in Code Hunt. Written in

either C# or Java, a coding duel includes a secret code segment and

a player-visible code segment, both embodied in a Puzzle method

sharing the same method signature. The player-visible code seg-

ment is typically empty in content or an incorrect/incomplete ver-



sion of the secret code segment. To solve a coding duel, a player

iteratively observes clues given by Code Hunt and modifies the

player-visible code segment to match the functional behaviors of

the secret code segment.

Figure 1 shows the user interface of game playing in Code Hunt.

The player-visible code segment in the coding duel is displayed on

the left hand side of the user interface. After the player clicks the

button “Capture Code” (shown in the top-middle part), Code Hunt

relies on the test cases automatically generated by a state-of-the-art

test generation tool (Pex [8, 9]) to characterize and display sam-

ple common and different functional behaviors (shown on the right

hand side) between the secret code segment and the player-visible

code segment being modified by the player. The game aspect in

Code Hunt is to recognize a pattern from the test cases, and to re-

engineer the player-visible code segment to exhibit the expected

behaviors.

3. SECURE CODING DUELS
To train software engineers’ secure coding skills, we construct

secure coding duels on Code Hunt. Our initial efforts focus on

the topics of input validation and access control along with integer

overflow, with initial artifacts from our previous work [5, 7], and

those artifacts from public repositories for security, e.g., the NIST

National Vulnerability Database (NVD) (http://nvd.nist.

gov/).

Input validation duels. User-input validators are the first bar-

ricade that protects a software application such as a web applica-

tion from application-level attacks such as buffer overflow, code-

injection attack, hidden-field manipulation, and cross-site scripting.

In our previous work [7], we conducted multiple-implementation

testing based on Pex [8, 9] on 53 different input validators (of 6

common types) for web applications. Our results show that MiTV

detected real defects in 70% of the input validators. Such results

demonstrate the strong need of educating software engineers on

improving their skills for writing correct input validators.

To construct secure coding duels for training input validation,

we go through two steps: (1) collect a faulty input validator IVf

(e.g., from the ones collected in our previous work [7]) and then

fix it to produce a correct input validator IVc; (2) construct a cod-

ing duel by turning IVf into the player-visible code segment and

turning IVc into the secret code segment. Basically, the resulting

secure coding duel is to ask the players to half-guess the expected

behaviors of the given input validator, and then fix the given input

validator to match the expected behaviors. By reading the input

validator code, the players can easily infer the input validator type

(e.g., credit card number, email address, phone number, SSN, URL,

and zip code) even if the type is not explicitly stated in the player-

visible code segment. However, the players may not immediately

realize the exact expected behaviors of the given input validator for

that type.

Access control duels. Access control is one of the most fun-

damental and widely used privacy and security mechanisms, espe-

cially in systems where people share information about themselves

in dynamic and mobile situations. Access control mechanisms con-

trol which principals such as users or processes have access to

which resources in a system. To facilitate managing and maintain-

ing access control, access control policies are increasingly written

in specification languages. The specification of access control poli-

cies is often a challenging problem. In our previous work [12], we

view an access control policy as a software module, which returns

permit or deny when given an access request from a principal. Then

for each policy language, we have developed a translator that au-

tomatically translates a policy written in that policy language to a

software module (e.g., a Java or C# method). We can then directly

reuse existing software testing tools such as Pex [8, 9] to test the

policy indirectly.

To construct secure coding duels for training access control, we

go through three steps: (1) collect an access control policy ACPc

(e.g., from the ones collected in our previous work [5]) and then

apply a mutation/fault-seeding tool (e.g., one from our previous

work [6]) to seed a simple fault into the original policy to pro-

duce a faulty policy ACPf ; (2) apply the policy-to-code trans-

lator [12] on ACPc and ACPf to produce their code versions

ACPCc and ACPCf , respectively; (3) construct a coding duel

by turning ACPCf into the player-visible code segment and turn-

ing ACPCc into the secret code segment. Basically, the resulting

secure coding duel is to ask the players to guess the expected be-

haviors of the given policy, and then fix the given policy to match

the expected behaviors.

Acknowledgments

This material is based upon Tao Xie’s work supported by the Mary-

land Procurement Office under Contract No. H98230-14-C-0141,

as well as a Microsoft Research Award, NSF grants CNS-1434582,

CNS-1439481, CCF-1349666, CCF-1409423, CCF-1434590, and

CCF-1434596.

4. REFERENCES
[1] Gera’s Insecure Programming by example.

http://community.coresecurity.com/~gera/

InsecureProgramming/.

[2] Hacker Test. http://www.hackertest.net/.

[3] HackThisSite Missions.

http://www.hackthissite.org/missions/.

[4] J. Bishop, N. Horspool, T. Xie, N. Tillmann, and

J. de Halleux. Code Hunt: Experience with coding contests

at scale. In Proc. ICSE, JSEET, 2015.

[5] J. Hwang, T. Xie, V. Hu, and M. Altunay. ACPT: A tool for

modeling and verifying access control policies. In Proc.

POLICY, System Demo, pages 40–43, 2010.

[6] E. Martin and T. Xie. A fault model and mutation testing of

access control policies. In Proc. WWW, pages 667–676,

2007.

[7] K. Taneja, N. Li, M. Marri, T. Xie, and N. Tillmann. MiTV:

Multiple-implementation testing of user-input validators for

web applications. In Proc. ASE, pages 131–134, 2010.

[8] N. Tillmann and J. de Halleux. Pex – white box test

generation for .NET. In Proc. TAP, pages 134–153, 2008.

[9] N. Tillmann, J. de Halleux, and T. Xie. Transferring an

automated test generation tool to practice: From Pex to

Fakes and Code Digger. In Proc. ASE, Experience Papers,

pages 385–396, 2014.

[10] N. Tillmann, J. de Halleux, T. Xie, S. Gulwani, and

J. Bishop. Teaching and learning programming and software

engineering via interactive gaming. In Proc. ICSE SEE,

pages 1117–1126, 2013.

[11] T. Xie, N. Tillmann, J. de Halleux, and J. Bishop.

Educational software engineering: Where software

engineering, education, and gaming meet. In Computer

Games and Software Engineering. Taylor & Francis Group,

2015.

[12] T. Yu, D. Sivasubramanian, and T. Xie. Security policy

testing via automated program code generation (extended

abstract). In Proc. CSIIRW, 2009.


