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Abstract. Web search engines use link-based reputation systems (e.g.
PageRank) to measure the importance of web pages, giving rise to the
strategic manipulations of hyperlinks by spammers and others to boost
their web pages’ reputation scores. Hopcroft and Sheldon [10] study this
phenomenon by proposing a network formation game in which nodes
strategically select their outgoing links in order to maximize their PageR-
ank scores. They pose an open question in [10] asking whether all Nash
equilibria in the PageRank game are insensitive to the restart probabil-
ity α of the PageRank algorithm. They show that a positive answer to
the question would imply that all Nash equilibria in the PageRank game
must satisfy some strong algebraic symmetry, a property rarely satisfied
by real web graphs. In this paper, we give a negative answer to this open
question. We present a family of graphs that are Nash equilibria in the
PageRank game only for certain choices of α.

1 Introduction

Many web search engines use link-based algorithms to analyze the global link
structure and determine the reputation scores of web pages. The popular PageR-
ank [3] reputation system is one of the good examples. It scores pages according
to their stationary probability in a random walk on the graph that periodically
jumps to a random page. Similar reputation systems are also used in peer-to-peer
networks [11] and social networks [8].

A common problem in reputation systems is manipulation: strategic users
arrange links attempting to boost their own reputation scores. On the web, this
phenomenon is called link spam, and usually targets at PageRank. Users can
manage to obtain in-links to boost their own PageRank [6], and can also achieve
this goal by carefully placing out-links [2, 4, 7]. Thus PageRank promotes certain
link placement strategies that undermine its original premise, that links are
placed organically and reflect human judgments on the importance and relevance
of web pages.
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There are a number of works focusing on understanding, detecting [6, 2, 4,
7] and preventing link manipulations [5, 9, 12]. Other works investigate the con-
sequences of manipulation. In [10], Hopcroft and Sheldon introduce a network
formation game called the network reputation game, where players are nodes at-
tempting to maximize their reputation scores by strategically placing out-links.
They mainly focus on the game with the PageRank reputation system, which
we refer to directly as PageRank game, and study the Nash equilibria of the
game. Each Nash equilibrium is a directed graph, where no player can further
improve his own PageRank by choosing different out-links. They present several
properties that all Nash equilibria hold, and then provide a full characterization
of α-insensitive Nash equilibria, those graphs that are Nash equilibria for all
restart probability α, a parameter in the PageRank algorithm. They show that
all α-insensitive Nash equilibria must satisfy some strong algebraic symmetry
property, which is unlikely seen in real web graphs.

However, the work of [10] leaves an important question unanswered, which
is whether all Nash equilibria are α-insensitive. In this paper, we give a negative
answer to this open question. In particular, we construct a family of graphs and
prove that for α close to 0 and 1 they are not Nash equilibria. At the same
time, by applying the mean value theorem, we argue that for every graph in the
family, there must exist an α for which the graph is a Nash equilibrium.

In Section 2, we give the definition of PageRank functions and some known
properties of α-random walk and best response in PageRank games. In Section
3, we present the construction of a family of graphs and prove that they are
α-sensitive Nash equilibria.

2 Preliminaries

2.1 PageRank

Let G = (V, E) be a simple directed graph, i.e., without multiple edges and
self-loops. Furthermore, we assume each node has at least one out-link. Let
V = [n] = {1, 2, . . . , n}. We denote (i, j) as the directed edge from node i to
node j.

The PageRank of the nodes in G can be represented by the stationary dis-
tribution of a random walk as follows. Let α ∈ (0, 1) be the restart probability.
The initial position of the random walk is uniformly distributed over all nodes
in the graph. In each step, with probability α, the random walk restarts, i.e.,
jumps to a node uniformly at random. Otherwise, it walks to the neighbors of
the current node, each with the same probability. The PageRank of a node u is
the probability mass of this random walk in its stationary distribution. We refer
to this random walk as the PageRank random walk. Note that this random walk
is ergodic, which implies the existence of the unique stationary distribution.

Mathematically, let A be the adjacency matrix of G, such that the entry
Aij = 1 if and only if there exists an edge from node i to j in G. Let di be
the out degree of node i in G. Define matrix P as P = AD−1, where D =
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diag{d1, d2, . . . , dn}. Thus P is the transition matrix for the random walk on G
without the random restart. By defining Mα = I − (1 − α)P , it is well known
(e.g. see [10]) that the PageRank (row) vector πα is:

πα =
α

n
[1, 1, · · · , 1](I − (1− α)P )−1

=
α

n
[1, 1, · · · , 1]M−1

α .

The i-th entry of πα is the PageRank value of node i in G. In particular, the
PageRank of node i is:

πα[i] =
α

n

n∑

j=1

M−1
α ji. (1)

Returning Probability

It is easy to see that M−1
α = I +

∑∞
i=1[(1−α)P ]i. Therefore the entry M−1

α ij

is the expected number of times to visit j starting from i before the next restart,
in the PageRank random walk.

Suppose that the random walk currently stops at i. We define φij to be the
probability of reaching j in the random walk before the next restart. We set
φii = 1. Let φ+

ii be the probability of returning to i itself from i before the next
restart. The following lemma holds.

Lemma 1 (Hopcroft and Sheldon [10]). Let i, j ∈ [n]. For any simple di-
rected graph G and restart probability 0 < α < 1, we have

∀ i 6= j, M−1
α ij = φijM

−1
α jj

∀ j, M−1
α jj =

1
1− φ+

jj

.

2.2 PageRank Game and Best Responses

In the PageRank game, each node is building out-links. Let Ei = {(i, j) | j ∈
V \ {i} } be the set of possible out-links from node i. The strategy space of node
i is all subsets of Ei. The payoff function for each node is its PageRank value in
the graph.

A best response strategy for node i in the PageRank game is a strategy that
maximizes its PageRank in the graph, given the strategies of all other nodes. By
Lemma 1 and Equation (1), the best response for i is maximizing the following
statement in the new graph:

n∑

j=1

φji

1− φ+
ii

.

Note that φji is the probability of reaching node i from j before the next
restart in the random walk, which is independent of the out-links from i. (φii = 1
by definition.) Based on this observation, following lemma from [10] holds.
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Lemma 2 (Lemma 1 of Hopcroft and Sheldon [10]). In the PageRank
game, a best response strategy for node i is a strategy that maximizes φ+

ii in the
new graph.

By definition, φ+
ii is the probability of returning to i from i before the next

restart in the random walk. Therefore,

φ+
ii =

α

|N(i)|
∑

j∈N(i)

φji.

Corollary 1. In the PageRank game, a best response strategy for node i is a
nonempty set S ⊆ Ei that maximizes

1
|S|

∑

j∈S

φji.

Note that the out-links of node i does not affect φji for j 6= i. Since Corol-
lary 1 means that the best response of node i is to maximize the average φji of
its outgoing neighbors, it is clear that i should only select those nodes j with
the maximum φji as its outgoing neighbors. This also implies that in the best
response S of i, we have for all j, k ∈ S, φji = φki.

2.3 Algebraic Characterization of a Nash Equilibrium

A graph G is a Nash equilibrium if for any node i, its out-links in G is a best
response. The following lemma is a directly consequence of Corollary 1.

Lemma 3. If a strongly-connected graph G = (V, E) is a Nash equilibrium, the
following conditions hold:

(1) for all different i, j, k ∈ V , M−1
α ji < M−1

α ki =⇒ (i, j) 6∈ E; and
(2) ∀ (i, j), (i, k) ∈ E, M−1

α ji = M−1
α ki.

It has been shown that any strongly connected Nash equilibrium should be
bidirectional [10].

Lemma 4 (Theorem 1 of Hopcroft and Sheldon [10]). If a strongly-
connected graph G = (V, E) is a Nash equilibrium, then for any edge (i, j) ∈ E,
we have (j, i) ∈ E.

The proof of Lemma 4 uses the fact that only the nodes having out-links to
vertex i can achieve the maximum value of M−1

α ·,i. The following lemma states
that the necessary conditions given in Lemma 3 (2) and Lemma 4 are actually
sufficient to characterize a Nash equilibrium.

Lemma 5 (Equivalent condition for a Nash equilibrium). A strongly-
connected graph G = (V, E) is a Nash equilibrium if and only if G is bidirectional
and ∀(i, j), (i, k) ∈ E,M−1

α ji = M−1
α ki.
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Proof. The necessary conditions are given by Lemma 3 (2) and Lemma 4. We
focus on the sufficient condition. Since M−1

α ji = M−1
α ki is true for all nodes

j, k ∈ V \ {i} that have out-links to i by our condition, we have φji = φki from
Lemma 1. By Lemma 2 of Hopcroft and Sheldon [10], only the incoming neigh-
bors j of i can achieve the maximum φji. Therefore, all incoming neighbors of
i actually achieve this maximum. By Corollary 1, node i selecting all incoming
neighbors as outgoing neighbors is certainly a best response, which implies that
G is a Nash equilibrium.

3 Existence of α-sensitive Nash Equilibria

A Nash equilibrium is α-insensitive if it is a Nash equilibrium for all possible
parameter 0 < α < 1. Otherwise, we say that it is α-sensitive. Hopcroft and
Sheldon asked the following question about the α-insensitivity property for Nash
equilibria.

Question 1 (Hopcroft and Sheldon’s question on α-insensitivity [10]). Are all the
Nash equilibria α-insensitive or there exist other α-sensitive Nash equilibria in
the PageRank game?

We are interested in this question because if all the Nash equilibria are α-
insensitive, the set of Nash equilibria can be characterized by the set of Nash
equilibria at some specific α. In particular, we can characterize the set of Nash
equilibria when α is arbitrary close to 1 (e.g. 1−1/n3). However, if the answer to
this question is positive, all Nash equilibria must satisfy some strong algebraic
symmetry as illustrated in [10], making them less likely the right choice for
modeling web graphs. We show below that there exist α-sensitive Nash equilibria,
which implies that the set of equilibrium graphs in the PageRank game is much
richer.

Theorem 1 (Answer to Question 1). There exist an infinite number of α-
sensitive Nash equilibria in the PageRank game.

The rest part of this section is devoted to the construction of such α-sensitive
Nash equilibria.

3.1 Construction of Gn,m

For all n,m ∈ Z+, we construct an undirected graph Gn,m as follows.

Definition 1 (Gn,m). As shown in Figure 1, the vertex set of graph Gn,m con-
sists of U and V . U = {u1, u2, · · · , un} and V = {vi,j | i ∈ [m], j ∈ [n]}. Each
Vi = {vij | j ∈ [n]} is fully connected. For each node ui ∈ U, there are m edges
{(ui, vj,i)} adjacent to ui for j ∈ [m].

Note that we define Gn,m as an undirected graph for the simplicity of pre-
sentation. This is because each Nash equilibrium is bidirectional. Nevertheless,
we can change Gn,m to a directed graph, by replacing each edge with two direct
edges. All the following treatment assumes Gn,m is directed.
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· · ·

n vertices with degree m

· · · · · ·

m n-cliques

U u1 u2 un

V

v1,n v1,1

v1,2

v2,n v2,1

v2,2

vm,n

vm,2

· · ·

n × m cross edges

vm,1

Fig. 1. The graph Gn,m.

3.2 Equivalent condition of Gn,m being Nash equilibria

By Lemma 5, given α, n and m, Gn,m is a Nash equilibrium if and only if the
following statements hold

∀different i, i′ ∈ [m], j ∈ [n], M−1
α vi,j ,uj

= M−1
α vi′,j ,uj

(2)

∀ i ∈ [m], different k, k′, j ∈ [n], M−1
α vi,k,vi,j

= M−1
α vi,k′ ,vi,j

(3)

∀ i ∈ [m], different k, j ∈ [n], M−1
α vi,k,vi,j

= M−1
α uj ,vi,j

(4)

It is easy to see that equations in (2) and (3) hold for any α, n,m by symme-
try. Moreover, for all i ∈ [m] and different k, j ∈ [n], M−1

α vi,k,vi,j
has the same

value, and for all i ∈ [m] and j ∈ [n], M−1
α uj ,vi,j

has the same value in Gn,m.
We define two functions based on this observation:

fn,m(α) = M−1
α vi,k,vi,j

, for i ∈ [m] and j, k ∈ [m], j 6= k,

gn,m(α) = M−1
α uj ,vi,j

, for i ∈ [m] and j ∈ [n].

The above argument together with Lemma 5 implies the following lemma.

Lemma 6. Given α, n and m, Gn,m is a Nash equilibrium for the PageRank
game with parameter α ∈ (0, 1) if and only if

fn,m(α)− gn,m(α) = 0 (5)

3.3 α-sensitivity of Gn,m : Proof outline

Given n, m, by Lemma 6, to prove Gn,m is α-sensitive, we only need to show that
there is some α satisfying Equation (5), while there is also some other α that
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does not. Note that fn,m(α) (resp. gn,m(α)) is the expected number of times the
random walk starting from vi,k (resp. uj) visiting vi,j before the next restart.
We use this interpretation to both explain the intuitive idea of the proof and
carry out the detailed proof.

Intuitively, when α is very close to 1 (i.e. the random walk restarts with a
very high probability), we only need to compute the first few steps of the random
walk to give a good estimate of M−1

α i,j , since the random walk is very likely to
restart after a few steps and the contribution of the longer steps of the walk is
negligible. Thus, in this case, by estimating the first step, for all i ∈ [m], different
k, j ∈ [n],

fn,m(α) = M−1
α vi,k,vi,j

≈ 1− α

n

gn,m(α) = M−1
α uj ,vi,j

≈ 1− α

m
.

When m < n, there exists α such that fn,m(α)−gn,m(α) is indeed negative. The
following lemma formalizes the intuition. We defer its proof to the next section.

Lemma 7. Given 1 ≤ m ≤ n−2, if α ≥ n−3
n−2 , fn,m(α)− gn,m(α) < 0 and Gn,m

is not a Nash equilibrium for the PageRank game with parameter α.

On the other hand, when α is very close to 0, random walks starting from
both uj and vi,k tend to be very long before the next restart. In this case, the
random walk starting at vi,k has an advantage to be in the same clique as the
target vi,j , such that the expected number of time it hits vi,j before the walk
jumps out of the clique is close to 1. The random walk starting at uj , however,
has (m− 1)/m chance to walk into a clique different from the i-th clique where
the target vi,j is in, in which case it cannot hit vi,j until it jumps out of its current
clique. After both walks jump out of their current clique for the first time, their
remaining stochastic behaviors are close to each other and thus contributing to
fn,m(α) and gn,m(α) approximately the same amount. As a result, gn,m(α) gains
about ( 1

m − 1
n ) over fn,m(α) in the case where the random walk from uj hit the

target vi,j in the first step, but fn,m(α) gains about 1 over gn,m(α) in the rest
cases. Therefore, fn,m(α) is approximately 1 + 1

n − 1
m larger than gn,m(α) when

m is large. The following lemma gives the accurate statement of this intuition
while the next section provides the detailed and rigorous analysis.

Lemma 8. Assume 4 ≤ m < n. If α ∈ (0, 1
n(n−1) ), fn,m(α)− gn,m(α) > 0.

Lemma 9. fn,m(α) and gn,m(α) are continuous with the respect of α ∈ (0, 1).

Proof. For any graph, the corresponding Mα is invertible for α ∈ (0, 1). Note
that each entry of Mα is a continous function with respect to α ∈ (0, 1). By
Cramer’s rule,

M−1
α =

M∗
α

|Mα| ,
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where |Mα| is the determinant and M∗
α is the co-factor matrix of Mα. Therefore,

M−1
α i,j is continuous with respect to α ∈ (0, 1), since it is a fraction of two

finite-degree polynomials and |Mα| is non-zero.

With the continuity of fn,m(α) and gn,m(α) and the results of Lemma 7
and 8, we can apply the mean value theorem on fn,m(α) − gn,m(α) and know
that it must have a zero point. With Lemma 6, we thus have

Corollary 2. Given 4 ≤ m ≤ n − 2, there exists α ∈ ( 1
n(n−1) ,

n−3
n−2 ) such that

Gn,m is a Nash equilibrium for the PageRank game with parameter α.

Lemma 7 and Corollary 2 immediately imply Theorem 1.

3.4 Proof details

In this section, we provide the complete proofs to the results presented in last
section. To make our intuitive idea accurate, the actual analysis is sufficiently
more complicated.
Proof. [of Lemma 7] By Lemma 1, fn,m(α)−gn,m(a) < 0 if and only if φvi,j′ ,vi,j <
φuj ,vi,j .

By symmetry of the graph, we have φvi,j′ ,vi,j = 1−α
n + (n−2)(1−α)

n φvi,j′ ,vi,j +
1−α

n φuj′ ,vi,j for j′ 6= j. Since uj′ is at 2 hops away from vi,j , φuj′ ,vi,j ≤ (1−α)2.
From α ≥ n−3

n−2 , we have n− (n− 2)(1− α) ≥ n− 1. Therefore, we have

φvi,j′ ,vi,j ≤
(1− α) + (1− α)3

n− 1
.

Finally, since α ≥ n−3
n−2 = 1− 1

n−2 ≥ 1−1/
√

n− 2, we have (1−α)2 ≤ 1/(n−2),
and thus

φvi,j′ ,vi,j ≤
(1− α) + (1− α)3

n− 1
≤ 1− α

n− 2
.

On the other hand, φuj ,vi,j > 1−α
m . Therefore, the lemma holds when m ≤

n− 2.

Definition 2. To simplify the notation, by symmetry of the graph, we define

1. r = M−1
α vi,j ,vi,j

,
2. x = M−1

α vi′,j ,vi,j
, i′ 6= i,

3. y = M−1
α vi,j′ ,vi,j

, j′ 6= j,
4. z = M−1

α vi′,j′ ,vi,j
, i′ 6= i and j′ 6= j,

5. and µ = M−1
α uj ,vi,j

.

By definition, r ≥ max{x, y, z, u}. The proof of Lemma 8 requires the follow-
ing result.
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Lemma 10. Assume 1 < m ≤ n. If α ∈ (0, 1
n(n−1) ), we have

1. y − z ∈ ( n
n+1 , n

n−1 ),
2. r − y < n

n−1 ,
3. x− z < 2

n−1 .

Proof. For any path L = (i1, i2, · · · , ik), let Prα(L) be the probability of com-
pleting the path L exactly before next restart when starting from i1. Therefore,
Prα(L) = α(1 − α)k−1

∏k−1
j=1 Pij ,ij+1 , where P is the transition matrix of the

graph. Let V (L) be the set of nodes of L.
Let CountL(i) be the number of occurrence of node i in L. Denote by L(i)

the set of paths of finite length starting from vertex i. Therefore,

M−1
α ij =

∑

L∈L(i)

Prα(L)CountL(j)

For the first claim, we define function F
(j)
i→i′ : L(vi,j) → L(vi′,j) to map

any path L starting from vi,j to a path L′ starting from vi′,j , by replacing the
longest prefix of L in Vi with a corresponding path in the Vi′ . It is easy to see
that F

(j)
i→i′ always outputs valid paths, and is a bijection. By symmetry, we have

Prα(L) = Prα(F (j)
i→i′(L)) for all L ∈ L(vi,j). For a path L such that V (L) ⊆ Vi,

we define Pr
(i)
α (L) be the probability that the random walk exactly finishes L

before leaving Vi or restarting.
Then,

y − z = M−1
α vi,j′ ,vi,j

−M−1
α vi′,j′ ,vi,j

=
∑

L∈L(vi,j′ )

Prα(L)CountL(vi,j)−
∑

L∈L(vi′,j′ )

Prα(L)CountL(vi,j)

=
∑

L∈L(vi,j′ )

Prα(L)(CountL(vi,j)− Count
F

(j′)
i→i′ (L)

(vi,j))

=
∑

L∈L(vi,j′ )∧V (L)⊆Vi

Pr(i)
α (L)CountL(vi,j)

The last equality is because (a) Count
F

(j′)
i→i′ (L)

(vi,j) is zero before the walk

on L leaves clique Vi′ for the first time, and after it leaves Vi′ , it cancels with
CountL(vi,j); and (b) Pr

(i)
α (L) with V (L) ⊆ Vi is the aggregate probability of

all paths with L as the prefix.
Therefore, y− z =

∑
L∈L(vi,j′ )∧V (L)⊆Vi

Pr
(i)
α (L)CountL(vi,j) is the expected

number of times for a random walk visiting vi,j from vi,j′ before leaving Vi

or restarting. Since the probability for a random walk leaving Vi or restarting
is α + (1 − α)/n, the expected length of a such path is 1

α+(1−α)/n . Let the
expected number of times vi,j appears in such paths is tj for j 6= j′. Let t be
the expected number of times vi,j′ appears in such paths except the starting
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node. Note that t +
∑

j 6=j′ tj = 1
α+(1−α)/n and ∀ j, k 6= j′, tj = tk. Furthermore,

t = (1−α)(n−1)
n tj < tj . We have

n

n + 1
<

1
(α + (1− α)/n)(n)

< tj = y − z <
1

(α + (1− α)/n)(n− 1)
<

n

n− 1
.

Consider the second claim. We have

r = 1 +
1− α

n
µ +

(n− 1)(1− α)
n

y ≤ 1 +
1− α

n
r +

(n− 1)(1− α)
n

y.

Therefore, r ≤ 1
1−(1−α)/n +(n−1)(1−α)y/(n−(1−α)) and r−y < n

n−(1−α) ≤
n

n−1 .

For the third claim,

x− z ≤
(

(1− α)(n− 1)
n

z +
1− α

n
µ

)
− (1− α)z

=
1− α

n
(µ− z) ≤ 1− α

n
(r − z)

<
1− α

n
(

n

n− 1
+ (y − z)) <

2
n− 1

.

We are ready to present the proof of Lemma 8.
Proof. [of Lemma 8] By definition, fn,m(α) = µ and gn,m(α) = y. We want to
show that µ < y. By Lemma 10,

y − x = (y − z) + (z − x) >
n

n + 1
− 2

n− 1
.

We have

µ =
1− α

m
r +

(m− 1)(1− α)
m

x <
1
m

r +
m− 1

m
x

<
1
m

(y +
n

n− 1
) +

m− 1
m

(y − n

n + 1
+

2
n− 1

)

= y +
n

m(n− 1)
− (m− 1)n

m(n + 1)
+

2(m− 1)
m(n− 1)

≤ y +
2
m
− (m− 1)n

m(n + 1)
+

2
n− 1

< y

The last inequality holds when 4 ≤ m < n.
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