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Abstract. We adapt the compact routing scheme by Thorup and Zwick to op-
timize it for power-law graphs. We analyze our adapted routing scheme based
on the theory of unweighted random power-law graphs with fixed expected de-
gree sequence by Aiello, Chung, and Lu. Our result is the first theoretical bound
coupled to the parameter of the power-law graph model for a compact routing
scheme. In particular, we prove that, for stretch 3, instead of routing tables with
O(nl/ 2) bits as in the general scheme by Thorup and Zwick, expected sizes of
O(n” log n) bits are sufficient, and that all the routing tables can be constructed
at once in expected time O(n'"” logn), with v = =% + ¢, where 7 € (2,3)
is the power-law exponent and € > 0. Both bounds also hold with probability at
least 1 — 1/n (independent of €). The routing scheme is a labeled scheme, requir-
ing a stretch-5 handshaking step and using addresses and message headers with
O(log n log log n) bits, with probability at least 1 —o(1). We further demonstrate
the effectiveness of our scheme by simulations on real-world graphs as well as
synthetic power-law graphs. With the same techniques as for the compact rout-
ing scheme, we also adapt the approximate distance oracle by Thorup and Zwick
for stretch 3 and obtain a new upper bound of expected O(nHV) for space and
preprocessing.

1 Introduction

Message routing is a fundamental service in communication networks. When
routing a message from a source to a destination in the network, to decide where
to forward the message to, a node may only use its local information, which
includes its local routing table, the destination address, and a message header.
A routing scheme is expected to route messages between all source-destination
pairs along shortest or approximate shortest paths. A key measure of the quality
of a routing scheme is its worst-case multiplicative stretch, which is defined as
the maximum ratio of the length of the message route between a pair of nodes s
and t by the scheme and the actual shortest path length between s and ¢, among
all s-t pairs in the network.

Routing schemes address the tradeoff between stretch and routing table size.
A trivial stretch-1 routing scheme is one in which every node stores for every
destination in the network where to forward the message to. However, for a



network with n nodes, this approach requires unscalable {2(n logn)-bit rout-
ing tables for every node [20]. A compact routing scheme is only allowed to
have routing tables with sizes sublinear in n and message header sizes poly-
logarithmic in n. There are two classes of compact routing schemes: Labeled
schemes are allowed to add labels to node addresses to encode useful informa-
tion for routing purposes, where each label has length at most polylogarithmic
in n. Name-independent schemes do not allow the renaming of node addresses,
instead they must function with all possible addresses.

Both labeled and name-independent compact routing schemes have been
studied extensively. Universal schemes work for all network topologies [3-5,
14,28, 29). It has been shown that with O(n'/*)-bit routing tables (as usual, we
abbreviate O(f(n) - log’ n) for some constant ¢ by O(f(n))) one can achieve a
stretch of O(k), and that this tradeoff is essentially tight due to a girth conjecture
by Erdds.

Due to these impeding lower bounds for general graphs, specialized schemes
were designed for various families of network topologies, including trees [18,
23,29], planar graphs [19, 25], fixed-minor-free graphs [2], or graphs with low
doubling dimension [1, 21, 22]. These topology-specific schemes achieve signif-
icant improvements on the stretch-space tradeoff over universal routing schemes.

Power-law graphs [27] constitute an important family of networks appear-
ing in various real-world scenarios such as the Internet, the World Wide Web,
collaboration networks, and social networks [12, 17]. In a power-law graph, the
number of nodes with degree x is proportional to 7, for some constant 7. The
power-law exponent 7 for many real-world networks is in the range between 2
and 3. Power-law graphs do not seem to belong to any of the well-studied net-
work families such as trees, planar graphs or low doubling dimension graphs
mentioned above.

Despite their high relevance in practice, the family of power-law graphs has
not received much attention from the compact routing community. There are
experimental studies of compact routing in power-law graphs and Internet-like
graphs. Krioukov et al. [24] evaluate the universal routing scheme of Thorup
and Zwick (7Z) [29] on random power-law graphs [6] and provide experimental
evidence of much better performance (both in terms of stretch and table sizes)
than the theoretical worst-case bound. However, they do not provide a theo-
retical bound of the TZ scheme on power-law graphs for neither stretch nor
table size. Enahescu et al. [15] propose a landmark selection scheme that adapts
the TZ scheme and they show empirically that their adaptation achieves good
stretch and table sizes for power-law graphs and Internet Autonomous System
(AS) graphs. Unfortunately, their theoretical analysis is for Erd6s-Rényi random
graphs [16] instead of power-law graphs. Brady and Cowen [8] give a compact



routing scheme tailored for power-law graphs with additive stretch d and header
and table sizes O(elog® n), where both d and e depend on the graph, and they
show experimentally that these values are reasonably small for certain random
power-law graphs [6]. However, there is no rigorous analysis connecting d and
e to the parameter 7 of power-law graphs.

Our contribution. In this paper, we bridge the gap in the study of compact
routing schemes for power-law graphs. We provide the first theoretical analysis
that directly links the power-law exponent 7 of a random power-law graph to
the bound on the routing table sizes.

More specifically, we adapt the labeled universal compact routing scheme
of Thorup and Zwick [29] to optimize it for unweighted, undirected power-law
graphs. Our adaptations include (a) selecting nodes with the largest degrees as
the landmarks instead of random sampling, and (b) directly encoding shortest
paths in node labels and message headers instead of relying on a tree routing
scheme.

Our complexity analysis of the routing scheme is based on the random
power-law graph model with expected degree sequence proposed by Aiello,
Chung and Lu [6, 10, 11] with some minor simplifications. We assume the power-
law exponent 7 to lie in the range of (2, 3), which is the so called “finite mean
infinite variance” region of the power-law degree distribution, where most prac-
tical power-law networks are assumed to be in.

We prove that for a stretch upper bound of 3, instead of tables of size O(n'/?)
shown to be optimal up to a polylogarithmic factor for general graphs [29], ex-
pected sizes of O(n” log n) bits are sufficient, and that the routing tables can be
constructed at once in expected time O(n'*7logn), with v = 27;_23 + ¢ and
e > 0 (which implies € < 7 < 1/3+¢). Both bounds also hold with probability
at least 1 — 1/n (independent of ¢). This means that for all 7 € (2, 3), we have
an upper bound of O(nl/ 3+¢) on the routing table sizes, which is better than
the optimal bound of O(nl/ 2) for general graphs. For values of 7 close to 2, for
example for 7 = 2.1, which is the exponent that fits the power-law distribution
well to the degree distribution of the actual Internet inter-domain graph [17, 24],
our bound is O(n'/12*¢). The routing scheme requires a stretch-5 handshak-
ing (similar to [29, Sec. 4]), and uses addresses and message headers of size
O(log nloglogn), with probability at least 1 — o(1). The efficient encoding us-
ing O(logn loglogn) bits in addresses and headers relies on specific distance
properties of power-law graphs. Our scheme is a fixed-port scheme, meaning
that it works for any permutation of port number assignments on any node.

We provide simulation results for both random power-law graphs and ac-
tual router-level networks, which demonstrate the effectiveness of our adapted



compact routing scheme. With the same techniques as for the compact routing
scheme, we also adapt the approximate distance oracle by Thorup and Zwick for
stretch 3 and obtain a new upper bound of ON(nH'Y) for space and preprocessing
of random power-law graphs. Complete proofs of the results in this paper as
well as the detailed distance oracle results can be found in a technical report [9].

2 Preliminaries

We adapt the random graph model for fixed expected degree sequence as defined
by Aiello, Chung, and Lu [6, 10, 11] using the definition from [10, Section 2].
We refer to the original random graph distribution using the expression Fixed
Degree Random Graph (FDRG).

Definition 1. For a constant 7 € (2, 3), the random power-law graph distribu-
tion RPLG(n, 7) is defined as follows. Let the sequence of generating param-
eters w = {wy,wa,...,w,} obey a power law, that is wy, = (%)1/(7_1) for
k€ {1,2,...n}. The edge between v; and v; is inserted into the random graph
with probability min{w;w;p, 1}, where p = Z#

k Wk
Note that we adapt the original model by deterministically inserting edges if
wiw; > Y, wy, since in the FDRG model it is required that Vi, j : w,w; <
Zk wy,, which, without modification, rules out the values for 7 we consider
in this paper. In the FDRG model, the value w; corresponds to the expected
degree of vertex v;, and they refer to w as the expected degree sequence. In
our adaptation, the graph is sampled due to the generating parameter values w;.
Let D; be the random variable denoting the degree of node v;. In our model,
the expected degree E[D;] of node v; is smaller than or equal to the generating
parameter w;.
We require that n = |V (G)| is sufficiently large, specifically, that
R 200 )
T—2

Our results do not have any other implicit dependencies on €.

The core of a graph consists of nodes having large degrees. Let v = 277__23 +¢
1=y
T—1°

for some ¢ > 0 and ' =

Definition 2. For a power-law degree sequence w and a graph G with n nodes,
the core with degree threshold nY, v € (0,1), is defined as follows.

core (w) = {v; : w; > n''},
corey/ (G) := {v; : degg(v;) > nY' 4},

where deg (v;) is the degree of v; in G.



For each vertex v of a graph GG, we define its ball relative to the core as
BG(U) = {U € V(G) : d(ua U) < minv’6core7/(G’) d(u7vl)}’

3 The Adapted Compact Routing Scheme

Let the unweighted graph G = (V, E) model the network. Each node v in
the network has a unique [log, n]-bit static name. Whenever we write v in a
routing table, a message header, or a node address, we mean its [logy n]-bit
static name representation. Each node v has deg(v) ports connecting it with its
neighbors. These ports are numbered by 0, 1, . .., deg(v) — 1, and thus each port
number of v requires [logy deg(v)] bits. For every packet, the routing scheme
needs to decide which port the packet is to be forwarded to. Our scheme is a
fixed-port scheme, that is, it works with arbitrary permutations of port number
assignments.

The routing algorithm is inspired by and based on [14,29]. We also use
a set of landmarks A C V, but different from [14,29], we use core,y/(G) as
landmarks instead of nodes sampled at random. For each node w in G, let £(u)

denote u’s closest landmark, that is, /(u) := arg min  d(u,v). The local
vEcore,/ (G)

targets of node u are defined as the elements of its ball B (u). Similar to the
second scheme in [29], each node w stores the ports to route messages along the
shortest paths to all landmarks and to its local targets. If the target v is neither a
landmark nor a local target of u, the message is routed to v’s closest landmark
¢(v) and from there to the target v.

The scheme is a labeled scheme. For a node u to know ¢(v) of any target
v, the address of node v contains an encoding of ¢(v). Moreover, for a node w
on the shortest path from ¢(v) to v (w # ¢(v) and w # v), v may not be in
Bg(w) and thus w may not know the port to route messages to v. To resolve
this issue, we further extend the address of v by encoding the shortest path from
the landmark ¢(v) to v.

Let (s = ug,u1,...,u, = t) denote the sequence of nodes on a short-
est path from s to ¢. Let SP(s,t) be the encoding of this shortest path as
an array with m entries, wherein SP(s,t)[i] denotes the port to route from
u; to w4 forall ¢ = 0,1,...,m — 1. Thus SP(s,t) can be encoded with
S5 log, [deg(u;)] bits. We now provide the precise definitions of addresses,
message headers, and local routing tables.

Definition 3. — The address of node w is addr(u) := (u, l(u), SP(¢(u),u)).
— The header of a message from node s to node t is in one of the following
formats:
1. header = (route, s,t), where route = local,



2. header = (route, s,addr), where route = toLandmark and addr =
addr(t),

3. header = (route,s,t,pos,SP), where route € {fromLandmark,
direct}, pos is a non-negative integer that may be modified along the
route, and SP = SP(s,t) if route = direct or SP = SP({(t),t) if
route = fromLandmark,

4. header = (route, s, t, SP), where route = handshake and SP is a
reversed shortest path from 1 to s to be encoded along the path from s
tot.

— The local routing table for each node u consists of the information about
routes to the core and the information about local routes:
tbl(u) := {(v,port,(v)) : v € corey(G)} U {(v,port,(v)) : v €
Bg(u)}, where port,,(v) is the local port of u to route messages towards
node v along some shortest path from u to v.

The routing procedure is described in Algorithm 1. It includes pseudocode
for the source node s to determine the method of sending a message to target ¢
(Lines 1-10), based on whether ¢ is local or not and whether a shortest path to ¢
is known due to an earlier handshake or not. It also includes pseudocode for an
intermediate node u to determine whether to forward the message using its local
routing table (Lines 20 and 26), or to forward the message using the shortest
path encoded in the header (Lines 22—24), or to switch the routing direction from
towards the landmark ¢(¢) to towards the target ¢ (Lines 16—18). The correctness
of the algorithm is based on the simple observation that if ¢ € Bg(s)Ucore (G)
(and thus t is in the routing table of s), then, for all nodes w on the shortest path
from s to ¢, we also have t € Bg(w) U core(G).

An additional handshake protocol (Algorithm 2) handles the special case
when t € Bg(s) but s € Bg(t). In this case, the basic LANDMARKBALL-
ROUTING scheme only achieves worst-case stretch 5 instead of 3. However, ¢
knows the reverse path from ¢ to s. Since the graph is undirected, ¢ can send a
special handshake message back to s (Line 2), and each node along the path
encodes the reverse port number such that, in the end, s knows the shortest path
from s to ¢ (Lines 3—-10). For simplicity of exposition we use the reasonable
assumption [3] that node u knows the port ¢ on which the message is received.
If this assumption does not hold, our handshake protocol can be adapted ac-
cordingly (see [9]). The performance of Algorithms 1 and 2 is evaluated in the
following theorem, which is proven in the next section.

Theorem 1. LANDMARKBALLROUTING fogether with the handshake proto-
col is a routing scheme with the following properties: (1) the worst-case stretch
is 5 without handshaking, (2) the worst-case stretch is 3 after handshaking, and



Algorithm 1 LANDMARKBALLROUTING on node u, with source s, target t #
s, and header header.

1: if u = s then
2: if t € Bg(s) then

3: send packet with header = (local, s,t) using port (t) stored in tb1(s)

4:  elseif uknows SP(s,t)/* due to handshake */ then

5: send packet with header = (direct, s,t,0, SP(s,t)) using port SP(s,t)[0]

6: else

7: send packet with header = (toLandmark, s, addr(t)) using port,(£(t)) stored in
tbl(s)

8: endif

9:  exit

10: end if

11: /*u # s*/

12: if u = header.t then

13:  exit as the packet arrived.

14: end if

15: if header.route = toLandmark then
16:  if u = header.addr./(t) then

17: header.route <+« fromLandmark; header.pos <« 0; header.SP
header.addr.SP({(t),t);

18: forward packet with the new header using port header.SP[0]

19:  else

20: forward the packet to port,, (header.addr.((t)) stored in tbl(u)

21:  endif

22: else if header.route € {fromLandmark, direct} then

23: header.pos < header.pos + 1

24:  forward the packet using port header.S P[header.pos|

25: else if header.route = local then

26:  forward the packet using port,, (header.t) stored in tb1(u)
27: end if

(3) every routing decision takes constant time. In addition, for random graphs
sampled from RPLG(n, T), the following properties hold: (4) the expected max-
imum table size is O(n" logn) bits; this bound also holds with probability at
least 1—1/n, (5) address length and message header size are O(log nloglogn)
bits with probability 1 — o(1), and (6) addresses and routing tables can be gen-
erated efficiently in expected time O(n'*7 logn) and this bound also holds with
probability at least 1 — 1/n.

4 Analysis
Stretch. The proofs use the triangle inequality as in [14, 29].

Random Power-Law Graphs and their Cores and Balls. We first prove some
properties of the adapted random power-law graph model. Let G be a ran-



Algorithm 2 Handshake protocol on node w upon the receipt of a packet from
a port ¢ with header header.
1: if header.route = fromLandmark and u = header.t and header.s € Bg(u) U
core,/(G) then
2:  send packet with header = (handshake,u, header.s, Nil) using port, (header.s)
stored in tbl(u).
3: else if header.route = handshake then
4:  header.SP = ¢ - header.SP /* prepend the port g as part of the reverse path */
5.
6

if header.t = u /* reach handshake destination */ then
store SP(u,header.s) = header.SP locally for later use (see Line 4 of LAND-
MARKBALLROUTING.)
7 else
8: forward packet with the new header to port,, (header.t) stored in tbl(u).
9:  endif
0

10: end if

dom graph sampled from RPLG(n, 7). For a set of nodes S, define its volume
Vol(S) as the sum of all its nodes’ w;, that is, Vol(S) := >, g w;. We abbre-
viate Vol(G) = Vol(V(G)). Note that Vol(G) = 1/p. Let vol(S) denote the
sum of the nodes’ degrees in the actual graph G, vol(S) := }_ s degq(vi).
The following lemma proves that Vol(G) is linear in n.

Lemma 1. Let G be a random graph sampled from RPLG(n, 7). The volume
Vol(G) satisfies n < Vol(G) < Z=In.

In the following, we show concentration results for the actual degree of a
vertex and for the volume of a set of vertices in the adapted RPLG(n, 7) model.
The basic idea to prove the results for the RPLG(n,7) model is to split the
random variable for the degree D; of node v; into deterministic and random
edges and then bound both parts individually.

T—1
Lemma 2. Let n > 40— For a random graph sampled from RPLG(n, 7),
if w; > 321nn, for vertex v;, the degree D; satisfies the following: Prlw;/4 <
D; < 3w;] > 1—2/nt.

Lemma 3. Let G be a random graph sampled from RPLG(n, 7). For a subset
of vertices S satisfying Vol(S) > 1921nn, it holds with probability at least
1 —2/n3 that Vol(S)/8 < vol(S) < 4Vol(S).

Corollary 1. The number of edges of a random graph sampled from RPLG(n, T)

is at most vol(G) /2 < 4(77_—21)71 with probability at least 1 — 1/n?.

-
There is an edge between two nodes v;, v; with probability proportional to

w; and w;. This is generalized for sets of nodes S, 7" C V(G) in the following
and holds for both FDRG(w) and RPLG(n, 7).



Lemma 4 ([10, Lem. 3.3]). For any two disjoint subsets S and T with Vol(S) -
Vol(T) > ¢ - Vol(G), we have Pr[d(S,T) > 1] < e ¢.

Core size. To compute the size of core,/(w), we solve the inequality wy, > n
and obtain k < n?' 1=+ AgH/ = %, we have |core (w)| = [nY (1=7)+17] -
1 = [n7] — 1. Even if the same degree threshold n"" is used for core/(w) and
core,/ (G), the two sets of nodes may differ. For a slightly smaller degree thresh-
old n"’ /4 (as in Definition 2), the core of the actual graph contains core, (w)

with high probability (apply Lemma 2).

Lemma 5. Let G be a random graph sampled from RPLG(n, 7). With proba-
bility at least 1 — 1/n? it holds that core,(w) = {v; : w; > n?'} C {v; :
deg(v;) > n"' /4} = core,/ (G).

Lemma 6. Let G be a random graph sampled from RPLG(n, 7). With proba-
bility at least 1 — 1/n?, |core, (G)| = O(n?).

Ball sizes.

Lemma 7. Let 3 =~'(1 —2) + (2::?)5 be a constant. Assume Equation (1) is

satisfied. For a random graph G sampled from RPLG(n, T), with probability at
least 1 — 3/n?, it holds that for all u € V(G),

|Ba(u)| = ‘{u' e V(G) : d(u,u’) < d(u, corey/(w))H = 0(n?),
|E(Bg(u)| = O(n” logn),

where E(Bg(u)) is the set of internal edges among vertices in Bg(u).

Since for RPLG(n, 7) the edges are independent, in our analysis, the exis-
tence of every edge in random graph G is only determined when it is needed,
and before that it is treated as a probability distribution as defined in our random
graph model. We call the determination of the existence of an edge according to
its probability distribution revealing the edge.

For a given vertex u € V (G), we define a sequence of balls as follows: Let
V' =V \ cores(w). Now define By = {u} and B; = {v : dg(u,v) < i}. We
also define the circles C; = B; \ B;_1 for i > 0 with B_; = (). Let E; be the
number of edges between C; and C; U C4 1.

Lemma 8. For circle C;, the following holds with probability at least 1 —2/n3:
If Vol(C;) < 1921nn, then E; < 4-1921nn, and if Vol(C;) > 1921nn, then
Ei < 4VOZ(CZ').

Since there are at most n circles, Lemma 8 holds for all circles with proba-
bility at least 1 — 2/n?.



Table Sizes and Computations. The core core./(G) has size ©(n”) with prob-
ability at least 1 — 1/n? (Lemma 6) and all balls Bg(u) have size O(n?) with
probability at least 1—3/n? (Lemma 7). Therefore, we have the following result.

Lemma 9. For a random graph G sampled from RPLG(n,T), for all u €
V(G), the expected table size is at most |tbl(u)] = O(n") and all tables
can be generated in expected time at most O(n'*7logn). These bounds also
hold with probability at least 1 — 1/n.

Proof. Note that each entry of tb1l(u) has O(logn) bits. Thus the total table
size per node is O(n” log n) bits. Our algorithm is deterministic. The expected
time (space) complexity is the average running time (space) of our algorithm
over all graphs from the random graph distribution RPLG(n, 7).

Given a graph G with n nodes and m edges, our algorithm computes the
core core,/(G) of G with time complexity O(m + nlogn). It runs a complete
breadth-first search for each node of the core in time O(m). Let Bg(u) be the
ball computed in our algorithm for vertex u. Let T'(Bg(u)) denote the time to
compute B¢ (u). Therefore, the time complexity 7°C' and space complexity SC
of our algorithm are at most

TC(G)=0 | m- |core,(G)| + Z T(Bg(u)) |, (2)
veV(Q)

SC(G)=0 | n-|corey (@) + > [Ba(u)l | 3)
veV(G)

We now know that with probability at least 1 — 5/n2, all of the follow-
ing conditions are true: (1) m = ©(n) (Corollary 1); (2) |core,/ (G)| = O(n?)
(Lemma 6); (3) | Bg(u)| = O(n?) for all vertices u (Lemma 7); (4) T(Bg(u)) =
O (nﬁ log n) for all vertices u (Lemma 7). Therefore, from Equations (2) and (3),
we know that with probability at least 1 — 5/n?, the space complexity of our al-
gorithm is O(n'*7 4 n'*#) and the time complexity is O(n'!™ + n'*logn).

Finally, we fix the parameters to obtain a balanced scheme. In a balanced
scheme, the core size and the expected ball sizes are asymptotically equivalent,
that is, 3 = ~. Together with 8 = ~/(7 — 2) + @ and v = % we
have v = 27;_23 + €. Therefore, assuming that Equation (1) is satisfied, the space
requirement per node is O(n” log n) bits and the preprocessing time is bounded

by O(n'*7 logn), which holds with probability at least 1 — 1/n. 0

Address Lengths. We now bound the number of bits for the address of each
vertex. For one vertex wu, its address contains the encoding of the shortest path



SP(u,f(u)) from u to its landmark ¢(u). We need to bound the diameter of
a random power-law graph and the diameter of its core. The proofs in [10] on
diameters can be carried over to our adapted model.

Lemma 10 (Chung and Lu [10, Claim 4.4]). For a random graph sampled
from RPLG(n, T), with probability at least 1 — o(1), the diameter of its largest
connected component is ©(logn).

By Lemma 10, the length of SP(u, £(u)) is at most O(log n) asymptotically
almost surely. Therefore, SP(s,t) can be encoded with O(log?n) bits. This
bound can be improved to O(log n loglogn), as proven in the following lemma.

Lemma 11. For a random graph G sampled from RPLG(n, T), with probabil-
ity at least 1 — o(1), it holds that for all s,t € V(G), SP(s,t) can be encoded
with O(log nloglog n) bits.

The proof is split into several claims from [10]. We first extend the core.

Definition 4. The extended core of a random graph from RPLG(n, T) contains
all nodes v; with w; at least n'/ 1981987 that is, coret(w) = {v; € V 1 w; >
nl/ log logn}.

Note that, as 7 is a constant, 1/loglogn < 4’ for large enough n, and
thus core™ (w) D core (w). The following lemma constitutes a bound for the
diameter of the core.

Lemma 12 (Chung and Lu [10, Claim 4.1]). Let G be a random graph sam-
pled from RPLG(n, 7). The diameter of the subgraph induced by core™ (w) in
G is O(loglogn) with probability at least 1 — 1/n.

Lemma 13 (Chung and Lu [10, Claim 4.2]). Let G be a random graph sam-
pled from RPLG (n, 7). There exists a constant C, such that each vertex v; with
w; > log® nis at distance O(loglog n) from the extended core, with probability
at least 1 — 1/n?.

Corollary 2 (Corollary of Lemma 13). Let G be a random graph sampled
from RPLG(n, 7). Let C' be the constant in Lemma 13. With probability at least
1 — 1/n, the distance between any two vertices v;,v; with w; > logc n and
w;j > log® n is O(loglog n).

Proof (of Lemma 11). Let v; and v; be the first and the last vertex in SP(s,t)
from s to ¢ such that w; and w; both are greater than log® n, where C' is
the constant from Lemma 13. By Corollary 2, with probability 1 — 1/n, the
portion of the shortest path SP(s,t) between v; and v; has length at most



O(loglog n). Therefore, this portion of the shortest path can be encoded with
O(lognloglogn) bits, with probability 1 — 1/n.

For the rest of the shortest path, each node has w; at most logc n. By
Lemma 2, all such nodes have degree at most 3 log® n with probability at least
1—2/n3. To encode the next neighbor in the shortest path, at most O(log log n)
bits are necessary. Since SP(s,t) contains O(logn) nodes with probability
1 — o(1) (Lemma 10), the rest of the shortest path can also be encoded with
O(log n loglog n) bits, with probability 1 — o(1). 0

S Experiments

Real-world graphs. The most important application scenario for a compact
routing scheme is arguably a communication network. The router-level topol-
ogy of a portion of the Internet, measured by CAIDA [13], is an undirected,
unweighted graph with 190, 914 nodes and 607, 610 edges.

Random Power-Law Graphs. We extracted the largest connected component
from the random power-law graphs generated by Brady and Cowen [8] (pre-
generated graphs, N = 10,000 and 7 € (2,3)). In addition, we generated
graphs of 10,000 nodes with the tool BRITE [26] using the configurations for
the Barabadsi [7] and Waxman [30] models for an Autonomous System Topology
(AS) and a Router Topology (RT). The edge weights were ignored and the links
interpreted as undirected. Note that for all the random graphs considered, the
generation process does not exactly match the RPLG(n, 7).

Routing schemes. In the specification of our routing scheme LANDMARK-
BALLROUTING, we use n”’ /4 as a degree threshold (Definition 2) and obtain a
core of size @(n?"). The largest connected components of the graphs generated
by Brady and Cowen [8] and the graphs generated using BRITE [26] do not
contain nodes with such a high degree. Therefore, for the experiments with our
routing scheme, the algorithm selects the [n7] nodes with the highest degrees
as landmarks. We compare our high-degree selection strategy with the random
selection with probability n~Y 2 which is similar to Thorup and Zwick [29]
for k = 2. Recall that their scheme is not optimized for power-law graphs but
works for general, weighted graphs as well. We also compare our scheme with
the values obtained by Brady and Cowen [8].

Settings and results. For the graphs generated by Brady and Cowen [8], the
high-degree selection and the random sampling process were executed five times
for each of the ten graphs per value of 7, which gives atotal of 5-10-9 -2 =
900 routing scheme constructions. For each of the remaining graphs (Barabasi,



l Graph

H CAIDA [13] ‘ ASBarabasi ‘ RTBarabasi ‘ ASWaxman ‘ RTWaxman ‘

random, p = n~'/%/929.84+95.40|204.03+25.57|208.32+22.21|221.95+ 24.73|217.75+ 28.00
highdeg, [n7] 173.68£55.80| 32.16+41.30] 44.95+58.21[139.45+142.94[130.65£131.78
[Graphs [8] [ =21 [ r=22 | 7=23 | 7=24 | 71=25 |
random, p = n”'/?|| 74.90437.96| 74.94444.78| 77.49450.56] 79.74+ 55.50| 82.54+ 60.17
highdeg, [n7] 55.20£67.48] 48.50£54.57| 42.20442.94 43.28+ 40.10[ 43.55+ 38.37
[Graphs [8] [ 7=26 [ 7=27 | 7=28 [ 7=29 | |
random, p = n~'/? || 86.88+69.69| 85.56+71.35 84.69+73.87| 76.65+ 71.71

highdeg, [n7] 45.59439.59[ 50.24446.08 56.48156.26] 46.85+ 46.65

Table 1. Table sizes: mean and standard deviation

[Graph [[CAIDA [13][ASBarabasi|[RTBarabasi| AS Waxman|RT Waxman|
random 1.28+0.16 [1.3840.28 [1.3840.25 [1.3740.25 [1.3840.16
highdeg, [n”] 1.12+0.14 [1.1540.21 [1.2040.22 [1.3640.26 |1.3540.24
[Graphs [8] [ =21 [ r=22]7=23] =24 [ 7=25]
random, p = n~'/?|/1.344:0.24 [1.35+£0.24 |1.354+0.25 |1.3440.26 |1.34+0.26
highdeg, [n”] 1.30+0.24 [1.2640.23 [1.234£0.23 |1.2140.23 |1.1840.22
[Graphs [8] [ 7=26 [ 7=27 ] 7=28] r1=29 | |
random, p = n~'/?[[1.334£0.28 [1.31+0.28 |1.294:0.29 |1.25+0.28

highdeg, [n”] 1.16+0.22 [1.15+0.22 [1.1540.24 [1.11+0.22

Table 2. Stretch: mean and standard deviation

Waxman, CAIDA), both schemes were constructed at least 10 times. We report
the table sizes (mean and standard deviation) in Table 1. For each instance, 200
random (s, t) pairs were generated and packets routed. The stretch (the length
of the route divided by the length of a shortest path) is reported in Table 2.

In our experiments, the strategy of selecting few high-degree nodes as land-
marks always produces significantly smaller routing tables compared to a large
number of landmarks selected at random. The best results are achieved for the
graphs stemming from the Barabdsi model, for which the high-degree-based ta-
bles are roughly 5 times smaller than their random-based counterpart. The aver-
age table size for the randomly selected landmarks is close to \/n, which means
that most balls are actually (almost) empty. As predicted by our analysis, this
indicates that, for power-law graphs, the optimal balance for randomly selected
landmarks may be smaller than O(y/n).

The average stretch is surprisingly consistent among different datasets. Even
though there are fewer landmarks, the average stretch is better if high-degree
nodes are selected as landmarks. Brady and Cowen [8] claim average stretch



1.18-1.25 for the scheme by Thorup and Zwick [29]. Our experiments do not
confirm this claim: randomly selected nodes (similar to TZ) did not achieve this
stretch. Brady and Cowen also claim average stretch 1.11-1.22 for their scheme
and small values for 7 € {2.1,2.2,2.3}. Our scheme, except for the graphs of
the Waxman model and for small values of 7 < 2.2, also achieves these average
stretch values.

6 Conclusion

Our analysis provides theoretical justification that high-degree nodes in power-
law graphs are indeed very important for finding shortest paths in such net-
works, and thus are effective in improving the performance of shortest-path-
related computations. With the ubiquity of power-law networks, our result sug-
gests that, when designing network algorithms, optimizing for power-law graphs
rather than dealing with general graphs, may lead to significantly better algo-
rithm performance in real-world networks.

Perhaps the most intriguing question is whether even polylogarithmic ta-
bles would suffice to route with small stretch in power-law graphs. It also re-
mains open whether the scheme by Thorup and Zwick for general £ can be
optimized for power-law graphs and whether similar techniques can be applied
to the name-independent scheme by Abraham et al. [5]. An average-case anal-
ysis of the actual scheme by Thorup and Zwick would be interesting as well as
a rigorous analysis of the scheme by Brady and Cowen [8]. Furthermore, the
analysis for other random power-law graphs models is an interesting topic.

Acknowledgments. The second author thanks Mikkel Thorup for helpful com-
ments and interesting discussions.
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