
MSR-VTT: A Large Video Description Dataset for Bridging Video and Language

Jun Xu , Tao Mei , Ting Yao and Yong Rui
Microsoft Research, Beijing, China

{v-junfu, tmei, tiyao, yongrui}@microsoft.com

Abstract

While there has been increasing interest in the task of
describing video with natural language, current computer
vision algorithms are still severely limited in terms of the
variability and complexity of the videos and their associat-
ed language that they can recognize. This is in part due to
the simplicity of current benchmarks, which mostly focus on
specific fine-grained domains with limited videos and sim-
ple descriptions. While researchers have provided several
benchmark datasets for image captioning, we are not aware
of any large-scale video description dataset with compre-
hensive categories yet diverse video content.

In this paper we present MSR-VTT (standing for “MSR-
Video to Text”) which is a new large-scale video bench-
mark for video understanding, especially the emerging task
of translating video to text. This is achieved by collecting
257 popular queries from a commercial video search en-
gine, with 118 videos for each query. In its current ver-
sion, MSR-VTT provides 10K web video clips with 41.2
hours and 200K clip-sentence pairs in total, covering the
most comprehensive categories and diverse visual content,
and representing the largest dataset in terms of sentence
and vocabulary. Each clip is annotated with about 20 nat-
ural sentences by 1,327 AMT workers. We present a de-
tailed analysis of MSR-VTT in comparison to a complete
set of existing datasets, together with a summarization of
different state-of-the-art video-to-text approaches. We also
provide an extensive evaluation of these approaches on this
dataset, showing that the hybrid Recurrent Neural Network-
based approach, which combines single-frame and motion
representations with soft-attention pooling strategy, yields
the best generalization capability on MSR-VTT.

1. Introduction
It has been a fundamental yet emerging challenge for

computer vision to automatically describe visual content
with natural language. Especially, thanks to the recent de-
velopment of Recurrent Neural Networks (RNNs), there
has been tremendous interest in the task of image caption-

ing, where each image is described with a single natural
sentence [7, 8, 11, 14, 22, 36]. Along with this trend,
researchers have provided several benchmark datasets to
boost research on image captioning (e.g., Microsoft CO-
CO [21] and Flickr 30K [41]), where tens or hundreds of
thousands of images are annotated with natural sentences.

While there has been increasing interest in the task of
video to language, existing approaches only achieve severe-
ly limited success in terms of the variability and complexity
of video contents and their associated language that they
can recognize [2, 7, 15, 28, 35, 39, 34]. This is in part due
to the simplicity of current benchmarks, which mostly fo-
cus on specific fine-grained domains with limited data scale
and simple descriptions (e.g., cooking [5], YouTube [16],
and movie [27, 32]). There are currently no large-scale
video description benchmarks that match the scale and va-
riety of existing image datasets because videos are signifi-
cantly more difficult and expensive to collect, annotate and
organize. Furthermore, compared with image captioning,
the automatic generation of video descriptions carries addi-
tional challenges, such as modeling the spatiotemporal in-
formation in video data and pooling strategies.

Motivated by the above observations, we present in this
paper the MSR-VTT dataset (standing for MSR-Video to
Text), which is a new large-scale video benchmark for video
understanding, especially the emerging task of translating
video to text. This is achieved by collecting 257 popular
queries from a commercial video search engine, with 118
videos for each query. In its current version, MSR-VTT
provides 10K web video clips with 41.2 hours and 200K
clip-sentence pairs in total, covering a comprehensive list
of 20 categories and a wide variety of video content. Each
clip was annotated with about 20 natural sentences.

From a practical standpoint, compared with existing
datasets for video to text, such as MSVD [3], YouCook [5],
M-VAD [32], TACoS [25, 28], and MPII-MD [27], our
MSR-VTT benchmark is characterized by the following
major unique properties. First, our dataset has the largest
number of clip-sentence pairs, where each video clip is an-
notated with multiple sentences. This can lead to a bet-
ter training of RNNs and in consequence the generation of
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1. A black and white horse runs around.

2. A horse galloping through an open field.

3. A horse is running around in green lush grass.

4. There is a horse running on the grassland.

5. A horse is riding in the grass.

1. A woman giving speech on news channel.

2. Hillary Clinton gives a speech.

3. Hillary Clinton is making a speech at the conference

of mayors.

4. A woman is giving a speech on stage.

5. A lady speak some news on TV.

1. A child is cooking in the kitchen.

2. A girl is putting her finger into a plastic cup 

containing an egg.

3. Children boil water and get egg whites ready.

4. People make food in a kitchen.

5. A group of people are making food in a kitchen.

1. A man and a woman performing a musical.

2. A teenage couple perform in an amateur musical

3. Dancers are playing a routine.

4. People are dancing in a musical.

5. Some people are acting and singing for performance.

1. A white car is drifting.

2. Cars racing on a road surrounded by lots of people.

3. Cars are racing down a narrow road.

4. A race car races along a track.

5. A car is drifting in a fast speed.

1. A player is putting the basketball into the post from

distance.

2. The player makes a three-pointer.

3. People are playing basketball.

4. A 3 point shot by someone in a basketball race.

5. A basketball team is playing in front of speculators.

Figure 1. Examples of the clips and labeled sentences in our MSR-VTT dataset. We give six samples, with each containing four frames to
represent the video clip and five human-labeled sentences.

more natural and diverse sentences. Second, our dataset
contains the most comprehensive yet representative video
content, collected by 257 popular video queries in 20 rep-
resentative categories (including cooking and movie) from
a real video search engine. This will benefit the validation
of the generalization capability of any approach for video
to language. Third, the video content in our dataset is more
complex than any existing dataset as those videos are col-
lected from the Web. This plays as a ground challenge for
this particular research area. Last, in addition to video con-
tent, we keep audio channel for each clip, which leaves a
door opened for related areas. Fig. 1 shows some examples
of the videos and their annotated sentences. We will make
this dataset publically available to the research community
to support future work in this area.

From a methodology perspective, we are interested in
answering the following questions regarding the best per-
forming RNN-based approaches for video to text. What is
the best video representation for this specific task, either
single-frame-based representation learned from the Deep
Convolutional Neural Networks (DCNN) or temporal fea-
tures learned from 3D CNN? What is the best pooling s-
trategy over frames? What is the best network structure
for learning spatial representation? What is the best combi-
nation of different components if considering performance

and computational costs? We examine these questions em-
pirically by evaluating multiple RNN architectures that each
takes a different approach to combining learned representa-
tion across the spatiotemporal domain.

In summary, we make the following contributions in this
work: 1) we build to-date the largest dataset called MSR-
VTT for the task of translating video to text, which contain-
s diverse video content corresponding to various categories
and diverse textual descriptions, and 2) we summarize ex-
isting approaches for translating video to text into a single
framework and comprehensively investigate several state-
of-the-art approaches on different datasets.

The remaining of this paper are organized as follows.
Section 2 reviews related work on vision to text. Section
3 describes the details of MSR-VTT dataset. Section 4 in-
troduces the approaches to video to text. Section 5 presents
evaluations, followed by the conclusions in Section 6.

2. Related Work

The research on vision to language has proceeded a-
long two dimensions. One is based on language model
which first detects words from visual content by objec-
t recognition and then generates a sentence with language
constraints, while the other is leveraging sequence learn-
ing models (e.g., RNNs) to directly learn an embedding



between visual content and sentence. We first review the
state-of-the-art research along these two dimensions. We
then briefly introduce a collection of datasets for videos.

Image captioning has been taken as an emerging ground
challenge for computer vision. In the language model-based
approaches, objects are first detected and recognized from
the images, and then the sentences can be generated with
syntactic and semantic constraints [9, 18, 20, 30, 38, 42].
For example, Farhadi et al. perform object detection to in-
fer a triplet of S-V-O and convert it into a sentence by pre-
defined language templates [9]. Li et al. move one step fur-
ther to consider the relationships among the detected objects
for composing phrases [20]. Recently, researchers have ex-
plored to leverage sequence learning to generate sentences
[4, 8, 11, 13, 19, 22, 36, 37]. For example, Kiros et al.
propose to use a log-bilinear model with bias features de-
rived from the image to model the embedding between text
and image [13]. Hao et al. propose a three-step approach
to image captioning including word detection by multiple
instance learning, sentence generation by language model-
s, and sentence reranking by deep embedding [8]. Similar
works have started to adopt RNNs for generating image de-
scriptions by conditioning the output from RNN on the im-
age representation learned from the Convolutional Neural
Network (CNN) [11, 22, 36]. In [19], Lebret et al. pro-
pose to use a phrase-based model rather than single word to
generate sentences, while Xu et al. leverage visual atten-
tion mechanism to mimic human ability to compress salient
visual information into descriptive language [37].

In the video domain, similar approaches have been pro-
posed for video description generation. The first research
dimension applies video representation to template-based
or statistical machine translations [2, 15, 28]. These ap-
proaches generate sentences by mapping semantic sentence
representation, modeled with a Conditional Random Field
(CRF), to high-level concepts such as the actors, actions and
objects. On the other hand, sequence learning can be ap-
plied to video description as video is naturally a sequence
of objects and actions [7, 34, 35, 39, 40]. Donahue et al.
leverage CNN to learn the single frame representation as
the input to the long-term recurrent convolutional networks
to output sentences [7]. In [35], Venugopalan et al. design
an encoder-decoder neural network to generate description-
s. By mean pooling, the features over all frames can be
represented by one single vector, which is the input of the
RNN. Compared to mean-pooling, Li et al. propose to u-
tilize the temporal attention mechanism to exploit temporal
structure as well as a spatiotemporal convolutional neural
network [10] to obtain local action features [39]. Besides,
Venugopalan et al.[34] propose a end-to-end sequence-to-
sequence model to generate captions for videos.

There are several existing datasets for video to text. The
YouTube cooking video dataset, named YouCook [5], con-
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Figure 2. The distribution of video categories in our MSR-VTT
dataset. This distribution well aligns with the real data statistics in
a commercial video site.

tains the videos about the scenes where people are cook-
ing various recipes. Each video has a number of human-
annotated descriptions about actions and objects. Similar-
ly, TACos [25, 28] and TACos Multi-Level [26] include a
set of video descriptions and temporal alignment. MSVD
is a collection of 1,970 videos from Youtube with multiple
categories [3]. The sentences in this dataset are annotat-
ed by AMT workers. On the other hand, M-VAD [32] and
MPII-MD [27] provide movie clips with aligned Audio De-
scription (AD) from the Descriptive Video Service (DVS)
and scripts rather than human-labeled sentences. We will
provide comparison and statistics for all these datasets later.
In this work, we build to-date the largest video description
dataset with comprehensive video context and well-defined
categories. Besides, we summarize the existing approaches
for translating video to text into one single framework and
conduct a comprehensive evaluation of different methods.

3. The MSR-VTT Datataset
The MSR-VTT dataset is characterized by the unique

properties including the large scale clip-sentence pairs,
comprehensive video categories, diverse video content and
descriptions, as well as multimodal audio and video stream-
s. We next describe how we collect representative videos,
select appropriate clips, annotate sentences, and split the
dataset. Finally, we would like to summarize the existing
video description datasets together and make a comparison.

3.1. Collection of Representative Videos

Current datasets for video to text mostly focus on spe-
cific fine-grained domains. For example, YouCook [5],
TACoS [25, 28] and TACoS Multi-level [26] are mainly de-
signed for cooking behavior. MSR-VTT focuses on general
videos in our life, while MPII-MD [27] and M-VAD [32]
on movie domain. Although MSVD [3] contains general
web videos which may cover different categories, the very
limited size (1,970) is far from representativeness. To col-
lect representative videos, we obtain the top 257 represen-
tative queries from a commercial video search engine, cor-
responding to 20 categories 1. We then crawl the top 150

1 These 20 categories include music, people, gaming, sports (actions),
news (events/politics), education, TV shows, movie, animation, vehicles,



Dataset Context Sentence Source #Video #Clip #Sentence #Word Vocabulary Duration (hrs)

YouCook [5] cooking labeled 88 – 2,668 42,457 2,711 2.3
TACos [25, 28] cooking AMT workers 123 7,206 18,227 – – –

TACos M-L [26] cooking AMT workers 185 14,105 52,593 – – –
M-VAD [32] movie DVS 92 48,986 55,905 519,933 18,269 84.6

MPII-MD [27] movie DVS+Script 94 68,337 68,375 653,467 24,549 73.6
MSVD [3] multi-category AMT workers – 1,970 70,028 607,339 13,010 5.3

MSR-VTT-10K 20 categories AMT workers 7,180 10,000 200,000 1,856,523 29,316 41.2

Table 1. Comparison of video description datasets. Please note that TACos M-L means TACos Multi-Level dataset. Although MSVD
dataset has multiple video categories, the category information is not provided. In our MSR-VTT-10K dataset, we provide the category
information for each clip. Among all the above datasets, MPII-MD, M-VAD and MSR-VTT contain audio information.

video search results for each query. We remove duplicate
and short videos, as well as the videos with bad visual qual-
ity, to maintain the data quality. As a result, we have 30,404
representative videos. All the videos were downloaded with
high quality and audio channel.

3.2. Clip Selection and Sentence Annotation

Since our goal is to collect short video clips that each can
be described with one single sentence in our current version
of MSR-VTT, we adopt color histogram-based approach to
segmenting each video (Section 3.1) into shots [23]. As a
result, there are 3,590,688 shots detected. As one video clip
could have multiple consecutive shots, we asked 15 subjects
to watch the videos and select appropriate consecutive shots
to form video clips. For each video, at most three clips are
selected to ensure the diversity of the dataset. In total there
are 30K clips selected, among which we randomly selected
10K clips (originated from 7,180 videos) in the current ver-
sion of MSR-VTT and left the remaining clips in our second
version. The median number of shots for single video clip is
2. The duration of each clip is between 10 and 30 seconds,
while the total duration is 41.2 hours.

Although one can leverage Audio Descriptions (AD) to
annotate movies [27, 32], it is difficult to obtain quality sen-
tence annotation for web videos. Therefore, we rely on A-
mazon Mechanical Turk (AMT) workers(1317) to annotate
these clips. Each video clip is annotated by multiple work-
ers after being watched. In the post processing, duplicated
sentences and too short sentences are removed. As a result,
each clip is annotated with 20 sentences by different work-
ers. There are 200K clip-sentence pairs (corresponding to
1.8M words and 29,316 unique words) which represents the
dataset with the largest number of sentences and vocabulary.
Fig. 2 shows the category distribution of these 10K clips.

3.3. Dataset Split

To split the dataset to training, validation and testing set-
s, we separate the video clips according to the correspond-

how-to, travel, science (technology), animal, kids (family), documentary,
food, cooking, beauty (fashion), advertisement.

ing searched queries. The clips from the same video or the
same queries will not appear solely in the training or test-
ing set to avoid overfitting. We split the data according to
65%:30%:5%, corresponding to 6,513, 2,990 and 497 clips
in the training, testing and validation sets, respectively.

3.4. Data Statistics

Table 1 lists the statistics and comparison among differ-
ent datasets. We will release more data in the future. In this
work, we denote our dataset MSR-VTT-10K as it contains
10, 000 video clips. Our MSR-VTT is the largest dataset
in terms of clip-sentence pairs (200K) and word vocabulary
(29,316). A major limitation for existing datasets is limited
domain and annotated sentences [5, 25, 26, 28]. Although
MPII-MD and M-VAD contain a number of clips, both of
them are originated from one single domain (i.e., movie).
The MSR-VTT is derived from a wide variety of video cat-
egories (7,180 videos from 20 general domains/categories),
this can benefit the generalization capability of model learn-
ing. In addition, compared with the scripts and DVS sen-
tences in the MPII-MD and M-VAD, since MSR-VTT has
the largest vocabulary with each clip annotated with 20 dif-
ferent sentences, it can lead to a better training of RNNs and
in consequence the generation of more natural and diverse
sentences. MSVD [3], which is the most similar dataset to
ours, has a small number of clips and sentences. In sum-
mary, the MSR-VTT represents the most comprehensive,
diverse, and complex dataset for video to language.

4. Approaches to Video Descriptions
We briefly describe different video-to-text approaches

that we benchmark on our proposed MSR-VTT dataset.
Most of state-of-the-art methods for video to text are based
on the Long-Short Term Memory (LSTM), which is a vari-
ant of RNN and can capture long-term temporal informa-
tion by mapping sequences to sequences. As this dimen-
sion of research achieves better performance than language
model-based approaches, we summarize all the RNN-based
approaches in one single framework, as shown in Fig. 3.
Specifically, given an input video, 2-D CNN is utilized to
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Figure 3. Summarization of RNN-based approaches for video to text. The left side reflects how to learn the representation of whole video
as an input. The right side in the figure tells about the procedure of how LSTM works and the how the sentence is generated.

extract the visual representation for single frames. More-
over, optical flow or 3-D CNN is exploited to represent the
motion information in the video. Then the video represen-
tation, which is comprised of 2-D CNN and/or 3-D CNN
outputs, is feed into RNN. There are multiple ways that can
be used to combine all the frame-level or clip-level repre-
sentation to generate the video-level visual representation.
The first one is mean pooling strategy which can easily cre-
ate a fixed length vector as video representation [35]. The
second one uses soft attention mechanism to selectively fo-
cus on only a small subset of frames instead of the sim-
ple mean pooling over the frame-level representations [39].
RNN model is trained to predict each word of the sentence
after it has seen the entire video as well as all the preceding
words. Please note that the video-level representation can
be only input once or at each time step.

Among all the RNN-based state-of-the-art methods for
translating video to text, we mainly investigate and evaluate
in terms of two directions on our MSR-VTT dataset: the
mean pooling model proposed in [35] and the soft atten-
tion method proposed in [39]. For mean pooling method,
we design 7 runs, i.e., MP-LSTM (AlexNet), MP-LSTM
(GoogleNet), MP-LSTM (VGG-16), MP-LSTM (VGG-
19), MP-LSTM (C3D), MP-LSTM (C3D + VGG-16) and
MP-LSTM (C3D + VGG-19). The first 5 runs employ mean
pooling over the frame/clip-level features from AlexNet
[17], GoogleNet [31], VGG-16 [29], VGG-19 [29] and C3D
[33] networks, respectively. The last 2 runs feed the con-
catenations of C3D and VGG-16, C3D and VGG-19 into
the LSTM model. Similarly, for soft attention strategy, we
also compare 7 runs with different input frame/clip-level

features, named SA-LSTM (Alex), SA-LSTM (Google),
SA-LSTM (VGG-16), SA-LSTM (VGG-19), SA-LSTM
(C3D), SA-LSTM (C3D + VGG-16) and SA-LSTM (C3D
+ VGG-19), respectively.

5. Evaluations

We conducted all the experiments on our newly cre-
ated MSR-VTT-10K dataset 2 and empirically verify the
RNN-based video sentence generation from three aspects:
1) when different video representation is used, 2) when dif-
ferent pooling strategy is exploited, and 3) how the perfor-
mance is affected when using different size of hidden layer
of LSTM.

5.1. Experiment Settings

To describe the visual appearances of frames in video,
we adopt the output of 4096-dimensional fc6 layer from
AlexNet, VGG-16 and VGG-19 and pool5/7x7s1 layer of
GoogleNet which are all pre-trained on ImageNet dataset
[6]. C3D architecture, which is pre-trained on Sports-1M
video dataset [12] and has been proved to be powerful in
action recognition tasks, is utilized to model the temporal
information across frames in video. Specifically, each con-
tinuous 16 frames are treated as one short video clip and
taken as the inputs of C3D. The 4,096-dimensional outputs
of fc6 layer in C3D are regarded as the representations of
each video clip. Each sentence is represented as a vector
of words, and each word is encoded by one-hot vector. In
our experiments, we use about 20,000 most frequent words

2 In addition to MSR-VTT-10K, we will release more data in the future.



Feature BLEU@4 METEOR

AlexNet 6.3 14.1
GoogleNet 8.1 15.2
VGG-16 8.7 15.5
VGG-19 7.3 14.5

C3D 7.5 14.5
Table 2. The performance of KNN baselines with different video
representations and mean-pooling strategy.

as the word vocabulary. In our experiments, with an initial
learning rate 0.01 and mini-batch size set 1, 024, the objec-
tive value can decrease to 20% of the initial loss and reach a
reasonable result after 5, 000 iterations (about 100 epochs).
All videos are resized to resolution 320× 240 and 30 fps.

To evaluate the generated sentences, we use the
BLEU@N [24] and METEOR [1] metrics against al-
l ground truth sentences. Both metrics are widely used in
machine translation literature and already shown to be well
correlated with human judgement. Specifically, BLEU@N
measures the fraction of N -gram (up to 4-gram) that are
in common between a hypothesis and a reference or set
of references, while METEOR computes unigram precision
and recall, extending exact word matches to include similar
words based on WordNet synonyms and stemmed tokens.

5.2. Performance Comparison between Different
Video Representations

Table 2 show the results using different video feature
with mean pooling method. Since its weak performance,
we will show RNN based method in the below parts.

The first experiment was conducted to examine how d-
ifferent video representations work on sentence generation.
Table 3 shows the performances of five runs averaged over
all the test videos in our dataset. It is worth noting that the
performances in Table 3 are all with mean pooling. The
performance trend is similar with that using soft attention.

Overall, the results across BLEU@4 and METEOR con-
sistently indicate that video representations learnt from a
temporal clip using C3D leads to a performance boost
against frame-based representations. There is a slight-
ly performance difference between VGG-19 and VGG-16.
Though both runs utilize VGG network, VGG-19 is deep-
er than VGG-16 and thus learns a more powerful frame
representations. Similar observations are also found when
comparing to AlexNet and GoogleNet. The results indicate
that improvement can be generally expected when learning
frame-based representations by a deeper CNN.

Figure 4 (a) details the performance comparison by us-
ing VGG-19 and C3D across different categories in terms
of METEOR. The two kinds of video representations show
different characteristics in different types of categories. For
instance, the videos in category “sports/actions” are diverse
in appearance, resulting in poor performance by VGG-19.

Feature BLEU@4 METEOR

AlexNet 35.4 26.3
GoogleNet 36.7 27.5
VGG-16 37.2 28.6
VGG-19 37.3 28.7

C3D 39.9 29.3
Table 3. BLEU@4 and METEOR for comparing the quality of
sentence generation on different video representations. The ex-
periments are all based on mean-pooling strategy, and the size of
hidden layer in LSTM is set to 512. All values are reported as
percentage (%).

Instead, temporal representations by C3D is found to be
more helpful for this category. In the case of category “doc-
umentary,” where temporal information is relatively few,
frame-based representations by VGG-19 show better per-
formance. Moreover, the complementarity between frame-
based visual representations and clip-based temporal repre-
sentations is generally expected.

5.3. Performance Comparison between Different
Pooling Strategies

We second investigated how the performance is affected
with different pooling strategies. Two pooling approaches,
i.e., mean pooling and soft attention model, are compared.

Table 4 lists the performances of seven video representa-
tions with mean pooling and soft attention method, respec-
tively. Soft attention model consistently outperforms mean
pooling across different video representations. In particu-
lar, the METEOR of soft attention model (SA-LSTM (C3D
+ VGG-19)) can achieve 29.9%, making the improvement
over mean pooling (MP-LSTM (C3D + VGG-19)) by 1.4%,
which is generally considered as a good progress on sen-
tence generation task. Similar to the observations in Sec-
tion 5.2, clip-based temporal representation by C3D exhibit-
s better performance than frame-based visual representa-
tions and VGG-19 achieves the best performance across all
the frame-based representations. The performances could
be further boosted when concatenating the video represen-
tations learnt by C3D and VGG-19 with both mean pooling
and soft attention models.

Figure 4 (b) further details the METEOR performances
of mean pooling and soft attention model for all the 20 cat-
egories. Note that all the performances are given on video
representations of C3D+VGG-19. Basically, different cate-
gories respond differently to the two pooling strategies. For
instance, videos in the category “news” are better present-
ed with soft attention model as there are always multiple
scenes in the videos of this category. On the other hand,
videos in the category “cooking” are often in a single scene
and thus mean pooling shows much better results.

We also present a few sentence examples generated by
different methods and ground truth in Figure 5. From
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Figure 4. Per-category METEOR scores across all the 20 categories.

Model BLEU@1 BLEU@2 BLEU@3 BLEU@4 METEOR

MP-LSTM (AlexNet) [35] 75.9 60.6 46.5 35.4 26.3
MP-LSTM (GoogleNet) 76.8 61.3 47.2 36.7 27.5
MP-LSTM (VGG-16) 78.0 62.0 48.7 37.2 28.6
MP-LSTM (VGG-19) 78.2 62.2 48.9 37.3 28.7

MP-LSTM (C3D) 79.8 64.7 51.7 39.9 29.3
MP-LSTM (C3D+VGG-16) 79.8 64.7 52.0 40.1 29.4
MP-LSTM (C3D+VGG-19) 79.9 64.9 52.1 40.1 29.5

SA-LSTM (AlexNet) 76.9 61.1 46.8 35.8 27.0
SA-LSTM (GoogleNet) [39] 77.8 62.2 48.1 37.1 28.4

SA-LSTM (VGG-16) 78.8 63.2 49.0 37.5 28.8
SA-LSTM (VGG-19) 79.1 63.3 49.3 37.6 28.9

SA-LSTM (C3D) 80.2 64.6 51.9 40.1 29.4
SA-LSTM (C3D+VGG-16) 81.2 65.1 52.3 40.3 29.7
SA-LSTM (C3D+VGG-19) 81.5 65.0 52.5 40.5 29.9

Table 4. Performance comparison on our MSR-VTT dataset of seven video representations with mean pooling and soft attention method,
respectively. The number of the hidden layer of LSTM is set to 512 in all the experiments.

Feature BLEU@4 METEOR

Single frame 32.4 22.6
Mean pooling 37.3 28.7
Soft-Attention 37.6 28.9

Table 5. Performance comparison among different pooling meth-
ods (with VGG-19 feature and 512 hidden layers in LSTM).

these exemplar results, it is easy to see that SA-LSTM
(C3D+VGG-19) can generate more accurate sentences. For
instance, compared to the sentence “Kids are playing toys”
by MP-LSTM (AlexNet) and “People are playing in the
room” by SA-LSTM (GoogleNet), the generated sentence
“Children are painting in room” by SA-LSTM (C3D +
VGG-19) encapsulates the first video more clearly. For the
last video, the sentences generated by all the methods are
not accurate as the video contains multiple diverse scenes.
Therefore, there is still much space for researchers in this
area to design new algorithms to boost performance on this
dataset, especially dealing with complex visual content.

Besides, in Table 5, we have compared the performance
of single frame (middle frame) with mean-pooling and soft-
attention on the VGG-19 feature. It can prove approaches

Hidden layer size BLEU@4 METEOR Parameters

128 32.5 26.6 3.7M
256 38.0 29.0 7.6M
512 39.9 29.3 16.3M

Table 6. Performance comparison of different size of hidden layer
in LSTM. The video representation here is the clip-based temporal
representations by C3D and the pooling strategy is mean pooling.

by pooling method can achieve a better performance than
single frame.

5.4. The Size of hidden Layer of LSTM

In order to show the relationship between the perfor-
mance and hidden layer size of LSTM, we compare the
results of the hidden layer size in the range of 128, 256,
and 512. The results shown in Table 6 indicate increasing
the hidden layer size can lead to the improvement of the
performance with respect to both BLEU@4 and METEOR.
Therefore, in our experiments, the hidden layer size is em-
pirically set to 512 which achieves the best performance.



1. People playing football.

2. A group of people are playing football

3. A group of people are playing a football game.

GT: Two teams are playing a football game.

1. A man is talking.

2. A man is singing on stage.

3. People are singing and dancing.

GT: Two teens dancing in musical scene.

1. A woman is talking.

2. A person is folding a paper.

3. A person is showing how to fold up a piece 

of paper.

GT: A person is showing how to make an easy 

paper airplane.

1. Kids are playing toys.

2. People are playing in the room.

3. Children are painting in room.

GT: Kids are in a classroom finger painting.

1. A woman Is talking.

2. A woman is talking about her.

3. A woman is showing how to apply make up.

GT: The woman is giving a make up tutorial.

1. A man is talking.

2. A man is talking about a computer.

3. An advertisement for the phone.

GT: Someone giving demo about phone.

1. Someone is making food.

2. A person is cooking.

3. Some one is showing how to prepare a dish.

GT: A woman shows how to prepare potatoes.

1. A woman is talking about her hair.

2. Someone is talking in bed.

3. A woman is laying in bed.

GT: A girl sitting in bed knocks on the wall and 

then begins texting someone on her phone.

Figure 5. Examples of sentence generation results from different approaches and ground truth. Each video clip is represented by
four frames. (1) refers to the sentence generated by MP-LSTM (AlexNet) [35]. (2) refers to the sentence generated by SA-LSTM
(GoogleNet) [39]. (3) refers to the sentence generated by SA-LSTM (C3D+VGG-19). GT is a random human generated sentence in
the ground truth. Sentences in bold highlight the most accurate sentences.

Feature Correctness Grammar Relevance

AlexNet 7.8 7.0 7.9
GoogleNet 6.2 6.8 6.4
VGG-16 5.3 6.9 5.4
VGG-19 5.4 6.7 5.2

C3D 5.1 6.4 5.3
C3D+VGG-16 5.1 6.1 5.0
C3D+VGG-19 4.9 6.1 5.1

Table 7. Human evaluation of different methods on MSR-VTT.
Each method is evaluated by 5 persons (scale 1-10, lower is better).

5.5. Human Evaluations

We have extracted the SVO parts from all the sentences
and calculated the overlapped percentages of SVO on the
20 annotated sentences to show the human consistency for
our dataset. The mean overlapping percentage is 62.7%,
which proves the good human consistency for all annotated
sentences. Besides, we have conducted human evaluations
on different approaches in our dataset in Table 7 in terms of
correctness, grammar, and relevance, which shows similar
results compared with the above metrics.

6. Conclusions
We introduced a new dataset for describing video with

natural language. Utilizing over 3,400 worker hours, a vast

collection of video-sentence pairs was collected, annotated
and organized to drive the advancement of the algorithms
for video to text. This dataset contains the most representa-
tive videos covering a wide variety of categories and to-date
the largest amount of sentences. We comprehensively eval-
uated RNN-based approaches with variant components on
related and our dataset. We found that the temporal rep-
resentation learned from convolutional 3D networks plays
strong complement to the spatial representation, and the
soft-attention pooling strategy shows powerful capability to
model complex and long video data.

There are several promising directions for future study
on our dataset. There remains space to boost the per-
formance on certain categories (corresponding to complex
video content) that the approaches introduced in this paper
cannot work well. The audio information has not been ex-
ploited for video description generation. Using audio and its
AD information may further improve existing performance.
The dataset can also be utilized for video summarization if
one can build the embedding between video frames and the
words. Furthermore, emotion and action recognition could
be integrated into existing framework to make the generated
language more diverse and natural.
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