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Abstract. Influence maximization is the task of finding a set of seed
nodes in a social network such that the influence spread of these seed
nodes based on certain influence diffusion model is maximized. Topic-
aware influence diffusion models have been recently proposed to address
the issue that influence between a pair of users are often topic-dependent
and information, ideas, innovations etc. being propagated in networks
are typically mixtures of topics. In this paper, we focus on the topic-
aware influence maximization task. In particular, we study preprocessing
methods to avoid redoing influence maximization for each mixture from
scratch. We explore two preprocessing algorithms with theoretical justi-
fications. Our empirical results on data obtained in a couple of existing
studies demonstrate that one of our algorithms stands out as a strong
candidate providing microsecond online response time and competitive
influence spread, with reasonable preprocessing effort.

Keywords: influence maximization, topic-aware influence modeling, in-
formation diffusion

1 Introduction

In a social network, information, ideas, rumors, and innovations can be propa-
gated to a large number of people because of the social influence between the
connected peers in the network. Influence maximization is the task of finding a
set of seed nodes in a social network such that the influence propagated from the
seed nodes can reach the largest number of people in the network. More techni-
cally, a social network is modeled as a graph with nodes representing individuals
and directed edges representing influence relationships. The network is associ-
ated with a stochastic diffusion model (such as independent cascade model and
linear threshold model [14]) characterizing the influence propagation dynamics
starting from the seed nodes. Influence maximization is to find a set of k seed
nodes in the network such that the influence spread, defined as the expected
number of nodes influenced (or activated) through influence diffusion starting
from the seed nodes, is maximized [14,6].

Influence maximization has a wide range of applications including viral mar-
keting [9,18,14], information monitoring and outbreak detection [15], competitive
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viral marketing and rumor control [5,13], or even text summarization [22] (by
modeling a word influence network). As a result, influence maximization has been
extensively studied in the past decade. Research directions include improvements
in the efficiency and scalability of influence maximization algorithms [8,21,12],
extensions to other diffusion models and optimization problems [5,3,13], and
influence model learning from real-world data [19,20,10].

Most of these works treat diffusions of all information, rumors, ideas, etc.
(collectively referred as items in this paper) as following the same model with a
single set of parameters. In reality, however, influence between a pair of friends
may differ depending on the topic. For example, one may be more influential
to the other on high-tech gadgets, while the other is more influential on fashion
topics, or one researcher is more influential on data mining topics to her peers
but less influential on algorithm and theory topics. Recently, Barbieri et al. [2]
propose the topic-aware independent cascade (TIC) and linear threshold (TLT)
models, in which a diffusion item is a mixture of topics and influence parameters
for each item are also mixtures of parameters for individual topics. They provide
learning methods to learn influence parameters in the topic-aware models from
real-world data. Such topic-mixing models require new thinking in terms of the
influence maximization task, which is what we address in this paper.

In this paper, we adopt the models proposed in [2] and study efficient topic-
aware influence maximization schemes, i.e., finding a set of k seed nodes to
trigger the information cascade whenever a diffusion item composed of multiple
topics is given. It has a wide application in viral marketing for online scenarios,
where the system should recommend candidate sets instantly to different queries.
One can still apply topic-oblivious influence maximization algorithms in online
processing of every diffusion item, but it may not be efficient when there are a
large number of items with different topic mixtures or real-time responses are
required. Thus, our focus is on how to utilize the preprocessing of individual
topic influence so that when a diffusion item with certain topic mixture comes,
the online processing of finding the seed set is fast. To do so, our first step is
to collect two datasets in the past studies with available topic-aware influence
analysis results on real networks and investigate their properties pertaining to
our preprocessing purpose. Our data observation shows that in one network
users and their relationships are largely separated by different topics while in
the other network they have significant overlaps on different topics. Even with
this difference, a common property we find is that in both datasets most top
seeds for a topic mixture come from top seeds of the constituent topics, which
matches our intuition that influential individuals for a mixed item are usually
influential in at least one topic category.

Motivated by our findings from the data observation, we explore two prepro-
cessing based algorithms (Section 3). The first algorithm, Best Topic Selection
(BTS), minimizes online processing by simply using a seed set for one of the
constituent topics. Even for such a simple algorithm, we are able to provide a
theoretical approximation ratio (when a certain property holds), and thus BTS
serves as a baseline for preprocessing algorithms. The second algorithm, Marginal
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Influence Sort (MIS), further uses pre-computed marginal influence of seeds on
each topic to avoid slow greedy computation. We provide a theoretical justifi-
cation showing that MIS can be as good as the offline greedy algorithm when
nodes are fully separated by topics.

We then conduct experimental evaluations of these algorithms and comparing
them with both the greedy algorithm and a state-of-the-art heuristic algorithm
PMIA [21], on the two datasets used in data analysis as well as a third dataset
for testing scalability (Section 4). From our results, we see that MIS algorithm
stands out as the best candidate for preprocessing based real-time influence
maximization: it finishes online processing within a few microseconds and its
influence spread either matches or is very close to that of the greedy algorithm.
Full technical details including data analysis, proofs and experimental results
are available in the technical report [7].

Our work, together with a recent independent work [1], is one of the first that
study topic-aware influence maximization with focus on preprocessing. Compar-
ing to [1], our contributions include: (a) we include data analysis on two real-
world datasets with learned influence parameters, which shows different topical
influence properties and motivates our algorithm design; (b) we provide theoret-
ical justifications to our algorithms; (c) the use of marginal influence of seeds in
individual topics in MIS is novel, and is complementary to the approach in [1];
(d) although MIS is simple, it achieves competitive influence spread within mi-
croseconds of online processing time satisfying real-time application requirement.

2 Preliminaries

In this section, we introduce the background and problem definition on the
topic-aware influence diffusion models. We focus on the independent cascade
model [14] for ease of presentation, but our results also hold for other models
parameterized with edge parameters such as the linear threshold model [14].

Independent cascade model. We consider a social network as a directed graph
G = (V,E), where each node in V represents a user, and each edge in E rep-
resents the relationship between two users. For every edge (u, v) ∈ E, denote
its influence probability as p(u, v) ∈ [0, 1], and we assume p(u, v) = 0 for all
(u, v) /∈ E or u = v. The independent cascade (IC) model, defined in [14], cap-
tures the stochastic process of contagion in discrete time. Initially at time step
t = 0, a set of nodes S ⊆ V called seed nodes are activated. At any time t ≥ 1,
if node u is activated at time t − 1, it has one chance of activating each of its
inactive outgoing neighbor v with probability p(u, v). A node stays active after
it is activated. This process stops when no more nodes are activated.

We define influence spread of seed set S under influence probability function
p, denoted σ(S, p), as the expected number of active nodes after the diffusion
process ends. As shown in [14], for any fixed p, σ(S, p) is monotone (i.e., σ(S, p) ≤
σ(T, p) for any S ⊆ T ) and submodular (i.e., σ(S ∪ {v}, p) − σ(S, p) ≥ σ(T ∪
{v}, p) − σ(T, p) for any S ⊆ T and v ∈ V ) in its seed set parameter. For two
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influence probability functions p and p′ on graph G = (V,E), we denote p ≤ p′

if for any (u, v) ∈ E, p(u, v) ≤ p′(u, v). Another well-known fact is that σ(S, p)
is monotone in p (i.e. σ(S, p) ≤ σ(S, p′) if p ≤ p′ edge-wise).

Influence maximization. Given a graph G = (V,E), an influence probability
function p, and a budget k, influence maximization is the task of selecting at
most k seed nodes in V such that the influence spread is maximized, i.e., finding
the optimal seeds S∗ = S∗(k, p) ⊆ V such that S∗ = argmaxS⊆V,|S|≤k σ(S, p).

Kempe et al. [14] show that the influence maximization problem is NP-hard
in both the IC and LT models, and they propose the following greedy algorithm.
Given influence probability function p, the marginal influence (MI) of any node
v ∈ V under any seed set S is defined as MI (v|S, p) = σ(S∪{v}, p)−σ(S, p). The
greedy algorithm selects k seeds in the following k iterations: (a) let S0 = ∅; (b)
for each iteration j = 1, 2, . . . , k, find node vj = argmaxv∈V \Sj−1

MI (v|Sj−1, p),
and adds vj into Sj−1 to obtain Sj ; (c) output seed set Sg(k, p) = Sk.

It is shown in [14] that the greedy algorithm selects a seed set Sg(k, p)
with approximation ratio 1 − 1

e − ε for any small ε > 0 (i.e., σ(Sg(k, p), p) ≥(
1− 1

e − ε
)
σ(S∗, p)), where ε accommodates the inaccuracy in Monte Carlo sim-

ulations to estimate the marginal influence.

Topic-aware independent cascade model and topic-aware influence maximization.
Topic-aware independent cascade (TIC) model [2] is an extension of the IC model
to incorporate topic mixtures in any diffusion item. Suppose there are d base
topics, and we use set notation [d] = {1, 2, · · · , d} to denote topic 1, 2, · · · , d.
We regard each diffusion item as a distribution of these topics. Thus, any item
can be expressed as a vector I = (λ1, λ2, . . . , λd) ∈ [0, 1]d where

∑
i∈[d] λi =

1. We also refer such a vector I as a topic mixture. Given a directed social
graph G = (V,E), influence probability on any topic i ∈ [d] is pi : V × V →
[0, 1], and we assume pi(u, v) = 0 for all (u, v) /∈ E or u = v. In the TIC
model, the influence probability function p for any diffusion item I is defined as
p(u, v) =

∑
i∈[d] λipi(u, v), for all u, v ∈ V (or simply p =

∑
i∈[d] λipi). Then, the

stochastic diffusion process and influence spread σ(S, p) are exactly the same as
defined in the IC model by using the influence probability p on edges.

Given a social graph G, base topics [d], influence probability function pi for
each base topic i, a budget k and an item I = (λ1, λ2, . . . , λd), the topic-aware
influence maximization is the task of finding optimal seeds S∗ = S∗(k, p) ⊆ V
such that S∗ = argmaxS⊆V,|S|≤k σ(S, p), where p =

∑
i∈[d] λipi.

3 Preprocessing Based Algorithms

Topic-aware influence maximization can be solved by using existing influence
maximization algorithms such as the ones in [14,21]: when a query on an item
I = (λ1, λ2, · · · , λd) comes, the algorithm first computes the mixed influence
probability function p =

∑
j λjpj , and then applies existing algorithms using
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parameter p. This, however, means that for each topic mixture influence max-
imization has to be carried out from scratch. It may take from half a minute
to several hours to find the seed sets in large-scale networks, which could be
inefficient or impractical for online scenarios.

In this paper, we are able to obtain datasets from two prior studies, one is
on social movie rating network Flixster [2] and the other is on academic col-
laboration network Arnetminer [20], to help design our algorithms. Due to the
space limit, the full data analysis can be found in [7], and we briefly summa-
rize two key observations we made as follows: (1) Topic separation in terms of
influence probabilities is network dependent: In the Arnetminer network, topics
are mostly separated among different edges and nodes in the network, while in
the Flixster network there are significant overlaps on topics among nodes and
edges; (2) Most seeds for topic mixtures come from the seeds of constituent top-
ics, in both Arnetminer and Flixster networks. In this section, motivated by the
above observations, we introduce two preprocessing based algorithms that cover
different design choices.

3.1 Best Topic Selection (BTS) algorithm

Our first algorithm is to minimize online processing by simply selecting a seed
set from one of the constituent topics that has the best influence spread in the
topic mixture, and thus we call it Best Topic Selection (BTS) algorithm. Since
the query of item I = (λ1, λ2, · · · , λd) may be arbitrary, our key idea is to apply
a bucketing technique to establish landmarks for each topic in the preprocessing
stage, and use properties of upper and lower landmarks to bound the error in
the online stage, as we explain in more detail now.

Preprocess stage. Denote constant set Λ = {λc0, λc1, · · · , λcm} as a set of land-
marks, where 0 = λc0 < λc1 < · · · < λcm = 1. For each λ ∈ Λ and each topic i ∈ [d],
we pre-compute Sg(k, λpi) and σ(Sg(k, λpi), λpi) in the preprocessing stage, and
store these values for online processing. In our experiments, we use uniformly se-
lected landmarks because they are good enough for influence maximization and
can adopt parallel optimization. More sophisticated landmark selection method
may be applied, such as the machine learning based method in [1].

Online stage. We define two rounding notations that return one of the neigh-
boring landmarks in Λ = {λc0, λc1, · · · , λcm}: given any λ ∈ [0, 1], let λ = λcj
such that λcj ≤ λ < λcj+1, and λ = λcj+1 such that λcj < λ ≤ λcj+1. Given

I = (λ1, λ2, · · · , λd), let D+
I = {i ∈ [d] |λi > 0}. With the pre-computed

Sg(k, λpi) and σ(Sg(k, λpi), λpi) for every λ ∈ Λ and every topic i, the BTS
algorithm is given in Algorithm 1. The algorithm basically rounds down the
mixing coefficient on every topic to (λ1, · · · , λd), and then returns the seed set
Sg(k, λi′pi′) that gives the largest influence spread at the round-down landmarks.

In this paper, BTS is used as a baseline for preprocessing based algorithms.
Although BTS is rather simple, we show below that it could provide theoretical
guarantee with a certain condition.

We say that σ(S, p) is c-sub-additive in p for some constant c if for any S ⊆ V
with |S| ≤ k and any I = (λ1, . . . , λd), σ(S,

∑
i∈D+

I
λipi) ≤ c

∑
i∈D+

I
σ(S, λipi).
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Algorithm 1 Best Topic Selection (BTS) Algorithm

Require: G = (V,E), k, {pi | i ∈ [d]}, I = (λ1, · · · , λd), Λ, Sg(k, λpi) and
σ(Sg(k, λpi), λpi), ∀λ ∈ Λ,∀i ∈ [d].

1: I ′ = (λ1, · · · , λd)
2: i′ = argmaxi∈D+

I
σ(Sg(k, λipi), λipi)

3: return Sg(k, λi′pi′)

The sub-additivity property above means that the influence spread of any seed
set S in any topic mixture will not exceed constant times of the sum of the
influence spread for each individual topic. It is easy to verify that, when each
topic in the network does not interfere with each other, σ(S, p) is 1-sub-additive.
The counterexample we could find that violates the c-sub-additivity assumption
is a tree structure where even layer edges are for one topic and odd layer edges
are for another topic. Such structures are rather artificial, and we believe that
for real networks the influence spread is c-sub-additive in p with a reasonably
small c.

We define µmax = maxi∈[d],λ∈[0,1]
σ(Sg(k,λpi),λpi)
σ(Sg(k,λpi),λpi)

, which is a value controlled

by preprocessing. A fine-grained landmark set Λ could make µmax close to 1.
The following Theorem 1 guarantees the approximation ratio of Algorithm 1.

Theorem 1. If the influence spread function σ(S, p) is c-sub-additive in p, Al-

gorithm 1 achieves 1−e−1

c|D+
I |µmax

approximation ratio for item I = (λ1, λ2, · · · , λd).

The approximation ratio given in the theorem is a conservative bound for
the worst case (e.g., a common setting may be c = 1.2, µmax = 1.5, |D+

I | =
2). Tighter online bound in our experiment section based on [15] shows that
Algorithm 1 performs much better than the worst case scenario.

3.2 Marginal Influence Sort (MIS) algorithm

Our second algorithm derives the seed set from constituent topics, and more-
over it utilizes pre-computed marginal influence from different topics to select
seeds. Our idea is partially motivated by our data observation, especially for the
Arnetminer dataset, which shows that in some cases the network could be well
separated among different topics. Intuitively, if nodes are separable among differ-
ent topics, and each node v is only pertinent to one topic i, the marginal influence
of v would not change much whether it is for a mixed item or the pure topic i,
as formally characterized in the following. Given threshold θ ≥ 0, define node
set νi(θ) = {v ∈ V |

∑
u:(v,u)∈E pi(v, u)+

∑
u:(u,v)∈E pi(u, v) > θ} for every topic

i, and node overlap coefficient for topic i and j as RVij(θ) =
|νi(θ)∩νj(θ)|

min{|νi(θ)|,|νj(θ)|} . If

θ is small and the overlap coefficient is small, it means that the two topics are
fairly separated in the network. In particular, we say that the network is fully
separable for topics i and j if RVij(0) = 0, and it is fully separable for all topics

if RVij(0) = 0 for any pair of i and j with i 6= j.
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Algorithm 2 Marginal Influence Sort (MIS) Algorithm

Require: G = (V,E), k, {pi | i ∈ [d]}, I = (λ1, · · · , λd), Λ, Sg(k, λpi) and
MI g(v, λpi), ∀λ ∈ Λ, ∀i ∈ [d].

1: I ′ = (λ1, · · · , λd)
2: V g = ∪i∈[d],λi>0S

g(k, λipi)
3: for v ∈ V g do
4: f(v) =

∑
i∈[d],λi>0 MI g(v, λipi)

5: end for
6: return top k nodes with the largest f(v),∀v ∈ V g

Lemma 1. If a network is fully separable among all topics, then for any v ∈ V
and topic i ∈ [d] such that σ(v, pi) > 1, for any item I = (λ1, λ2, . . . , λd), for
any seed set S ⊆ V , we have MI (v|S, λipi) = MI (v|S, p), where p =

∑
j∈[d] λjpj.

Lemma 1 suggests that we can use the marginal influence of a node on each
topic when dealing with a topic mixture. Algorithm MIS is based on this idea.

Preprocess stage. Recall the detail of greedy algorithm, given probability p
and budget k, for iteration j = 1, 2, · · · , k, it calculates vj to maximize marginal
influence MI (vj |Sj−1, p) and let Sj = Sj−1 ∪ {vj} every time, and output
Sg(k, p) = Sk as seeds. Denote MI g(vj , p) = MI (vj |Sj−1, p), if vj ∈ Sg(k, p), and
0 otherwise. Therefore, MI g(vj , p) is the marginal influence of vj according to
the greedy selection order. Suppose the landmark set Λ = {λc0, λc1, λc2, · · · , λcm}.
For every λ ∈ Λ and every single topic i ∈ [d], we pre-compute Sg(k, λpi), and
cache MI g(v, λpi), ∀v ∈ Sg(k, λpi) in advance.

Online stage. Marginal Influence Sort (MIS) algorithm is described in Algo-
rithm 2. Given an item I = (λ1, · · · , λd), it first rounding down the mixture,
and then use the union of seed sets as candidates. If a seed node appears mul-
tiple times in pre-computed topics, we approximate by summing the marginal
influence in each topic together. Then we sort all candidates according to the
computed marginal influence, and select top-k nodes as seeds.

Theorem 2. Suppose I = (λ1, λ2, · · · , λd), where each λi ∈ Λ, and Sg(k, λ1p1),
· · · , Sg(k, λdpd) are disjoint. If the network is fully separable for all topics, the
seed set calculated by Algorithm 2 is one of the possible sequences generated by
greedy algorithm under the mixed influence probability p =

∑
i∈[d] λipi.

Although MIS is a heuristic algorithm, this theorem implies that the seed set
S from MIS satisfies σ(S, p) ≥ (1−e−1−ε)σ(S∗, p) (for any ε > 0) compared with
the optimal S∗ in fully separable networks. It suggests that MIS would work well
for networks that are fairly separated among different topics, which are verified
by our test results on the Arnetminer dataset. Moreover, even for networks that
are not well separated, it is reasonable to assume that the marginal influence of
nodes in the mixture can be approximated by the sum of the marginal influence
in individual topics, and thus we expect MIS to work also competitively in this
case, which is verified by our test results on the Flixster dataset.
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4 Empirical Evaluation

We test the effectiveness of our algorithms by using multiple real-world datasets,
and compare them with state-of-the-art influence maximization algorithms.

Data descriptions. The first dataset is on social movie rating network Flixster
[2], an American social movie site for discovering new movies, learning about
movies, and meeting others with similar tastes in movies. The Flixster network
represents users as nodes, and two users u and v are connected by a directed
edge (u, v) if they are friends both rating the same movie and v rates the movie
shortly later after u does so. The network contains 29357 nodes, 425228 directed
edges and 10 topics. We eliminate individual probabilities that are too weak
(∀i ∈ [d], λi < 0.01). We also obtain 11659 topic mixtures, from which we found
that predominant ones are single topic (96.79%) or two-topic mixtures (3.04%).
Mixtures with three or four topics are already rare and there are no items with
five or more topics.

The second dataset is on the academic collaboration network Arnetminer
[20], which is a free online service used to index and search academic social
networks. The Arnetminer network represents authors as nodes and two authors
have an edge if they coauthored a paper. It contains 5114 nodes, 34334 directed
edges and 8 topics, and all 8 topics are related to computer science, such as data
mining, machine learning, information retrieval, etc.

The above two datasets act as the baseline to verify the effectiveness of the
algorithms. Furthermore, we use a larger academic collaboration network data
DBLP maintained by Michael Ley (650K nodes and 2 million edges) only to test
the scalability of the algorithms.

Influence probabilities. We first test our algorithms on the Flixster and Arnet-
miner datasets, whose influence probabilities are learned from real action trace
data or node topic distribution data. The basic statistics for the learned influ-
ence probabilities show similar behavior between the two datasets, such as mean
probabilities for each topic are mostly between 0.1 and 0.2, standard deviations
(SD) are mostly between 0.1 and 0.3, etc. (Take the average over all topics:
Arnetminer mean=0.173, SD=0.227; Flixster mean=0.131, SD=0.187.)

As DBLP does not have influence probabilities, we simulate two topics ac-
cording to the joint distribution of topics 1 and 2 in the Flixster, and follow the
practice of the TRIVALENCY model in [21] to rescale it into {0.1, 0.01, 0.001}
(i.e., strong, medium, and low influence).

Topic mixtures. In terms of topic mixtures, in practice and also supported by
our data, an item is usually a mixture of a small number of topics thus our tests
focus on testing topic mixtures from two topics. First, we test random samples
to cover most common mixtures. We draw 50 topic mixtures from the uniform
distribution over the polytope of any two topics. Second, since we have the
data of real topic mixtures in Flixster dataset, we also test additional 50 cases
following the same sampling technique described in Section 3.1 of [1], which
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estimates the Dirichlet distribution that maximizes the likelihood first and then
generates topic mixtures by sampling from the distribution.

Algorithms for comparison. In our experiments, we test our topic-aware pre-
processing based algorithms MIS and BTS comprehensively. Three classes of
algorithms are selected for comparison: (a) Topic-aware algorithms: The topic-
aware greedy algorithm (TA-Greedy) and a state-of-the-art fast heuristic algo-
rithm PMIA (TA-PMIA) [21]; (b) Topic-oblivious algorithms: The topic-oblivious
greedy algorithm (TO-Greedy), degree algorithm (TO-Degree) and random algo-
rithm (Random); (c) Simple and fast heuristic algorithms that do not need pre-
processing: The topic-aware PageRank (TA-PageRank) [4] and WeightedDegree
(TA-WeightedDegree) [21] algorithms.

In this paper, we employ the greedy algorithm [15] with lazy evaluation and
the same approximation ratio to provide hundreds of time of speedup to the
original one [14]. PMIA is a fast heuristic algorithm based on trimming influence
propagation to a tree structure, and it achieves thousand fold speedup comparing
to optimized greedy algorithms with a small degradation on influence spread [21]
(we set a small threshold θ = 1/1280 to alleviate the degradation).

Topic-oblivious algorithms work under previous IC model that does not iden-
tify topics (the uniform topic mixture). TO-Greedy runs greedy algorithm for pre-
vious IC model. TO-Degree outputs the top-k nodes with the largest degree based
on the original graph. Random simply chooses k nodes at random.

Finally, we study the possibility of acceleration for large graphs by comparing
PMIA with greedy algorithm in preprocessing stage, and denote MIS and BTS
algorithms as MIS[Greedy], BTS[Greedy] and MIS[PMIA], BTS[PMIA], respectively.

In the preprocessing stage, we use two algorithms, Greedy and PMIA, to pre-
compute seed sets for MIS and BTS, except that for the DBLP dataset, which
is too large to run the greedy algorithm, we only run PMIA. In our tests, we
use 11 equally distant landmarks Λ = {0, 0.1, 0.2, . . . , 1} for MIS and BTS. Each
landmark is independent and can be pre-computed concurrently in different pro-
cesses. We choose k = 50 seeds in all our tests and compare the influence spread
and running time, and take the average of 10000 Monte Carlo simulations to ob-
tain the influence spread for each seed set in the greedy algorithm. In addition,
we apply offline bound (the influence spread of any greedy seeds multiplied by
factor 1/(1− e−1)) and online bound (Theorem 4 in [15]) to estimate influence
spread of optimal solutions.

All experiments are conducted on a computer with 2.4GHz Intel(R) Xeon(R)
E5530 CPU, 2 processors (16 cores), 48G memory, and Windows Server 2008 R2
(64 bits). The code is written in C++ and compiled by Visual Studio 2010.

Influence spread. Figure 1 shows the total influence spread results on Arnet-
miner with random samples (a); Flixster with random and Dirichlet samples,
(b) and (c), respectively; and DBLP with random samples (d). For the Arnet-
miner dataset, it clearly separates all algorithms into three tiers (all percentages
reported in parentheses are the gap of ratio compared with the best algorithm af-
ter taking average from one seed to 50 seeds): the top tier is TA-Greedy, TA-PMIA
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(c) Flixster on Dirichlet samples
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Fig. 1. Influence spread of algorithms. Legends are ordered (left to right, top to bottom)
according to influence spread.

(0.61%), MIS[Greedy] (0.32%) and MIS[PMIA] (1.08%) whose gaps are negligible;
the middle tier is TA-WeightedDegree (4.06%), BTS[Greedy] (4.68%), BTS[PMIA]

(4.67%) and TA-PageRank (26.84%); and the lower tier is topic-oblivious algo-
rithms TO-Greedy (28.57%), TO-Degree (56.75%) and Random (81.48%). Besides,
MIS[Greedy] and BTS[Greedy] are 76.9% and 72.5% of the online bound, which are
better than their conservative theoretical bounds (1−e−1 ≈ 63.2%). For Flixster
dataset we see that the influence spread of TA-PMIA, MIS[Greedy], MIS[PMIA],
BTS[Greedy] and BTS[PMIA] are 1.78%, 3.04%, 4.58%, 3.89% and 5.29% smaller
than TA-Greedy for random samples, and 1.41%, 1.94%, 3.37%, 2.31% and 3.59%
smaller for Dirichlet samples, respectively, indicating that our preprocessing
based algorithms can perform quite well.

Running time. We summarize both of the preprocessing time and average online
response time in Table 1. Table 1(b) shows the average online response time of
different algorithms in finding 50 seeds (topic-oblivious algorithms always use the
same seeds and thus are not reported). Our proposed MIS emerges as a strong
candidate for fast real-time processing of topic-aware influence maximization
task: it achieves microsecond response time, which does not depend on graph
size or influence probability parameters, while its influence spread matches or is
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Table 1. Running time statistics

(a) Preprocessing time

Arnetminer Flixster DBLP
(|Λ| = 8× 11) (|Λ| = 10× 11) (|Λ| = 2× 11)

Total Max Total Max Total Max

Greedy 8.8 hrs 1.2 hrs 26.3 days 3.5 days ≥ 100 days ≥ 7 days
PMIA 37 secs 7.1 secs 2.28 hrs 12.6 mins 9.6 mins 4.2 mins

(b) Average online response time

Arnetminer
Flixster

DBLP
random Dirichlet

TA-Greedy 9.3 mins 1.5 days 20 hrs N/A
TA-PMIA 0.52 sec 5.5 mins 3.8 mins 58 secs
MIS 2.85 µs 2.37 µs 3.84 µs 2.09 µs
BTS 1.20 µs 2.35 µs 1.42 µs 0.49 µs
TA-PageRank 0.15 sec 2.08 secs 2.30 secs 41 secs
TA-WeightedDegree 8.5 ms 29.9 ms 30.7 ms 0.32 sec

very close to the best greedy algorithm and outperforms other simple heuristics
(Figure 1). Table 1(a) shows the preprocessing time based on greedy algorithm
and PMIA algorithm on three datasets. It indicates that the greedy algorithm
is suitable for small graphs but infeasible for large graphs like DBLP. PMIA is
a viable choice for preprocessing, and our MIS using PMIA as the preprocessing
algorithm achieves almost the same influence spread as MIS using the greedy
algorithm for preprocessing (Figure 1).

5 Related Work

Domingos and Richardson [9,18] are the first to study influence maximization in
an algorithmic framework. Kempe et al. [14] first formulate the discrete influence
diffusion models including the independent cascade model and linear threshold
model, and provide algorithmic results on influence maximization.

A large body of work follows the framework of [14]. One line of research
improves on the efficiency and scalability of influence maximization algorithms
[11,8,21,12]. Others extend the diffusion models and study other related opti-
mization problems [5,3,13]. A number of studies propose machine learning meth-
ods to learn influence models and parameters [19,20,10]. A few studies look into
the interplay of social influence and topic distributions [20,17,23,16]. They fo-
cus on inference of social influence from topic distributions or joint inference of
influence diffusion and topic distributions. They do not provide a dynamic topic-
aware influence diffusion model or study the influence maximization problem.
Barbieri et al. [2] introduce the topic-aware influence diffusion models TIC and
TLT as extensions to the IC and LT models. They provide maximum-likelihood
based learning method to learn influence parameters in these topic-aware models.
We use their proposed models and datasets with the learned parameters.

A recent independent work by Aslay et al. [1] is the closest one to our
work. Their work focuses on index building in the query space while we use
pre-computed marginal influence to help guiding seed selection, and thus the
two approaches are complementary. Other differences have been listed in the
introduction and will not be repeated here.

6 Future Work

One possible follow-up work is to combine the advantages of our approach and
the approach in [1] to further improve the performance. Another direction is to
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study fast algorithms with stronger theoretical guarantee. An important work is
to gather more real-world datasets and conduct a thorough investigation on the
topic-wise influence properties of different networks, similar to our preliminary
investigation on Arnetminer and Flixster datasets. This could bring more insights
to the interplay between topic distributions and influence diffusion, which could
guide future algorithm design.
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