
Combining State-based and Scenario-based Approaches in
Modeling Biological Systems

Jasmin Fisher1, David Harel1, E. Jane Albert Hubbard2, Nir Piterman1, Michael J. Stern3,
and Naamah Swerdlin1

1 Dept. of Computer Science and App. Math., Weizmann Institute, Rehovot 76100, Israel. Email:
firstname.lastname@weizmann.ac.il

2 Dept. of Biology, New York University, New York, NY. Email: jane.hubbard@nyu.edu
3 Dept. of Genetics, Yale School of Medicine, New Haven, CT. Email: michael.stern@yale.edu

Abstract. Biological systems have recently been shown to share many of the prop-
erties of reactive systems. This observation has led to the idea of using methods de-
vised for the construction (engineering) of complex reactive systems to the modeling
(reverse-engineering) of biological systems, in order to enhance biological compre-
hension. Here we suggest to combine the two formal approaches used in our group —
the state-based formalism of statecharts and the scenario-based formalism of live se-
quence charts (LSCs). We propose that biological observations are better formalized
in the form of LSCs, while biological mechanistic models would be more natural to
specify using statecharts. Combining the two approaches would enable one to verify
the proposed mechanistic models against the real data. The biological observations
can be compared to the requirements in an engineered system, and the mechanistic
model would be analogous to the implementation. While requirements are used to
design an implementation, here the observations are used to motivate the invention
of the mechanistic model. In both cases consistency of one with the other must be
established, by testing or by formal verification.

1 Introduction

Experimental biology is an interplay between collecting data in experiments (observations),
followed by analysis of the data and suggestion of a mechanistic model that would explain
how the system under study works. Then, further experiments are preformed to test the
hypothetical mechanism. Here we propose that the dichotomy between theses two aspects
of biology calls for separate formal methods.

Recently, the resemblance between reactive systems (systems that continuously interact
with their environment) and biological systems has been noted [7, 11]. This observation has
led to the idea of using methods devised for the construction of complex reactive systems
to model biological systems. The first attempt to follow this path was a modest model of T-
cell activation [11], which was followed by an extensive animated model of T-cell behavior
in the thymus [4, 5]. At present there is an ongoing effort to model the vulval development
in the nematodeCaenorhabditis elegans[12].

Two approaches are used in our group to model biological behavior: anintra-object
one based on the language ofstatecharts[6] and theRhapsodytool [8, 10], and aninter-
object one that uses the more recent language oflive sequence charts(LSCs) [3] and
the Play-Engine tool [9]. Both languages are visual, having a clear (and formal) syntax
and semantics, and both approaches enable the construction of a formal model and its
execution. In Rhapsody, a state-based transition diagram (statechart) of the system under
study is constructed. The tool automatically generates executable C/C++/Java code from
the statecharts. In contrast, LSCs specify scenarios of behavior between objects, with vary-
ing modalities (e.g., required, possible, and forbidden scenarios), and the Play-Engine exe-
cutes these directly in a way that satisfies the modalities for each.

As typical biological data is available in the form of ‘condition-result’ scenarios, we
believe that biological observations are best formalized in the form of LSCs, which take



the following general form: ifX (the prechart) occurs thenY (the main chart) should too,
whereX andY consist of scenarios of behavior and can be simple or complex. Indeed, in an
LSC we can formalize the terms of the experiment as the conditional prechart that enables
an LSC, and we can formalize the result of the experiment as a sequence of happenings
resulting from that condition. On the other hand, since many biological mechanistic models
are ‘state-based’, we feel that in such cases it would be more natural to specify mechanistic
models using statecharts, since they specify the behavior of the system based on its internal
(stipulated) mechanism.

Here, we propose that these two approaches complete each other and should be used
together in order to model the two aspects of a common biological system simultaneously.
By using a scenario-based approach to formalize the behaviors of the biological system
and a state-based approach to formalize the mechanism underlying these behaviors, one
can formally verify that the mechanistic model reproduces the system’s real behavior. In
this functional sense, the biological observations can be compared to the requirements in an
engineered system, while the proposed mechanistic model would be analogous to the sys-
tem’s design and implementation.4 To carry this analogy further, in an engineered system
the requirements are used to help in coming up with the design and implementation, and
are then used a second time to build test suites for testing the implementation against the
requirements. In biological systems the observations are used to motivate the construction
of the mechanistic model (that serves as a working hypothesis), and our approach enables
them to be used also in testing and verification, by simulation or, e.g., model-checking.
These techniques may also yield interesting predictions that should be then corroborated
experimentally in the biological system.

2 Engineering Computerized Systems vs. Reverse-Engineering
Biological Systems

In engineering, we try to produce adesignthat satisfies a set of requirements. This set of
requirements is determined by our ideas about how the system should eventually work. In
biological modeling we doreverse-engineering, trying to construct amechanistic model
that explains how the biological system works. This model has to fit the experimental ob-
servations.

In engineering, we formalize the requirements (emanating from the system’s concept)
in a formal specification language (e.g., LSCs). This formal specification not only guides
the construction of the design and implementation but is later used also to check the de-
sign’s correctness. In formal modeling of biology, on the other hand, the situation is dif-
ferent. The biological system is already ‘built’. In fact, there is a running exemplar of the
system. Unfortunately, we are restricted in the way we can analyze it (in particular, we are
unable to access its ‘blueprint’). By experimenting with the biological system (i.e., testing
it under different conditions) and recording the results of these experiments we can gain
knowledge of its behavior. Once we formalize these observations in the form of LSCs we
get a sort of ‘requirements’ specification that can be used in constructing of the mechanistic
model. See Figure 1.

The testing phases in both cases (engineering versus reverse-engineering) possesses an
interesting duality. In engineering we test the design in order to improve assurance of its
quality. In biology we probe the system, a process we can also call testing, get the results,
and rerun the results on the mechanistic model. Thus, in the reverse-engineered process
of modeling biology a test would be run twice: once on the biological system itself and
once on the mechanistic model. As a result, once we check all the tests known at a given
time-point, we get what we might call (borrowing from software engineering terminology)

4 In another sense it is the other way around: the biological observations are directly related to
the actual system as is the implementation of an engineered system, whereas requirements and
biological mechanistic models are both invented by humans.



Computerized Systems Biological Systems
(Engineering) (Reverse-engineering)

Scenario-based Requirements Observations

State-based Design & Implementation Mechanistic Model

Fig. 1.Analogy between computerized systems and biological systems

a completecoverageof the desired behavior of the mechanistic model. At that time-point,
there are no more tests to preform on the system until more experiments are carried out.
In contrast, when engineering man-made systems the problem of determining whether the
requirements are sufficient is an interesting question in its own right.

3 Regression Testing and Model Checking

The fact that when we come up with a mechanistic model there is at hand a fixed given set
of tests (the biological observations) suggests that we can useregression testingto get a
higher type of assurance of the model’s correctness. In engineering, regression testing is
used to compare different versions of the same design, by running the old test suites on
the new version to make sure that we haven’t inadvertently changed previously decided-
upon desired behavior. Thus, during the development of the design, we form a collection of
tests and save the results we got when running them on the present version. Once a change
is made, we run the same set of tests again and make sure that the new design produces
the same results. In the case of reverse-engineering a biological system the comparison
made by re-running the tests is not between an old and a new version of the system, but
between the real biological system and the proposed mechanistic model thereof. Here, the
collection of tests is already given, as the set of observations resulting from the performed
experiments.

Both in engineering and reverse-engineering performing additional ad-hoc tests can
produce interesting results. In the engineering world, arbitrary tests may produce behaviors
that indicate the existence of bugs, causing the need to redo the design and implementa-
tion, whereas in reverse-engineering, ad hoc tests (such as running the formalized models
on additional inputs or in different ways) may produce interesting predictions regarding the
behavior of the biological system, or questions that need to be resolved by further experi-
mentation.

In engineering, we would like to use verification techniques, such asmodel-checking
(see, e.g., [2]), in order to acquire greater confidence in the correctness of the design.
Model-checking is a method to formally verify that all the possible behaviors of the sys-
tem satisfy a given requirement, and can be used with statecharts or LSCs. In reverse-
engineering of biological systems we could use model-checking to get around the main
disadvantage of model execution, which is its inability to cover all possible execution sce-
narios, which is particularly problematic for mechanistic models that are non-deterministic.
This would be done by model-checking the specification (LSCs) against the mechanistic
model (statecharts), and could provide a major additional boost to the validity of the latter.
One of the results of the model-checking process could be interesting predictions regarding
the behavior of the actual system.

4 Implementation

We have applied the suggestion made in this paper to the mechanistic model of [14] that
explains parts of the formation of the vulva inCaenorhabditis elegans. We have formalized
the mechanistic model in the form of statecharts, and the experimental observations (that



led to the suggestion of this model) as existential LSCs. We then used the Rhapsody tool
[10] and its testing component — theTestConductor [13]. In the TestConductor, tests are
given in the form of combinations of existential LSCs. Each test can then be performed
individually, or the tool can be asked to produce a report on the entire behavior of the
model when checked versus all the tests. Running regression testing in different stages of
the development of the statecharts model enabled us to fine-tune the model to reproduce all
the behaviors on which this model is based.

An interesting aspect of this particular work is that our mechanistic model is completely
deterministic. Thus, testing a scenario using simulation is sufficient to make sure that the
mechanistic model reproduces the behavior depicted in the scenario. We thus have full
assurance that our formalization of the mechanistic model completely reproduces the data.
This fact improves our confidence in the correctness of the proposed mechanistic model. A
detailed description of this modeling effort will be reported separately.

5 Concluding Remarks

Based on the above, we suggest that the state-based and scenario-based approaches com-
plete each other. We propose that biological systems should be modelled using both ap-
proaches. Observations should be formalized by inter-object scenario-based methods (in
our case, LSCs using the Play-Engine tool), while the mechanisms should be formalized
by intra-object state-based methods (in our case using statecharts and the Rhapsody tool).
Once this is done we can simulate all the experiments carried out in practice and use the
state-based model to drive the simulation that the scenarios follow. Using regression test-
ing, we can ensure that the mechanistic model reproduces all the behaviors observed in the
living system.

A connection between Rhapsody and Play-Engine is currently under development,
which will enable them to work on cooperation; see [1]. Such connection will enable to
verify automatically that a biological mechanistic model is consistent with the experimen-
tal observations obtained by the system. We believe this would further facilitate our under-
standing of biological systems and help simulate and analyze their reactive nature.

References

1. D. Barak, D. Harel, and R. Marelly. Interplay: Horizontal scale-up and transition to design in
scenario-based programming. To appear, 2004.

2. E. Clarke, O. Grumberg, and D. Peled.Model Checking. MIT Press, 1999.
3. W. Dam and D. Harel. LSCs: Breathing life into message sequence charts.FMSD, 2001.
4. S. Efroni, D. Harel, and I. R. Cohen. Modeling and simulation of the thymus.Multidisciplinary

Approaches to Theory in Medicine, 2002.
5. S. Efroni, D. Harel, and I. R. Cohen. Toward rigorous comprehension of biological complexity:

modeling, execution, and visualization of thymic T-cell maturation.Genome Res, 2003.
6. D. Harel. Statecharts: A visual formalism for complex systems.SCP, 8:231–274, 1987.
7. D. Harel. A grand challenge for computing: Towards full reactive modeling of a multi-cellular

animal.Bulletin of the EATCS, 81:226–235, 2002.
8. D. Harel and E. Gery. Executable object modeling with statecharts.Computer, 30(7), 1997.
9. D. Harel and R. Marelly.Come, Let’s Play: Scenario-Based Programming Using LSCs and the

Play-Engine. Springer-Verlag, 2003.
10. I-logix,inc. http://www.ilogix.com.
11. N. Kam, D. Harel, and I. R. Cohen. The immune system as a reactive system: Modeling T-cell

activation with statecharts.Bull. Math. Bio., 2003.
12. N. Kam, D. Harel, H. Kugler, R. Marelly, A. Pnueli, E. J. A. Hubbard, and M. J. Stern. Formal

modeling of C. elegans development: A scenario-based approach. In1st CMSB, 2003.
13. M. Lettrari and J. Klose. Scenario-based monitoring and testing of real-time UML models. In

4th Int. Conf. on the Unified Modeling Language, October 2001.
14. P. W. Sternberg and H. R. Horvitz. The combined action of two intercellular signaling pathways

specifies three cell fates during vulval induction in c. elegans.Cell, 58(4):679–93, 1989.


