
Understanding Conversational Programmers:
A Perspective from the Software Industry

Parmit K. Chilana1, Rishabh Singh2, Philip J. Guo3
1Management Sciences
University of Waterloo
Waterloo, ON Canada

pchilana@uwaterloo.ca

2RiSE group
Microsoft Research
Redmond, WA USA
risin@microsoft.com

3Computer Science
University of Rochester

Rochester, NY USA
pg@cs.rochester.edu

ABSTRACT
Recent research suggests that some students learn to
program with the goal of becoming conversational
programmers: they want to develop programming literacy
skills not to write code in the future but mainly to develop
conversational skills and communicate better with
developers and to improve their marketability. To investigate
the existence of such a population of conversational
programmers in practice, we surveyed professionals at a
large multinational technology company who were not in
software development roles. Based on 3151 survey
responses from professionals who never or rarely wrote
code, we found that a significant number of them (42.6%)
had invested in learning programming on the job. While
many of these respondents wanted to perform traditional
end-user programming tasks (e.g., data analysis), we
discovered that two top motivations for learning
programming were to improve the efficacy of technical
conversations and to acquire marketable skillsets. The main
contribution of this work is in empirically establishing the
existence and characteristics of conversational programmers
in a large software development context.

Author Keywords
Conversational programmers; programming literacy; non-
CS majors; technical conversations.

ACM Classification Keywords
K.3.2 Computers and Education: Computer and Information
Science Education—literacy, computer science education.

INTRODUCTION
Momentum around the importance of programming
literacy [31] has catalyzed several specialized initiatives to
teach coding skills to a broad audience. From introducing

programming to elementary school children [5] to
launching introductory programming university courses for
students outside computer science (CS) [11] to creating
free massive online programming courses (e.g., Coursera,
edX, Udacity) hundreds of academic, government, and
industry efforts around the world are trying to prepare a
tech-savvy workforce of the future.

Learning and teaching programming has also been a key
theme in human-computer interaction (HCI) and
computing education research for over three decades [25].
For example, numerous projects have contributed insights
into the struggles of novice programmers [13,16], proposed
designs for improving the usability of complex
development environments [26,28], and even invented new
programming languages that simplify programming
concepts for learners of all ages [29]. While these research
findings and experience reports from classrooms have
helped us better understand the barriers to learning
programming, many of the insights are based on the
assumption that learners will eventually write code (e.g., as
a professional developer or a domain-specific end-user
programmer [20]). But, is this always the case?

Recent research shows that some students in non-CS fields
such as management may not aspire to write code as an
end-user programmer or a professional programmer, but
are still strongly interested in taking programming classes
[6]. These students were termed conversational
programmers because they wanted to develop only
conversational skills in programming literacy to be able to:
1) aid technical conversations with professional software
developers in the future; or 2) enhance their marketability
in the software industry.

Unfortunately, beyond this classroom study and informal
discussions by practitioners [10,22], we know little about
conversational programmers in today’s software industry.
To what extent do these conversational programmers
actually exist in practice? How do conversational
programmers perceive programming literacy? How do they
interact with software developers? What motivates them to
acquire programming skills, if at all?

In this paper, we investigate the prevalence and perceptions
of conversational programmers at XYZ, a large
multinational software company. We conducted a large-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
CHI'16, May 07-12, 2016, San Jose, CA, USA
© 2016 ACM. ISBN 978-1-4503-3362-7/16/05...$15.00
DOI: http://dx.doi.org/10.1145/2858036.2858323

scale survey targeting professionals in roles outside of
software development (e.g., sales and marketing, customer
relations, managers, lawyers, user experience researchers,
designers, and others) and encouraged participation from
respondents who had no formal training in CS. Based on
answers from 3151 respondents who never or rarely wrote
any code, we found that close to half (42.6%) of them had
invested in learning programing skills on the job. While
many of these respondents were learning programming to
support small end-user programming tasks, such as
analyzing data (24.5%) or creating prototypes (20.6%),
over half of our respondents’ motivations fit the definition
of conversational programmers [6]—they were learning
programming to improve their technical conversations with
developers and customers (29.6%) and viewed
programming literacy as a marketable skill for their overall
career (22.7%). Furthermore, we found that many of the
conversational programmers who engaged in end-user
programming tasks were, in fact, using their artifacts to
improve communication with developers.

The main contribution of this work is in providing
empirical insights that establish the existence and
characteristics of conversational programmers in the
context of a large software development company. Our
findings complement existing insights about professional
developers [21,30] and end-user programmers [3,20,27,32]
and raise important questions about how to teach
programming so that students not only learn the mechanics
of writing code, but also learn techniques for establishing
common ground [8] in conversations with developers. We
hope that our analyses will be useful for HCI and computing
education researchers and practitioners to consider as they
chart the future of training a programming literate society.

RELATED WORK
To contextualize our insights about conversational
programmers, we draw upon a variety of research from
HCI, computing education, and software engineering.

End-user programmers vs. conversational programmers
For several years, there has been a push to teach
programming skills to students who are not necessarily
going to be professional software developers. For example,
numerous efforts have been created to teach programming
to students in Biology, Fine Arts, and Business [11,12,36]
so that they can not only enhance computational thinking
skills [37], but also have skills to design or customize
software to solve specific problems [3,27]. Commonly
known as end-user programming, this sub-discipline
concerns "a set of methods, techniques and tools that allow
users of software systems, who are acting as non-
professional software developers, at some point to create,
modify, or extend a software artifact" [20]. In fact, research
shows that the population of end-user programmers is
growing and even outnumbers professional programmers
many fold [32].

On the other hand, a recent study [6] suggests that not
everyone who learns to code is necessarily going to be an
end-user programmer or a professional developer. Some
learners have the goal of becoming conversational
programmers: they want to develop programming literacy
skills not to write code in the future but mainly to develop
conversational skills and communicate better with
developers in the future and to improve their marketability
in the software industry [6]. Our main goal in this paper was
to assess the prevalence of conversational programmers in
an industrial setting: are there people who learn
programming on the job even when they are not required to
write code? What motivates them? While our findings
corroborate prior work and show that end-user
programming tasks (e.g., analyzing data, prototyping) are
still a major reason why professionals learn programming
on the job, we also found that conversational programmers
are, in fact, prevalent in industry. And, even the end-user
programming tasks that our respondents described were
often carried out in the context of improving
communication about design decisions.

Understanding and lowering barriers to programming
Given the momentum around “programming for all”
[10,29,31], numerous studies from HCI and computing
education have contributed insights into the struggles of
learning programming in class and on the job. Some have
focused on lowering the barriers to using programming
tools and development environments [16,19] and focus on
things such as syntax issues and program flow. Others have
even proposed new programming languages, such as
Scratch [29], that simplify programming concepts for
learners of all ages. There is also a long history of
designing graphical or visual programming environments
(e.g., programming by example [24], and visual
programming [33]).

The central goal of these works has been to understand the
challenges people have in writing code and in developing
tools or approaches to address these challenges. The
assumption that the end goal is to write code has influenced
most pedagogical strategies and tools that aim to lower the
barriers to programming. However, our findings about
conversational programmers in industry show that even
though they never or rarely wrote code on the job, they still
learned programming to improve their technical
conversations. We raise several questions around what it
means for us to teach programming to this class of students
and to design new tools and programming environments
that facilitate the conversational aspect of learning
programming.

Social aspects of developing software
Another class of research that is relevant to our study is
related to the social and collaborative aspects of software
development. Over the years, there have been a number of
studies on understanding development practices [1,15] and
information needs of software developers [18]. Since

software decisions about design and implementation
require discussions and coordination, getting everyone to
have a shared understanding or establishing “common
ground” [8] is important. Common ground is the
knowledge and awareness that participants have in
common when they are communicating with each other
[8]. Previous studies suggest that to establish this common
ground in software teams, developers need to be trained not
only in programming, but also in communication skills and
“people skills” [1,10,15,21].

But, these studies are mainly based on perspectives of
software developers, which represent only one side of the
partnership in software teams. Our results on
conversational programmers (who came from roles in
marketing, sales, management, UX/Design, customer
relations, and others) suggest that while communication
skills are important, they are not perceived to be enough—
our study adds insights about how programming
knowledge is used as a conversational medium to establish
common ground. We also illustrate other strategies that
conversational programmers had developed to participate
in technical conversations, such as involving experts,
engaging in the conversations, and finding information
online.

In summary, while we have many insights into the work of
end-user programmers, barriers associated with learning
programming, and the social and collaborative aspects of
developing software, to our knowledge, no study has
previously considered the perspectives of conversational
programmers in industry.
METHOD
To investigate our research questions about conversational
programmers, we decided to take a survey-based approach,
as it would allow us to capture perspectives on a large scale
across demographics, job roles, and college majors. Our
research site was XYZ, a multinational software company
with over 80,000 employees. XYZ specializes in over two
dozen personal, enterprise, mobile, gaming, and cloud
computing applications.

In mid-2015, we sent an online survey to a sample of XYZ
employees who were not currently working as software
developers but who worked in roles where they were likely
to discuss technical concepts with either developers or
customers (i.e., they were potentially conversational
programmers). As per the definition of conversational
programmers, the survey instructions encouraged
participation from people who did not major in computer
science, computer engineering, software engineering,
information technology and related fields. We received
3682 responses (~14% response rate1). One possible factor
that lowered the response rate was that many of the

1 For confidentiality reasons, we cannot reveal exact job role
names, proportions, or numbers of personnel at XYZ.

sampled employees still had some formal computer science
training since XYZ was a software company, so they did
not take our survey.

We developed our survey questions via an iterative
approach, starting with a pilot survey sent to 1000
randomly-selected XYZ employees. Our response rate for
the pilot survey was 24.5%, which was higher than our
actual survey since the pilot did not specifically target
people without CS training and many respondents ended up
being CS majors. We used feedback from the pilot to refine
the wording of questions and to finalize the choice labels
for the multiple-choice questions.

The survey instrument
Our survey consisted of 13 multiple-choice and 3 open-
ended questions. The first 4 questions were about
demographics: job role, years of experience in that role,
college major, and gender. The next 4 questions asked
about programming background and education:

Are you comfortable writing code in one or more
programming languages? If so, which ones?
Which programming language(s), if any, do you need to
know to do your job?
How many courses involving computer programming did
you take as part of your formal education (undergraduate
and graduate)? Choices: 0, 1, 2-4, 5 or more.
Choose all of the ways (if any) in which you have learned
programming to help with your job. Choices: None, books,
websites, colleagues, online courses, company-offered
training, part-time university courses, other.

In a subsequent open-ended question, we further asked
them to explain what motivated them to learn programming
on the job.
The next 3 questions asked how often people wrote or
communicated about code. The five choices were: {daily, a
few times per week, a few times per month, rarely, not at all}

How often do you write code as part of your current job?
How often do you have technical conversations (e.g., about
code, software architecture, programming concepts) with
software developers as part of your job?
How often do you have technical conversations (e.g., about
code, software architecture, programming concepts) with
customers (either internal or external) as part of your job?

In another open-ended question, we used the critical incident
technique [4,9] and asked respondents to describe a recent
memory of a technical conversation with a developer or a
customer that presented a challenging situation and how they
tried to resolve that situation.

The next 2 questions were about the perceived marketability
of programming skills. Respondents answered each on a 7-
point Likert scale from Strongly Disagree to Strongly Agree:

In a recent study, first-year non-computer-science students
indicated that learning programming made them more
“marketable” in today's job market, even if they were not
going to write code for their job [6]. Based on your own

experiences, to what extent do you agree or disagree with
these students' opinions?
To what extent do you agree or disagree with the following
statement: If I were to start my education all over again, I
would have taken more programming courses.

Finally, we had an open-ended question asking respondents
to give advice to future employees in similar roles who
would be working closely with software developers.

Data overview and analysis
Our initial 3682 respondents came from a variety of job
roles, including those in sales, marketing, management,
business operations, legal affairs, design, and customer
relations1. Respondents had diverse levels of experience in
their roles: 29.2% had 5 or fewer years of experience, 41.5%
had 6 to 15 years, and 28.8% had more than 15 years of
experience1. 62.9% identified as male, and 35.3% as female.
They came from over 40 different undergraduate majors,
including business, economics, communications,
management, marketing, psychology, design, and HCI (only
0.08% majored in computer science/engineering/information
technology). When we asked respondents about how often
they wrote code as part of their current job, an
overwhelming majority (86.6%) responded with either “not
at all” (71.5%) or “rarely” (15.1%). We filtered our dataset
and the rest of the analysis to include only the 3151
respondents who never or rarely wrote code on the job (we
also eliminated 38 respondents (1.0%) that did not answer
this question). Therefore, our findings represent perspectives
of non-CS majors who were not in engineering roles and
were not required to write code on the job.

Of those who filled out the survey, there was a high
response rate for the three open-ended questions (> 50%).
We used an inductive analysis [34] approach to devise a
classification scheme for each of the three questions. All
three of the authors were involved in iteratively developing
a coding scheme. To formally assess the reliability of our
coding scheme and to measure agreement between all
coders, we computed the Fleiss Kappa on a uniform
random sample of 150 responses from each of the three
open-ended questions. We iterated on the classification
until we found moderate to strong agreement by the three
coders (!=0.73).

EXPERIENCE WITH PROGRAMMING
To understand the context of our respondents’ perceptions,
we look at their experience with programming through
formal education or on-the-job training.

Programming courses and prior experience
First, we were surprised to learn that over half of our
respondents (54.2%) had taken at least one programming
course as part of their formal training, even though the
majority were not CS or engineering majors. Since many
non-CS programs are increasingly requiring or strongly
encouraging students to learn introductory programming
[11,12,36], perhaps this statistic is just demonstrating this
growing educational trend.

In designing our survey, we realized that some people may
also learn programming on their own or through
extracurricular activities. So, we asked respondents to
specify what programming languages, if any, they were
comfortable writing code in. We found that just over a
third of the respondents (34.0%) were comfortable writing
code. The most common programming languages cited
were HTML, SQL, Visual Basic, CSS, and C#.

Programming on the job
When asked about programming languages used on the
job, the majority (84.2%) said that they did not use any
programming languages on the job. The other 15.8% of the
respondents mentioned using a few different languages,
including SQL, C#, HTML, shell scripting, and JavaScript.

We also asked respondents to select all of the ways in
which they had learned a programming language to help
them with their job (if any). Interestingly, even though
most of the respondents never or rarely wrote code, close
to half of them (42.6%) had still invested in learning
programming on the job. The learning efforts ranged from
consulting programming-related websites, to reading
books, to learning from colleagues, to enrolling in
specialized courses and training (Table 1).

Motivations for learning programming on the job
To probe into why people would invest time and effort in
learning programming when they did not need to write
code as part of their job, we asked them an open-ended
question about what motivated them to learn programming
on the job. We received 1759 written responses for this
question, constituting a response rate of 55.8%. Through
our analysis of the open-ended responses, we came up with
the classification scheme shown in Table 2 and categorized
each of the responses.

As shown in Table 2, the most common motivation for
trying to learn programming on the job was to improve
technical conversations with developers and customers
(29.6%). Other motivations for learning programming
described by respondents can be categorized as traditional
end-user programming tasks (e.g., analyzing data, creating
prototypes, improving efficiency) that have been discussed
extensively in prior work [20,32]. But, in many cases, our
respondents were learning to write code for these end-user
programming tasks to also improve some aspect of their
communication with developers. An additional 22.7% of
the respondents learned programming for their personal

Strategy Percent
Websites 32%
Books 28%
From colleagues 24%
Online courses 18%
Training offered by company 14%
Part-time college/university courses 12%

Table 1. Top resources for learning programming
on the job (*note that the overall total is > 100% since some

responses fell into multiple categories)

growth and to stay relevant and marketable in the software
industry. We discuss each of these motivations below.

TECHNICAL CONVERSATIONS WITH SOFTWARE
DEVELOPERS AND CUSTOMERS
The top motivation for learning programming on the job
(29.6%) was to be able to communicate better with
software developers and customers. Our analysis further
revealed that almost half of the respondents (47.6%)
regularly participated in technical conversations with
developers (few times a day, week, or month) and another
large number of respondents (41.4%) regularly took part in
technical conversations with customers.

Below we discuss some of the reasons why respondents
learned programming to help them with their technical
conversations. We also describe the context of these
conversations and the other strategies that the respondents
had developed over the years to tackle these technical
conversations.

Programming literacy for improving conversations
Most of the respondents who were making an effort to
learn programming to improve technical conversations
were not interested in writing code, but rather in learning
the common phrases and terminologies to follow along in
the conversation at a higher level:

I don't necessarily need an in depth technical knowledge and no
programming knowledge is required however it would be useful
to have a basic understanding at least to be able to contribute to
high level conversation.
I didn't really need it [coding] but felt it would help me with the
'bigger picture.’
In contrast, some respondents wanted to understand
conversations at a lower level and understand references to
different parts of the software architecture being discussed:

…to really know an area well and be able to communicate with
the developers it's great to know what the process of making code
changes takes and how the engine is architected. Granted it's
large and you'll never be an expert in every area but at least
when having discussions and someone mentions terms you know
which segments of the code they're referring to.

Some respondents described how they would participate in

code reviews to understand or debug particular issues
during conversations:

I tend to have most of my technical conversations around bug
bashes - the test scenarios, what would constitute a bug, how to
prioritize the bugs and what should be considered a blocking bug
or not.

Other respondents who did not have training in writing
code still found it valuable to understand the basic concepts
so that they could better advocate for design or
implementation changes in their conversations with
developers:

I don't know how to write code, but I often, several times a week,
need to look at code and discuss changes with developers. It
really helps that over the years I have figured out basic HTML so
that I can describe what needs to happen with devs and we can
understand each other.

Some respondents wanted to understand programming so
that they could have more empathy in conversations with
external technical customers, including developers,
managers, technical support, data specialists, installation
support, and others:

I decided to learn how to do some basic programming so that I
could have a better sense of what my customers go through in
order to implement a system.
In summary, the conversational programmers in our study
found it helpful to learn programming so they could better
understand technical vocabularies, customer needs, and
developers’ decisions and constraints during technical
conversations. Since these conversations are important for
software design and implementation decisions, we probed
into better understanding the context of these conversations
and other strategies used by respondents that did not
involve learning programming on the job.

Other strategies for improving conversations
For our open-ended question about technical conversations,
we received 1848 responses, constituting a response rate of
58.6%. We analyzed each of these open-ended responses
and eliminated about 8.3% of the responses that did not
specifically answer the question. Another 7.8% of the
respondents explicitly stated that technical conversations

Motivation Category Percent Example Response

improve conversations with
software developers or customers 29.6%

I wanted to make sure I could hold my own in discussions with software
developers, and I wanted to be able to talk about our products and platform
with external customers.

analyze data 24.5%
I have learned some scripting languages which has helped me analyze
data. Nothing too difficult and the motivation was to get the information to
better understand my customer base.

personal growth and marketability 22.7%
Kids come out of school these days with such skills I can only compete with if
I keep my knowledge fresh and diverse, my skills polished.

build prototypes or demos 20.3% …wanted to illustrate the ideas I had and sometimes showing it is a better
way to illustrate things. Easier to communicate with other developers.

improve efficiency (e.g., automate
repetitive tasks) 13.0% Wanted to build some simple tools to speed up my job and to understand

better how the developer was coding a feature
Table 2. Classification of respondents’ self-reported motivations for learning programming on-the-job (*note that the overall total

is > 100% since some responses fell into multiple categories)

with customers or software developers did not present any
notable challenges because of their experience or past
training in programming:

I have been working with XYZ for the last 15 years. That gave me
an ample time to understand the architecture and API…which is
what mostly [gets] discussed…
The remaining responses described various technical
conversations, any challenges that they presented, and how
they were resolved. Below, we focus on the remaining
responses that explicitly described a strategy (other than
programming) that respondents used when having technical
conversations. Table 3 shows our classification of the top
conversational strategies and we discuss them below.

Relying on technical experts: A common strategy
(39.3%) described by respondents was seeking expertise of
software developers or other technical experts to translate
unfamiliar terminologies. For example, some respondents
described cases where they would seek help from experts
following a conversation:

I was in a meeting where there was some heavy techno jargon
being thrown around, so after the meeting I had a quick call with
one of the attendees to put it into English, because part of my job
is also explaining these concepts to others in our org and outside
the org in a less tech way.

Some respondents described how they always had
technical experts on hand (e.g., as part of their teams) and
it was routine to defer to them:

[When] we need to get into the weeds technically and go deep, I
will ALWAYS defer to my technical specialist or architect on my
team. In my estimation [our] technical resources at XYZ are the
best in the business and I leverage the heck out of them...
All of the respondents’ examples overall supported the
finding that the most used strategy for having successful
technical conversations was relying on experts. However,
some examples clearly indicated that there was also some
hesitation in being dependent on other experts (e.g., busy
developers) so often:

I always wish I was more technical in my roles as a
salesperson...I need to depend on those that are more technical
than me more than I would like.

Engaging in the conversation: Another common strategy
(26.0%) had to do with making efforts to engage in the
technical conversations. For example, many respondents
explained that the best strategy for them was to ask the
developers to slow down or simplify the concept they were
trying to get across:

During an architecture review...an engineer started talking too
technical. I didn't understand what he was talking about, so I
simply asked him to describe in plain language - which he
did…I've generally found that asking engineers to talk in plain
language solves the problem.

Many other respondents tried to steer the conversation to
make it more customer or business-focused rather than
being bogged down in code:

In my position, bringing the conversation up a level or talking at
a high level is more important than the details. At least at first.
In this situation, I asked to regroup and make sure we all aligned
on the high level points that I could understand.

While many respondents were able to participate better by
engaging in the conversation, some did talk about tradeoffs
and feeling like they were derailing the conversation or
slowing it down by asking too many questions. Also, some
respondents noted that it was helpful when developers
could also understand the larger business and customer
contexts and steer the technical details accordingly.

Finding information on the topic: Some respondents
(8.9%) also described how they would invest time in
searching online or reading up internal documents either to
prepare for a technical conversation or to follow up after a
conversation:

Technology is changing daily so personally to have productive
discussions with my developer colleagues I try [to] keep up with
changing technology by reading up books and websites.

In describing this strategy, a key problem noted was that
there may not always be enough time to do this as business
conversations were often time-critical.

Being upfront about level of technical knowledge: A
small number of respondents (4.9%) said that their way of
dealing with technical conversations was to be upfront
about their level of technical knowledge to set the tone of
the conversation:

I openly explained that this is not my domain and that I would
call upon colleagues who are better placed than I to elaborate on
the technical side of the question.

Despite having developed such strategies for tackling
technical conversations, a number of respondents (9.9%)
recounted specific situations where they felt like they were
not satisfied about their level of participation in some
conversations:

I had a question, but didn't know enough about the programming
language or the project architecture to ask it intelligently. I had
to take shots in the dark and ask lots of follow up questions

 Strategies for Technical Conversations Percent

relying on developers or other experts to do the
translation (internal or external to the team) 39.3%

engaging in the conversation (e.g., asking lots
of questions, going to the white board, focusing
on the business/ customer priorities) 26.0%
finding information on the topic (e.g., by
searching online, books, internal documents) 8.9%
being upfront about the level of technical
knowledge 4.9%

Table 3. Respondents’ strategies for technical conversations
with developers and customers.

In summary, although over half of our respondents could
better understand and participate in technical conversations
by simply relying on experts or asking the right questions,
a large number of them still emphasized the importance of
being programming literate to truly understand the context
of some technical conversations. Next, we look at how
respondents were actually learning and using programming
skills on the job to support such conversations.

END-USER PROGRAMMING TASKS TO SUPPORT
CONVERSATIONS
As shown in Table 2, the respondents who were learning
programming on the job were mainly trying to analyze
data, create prototypes, or improve efficiency in some
aspect of their job. Although this was not surprising given
the extensive prior work on end-user programming
[3,20,27,32], we found that an implicit motivation to learn
such end-user programming tasks was to have more
informed conversations with developers.

Analyzing data
Since business decisions are now becoming more data-
driven than ever before, a large percentage of respondents
(24.5%) reported that they learned programming for
analyzing data. Many of their examples alluded to the need
to access data from multiple sources and to generate
reports based on data analysis, often to develop a shared
context with developers:

I have learned a little bit of programming in order to analyze
data (ex: writing [database] scripts). I've also learned a lot
about the tools that developers are using on a daily basis…it
helps us have a shared framework for talking about work items
and the process of building software.

Some respondents also felt that data analysis was needed
for steering their team, being “on the same page”, or even
for guiding certain decisions:

My primary motivation has been driven by a need to analyze data
and design reports. My efforts will be very basic -- even
somewhat crude -- but it has often proven important to quickly
getting all key people aligned on what we're trying to accomplish.

Building prototypes or demos
Another common motivation for learning programming
(20.3%) was the ability to create prototypes and demos for
customers and developers. As expected, a common reason
for creating prototypes was for making it easier for
customers to understand a product’s interaction and
features. But, for many of the responses about prototyping,
we saw that respondents placed a lot of value on building
prototypes to clarify their own understanding and to use it
as a communication aid in conversations with developers:

Since the work I was producing was going to be interactive I also
wanted to be able to design prototypes that were interactive. This
helped me answer my own questions about how things should
work and was a really great tool to communicate with engineers

Another reason for learning to code was to be able to more
clearly articulate visions and design ideas to developers:

I have been learning HTML/CSS and JavaScript to be able to
create my own interactive prototypes of my designs, and to be
able to converse more fluidly with the [design] team that does the
front-end code of our products. My motivation to learn
programming was to be able to make web pages and build
prototypes. Even with the one class [I took] though, I've been able
to communicate better with the software engineers on my team.

Improving efficiency
Finally, around 13.0% of the respondents learned
programming to improve efficiency, often by automating a
repetitive task. But, some respondents explained how in the
process of digging into the code, they were also able to
better understand the internals and allowed them to have
more concrete discussions about implementation decisions:

When a need presents itself, I dig in to learn what I must so I can
make informed decisions and communicate those decisions to the
teams who implement them or use the resulting systems.

In summary, a large number of the motivations for learning
programming revolved around end-user programming
tasks, as has been shown in prior work [20]. But, it is
interesting to note that in many cases, respondents were
using their artifacts as an aid in conversations about design
and implementation details and related decisions.

PERSONAL SKILLSET AND CAREER MARKETABILITY
In addition to improving technical conversations and
supporting end-user programming tasks, a significant
portion of our respondents (22.7%) had learned
programming out of curiosity, personal growth, and to stay
relevant and marketable in the technical job market.

For example, as one of the respondents described:

I use programming as a tool to help me execute a vision. I learn
new things, e.g., programming languages, because they are
needed to help move forward to that vision. I do not think in terms of
"motivated to learn", rather inspired to create and all that requires,
which can be learning new programming languages.

Another common theme was to use programming skills as
an addition to their skillset:

I was motivated by seeing a need and being motivated and
interested in helping fill that need. Also, I would say that
continuing education, addressing gaps in my skillset, and wanting
to stay on top of new technologies were also motivators.

Several respondents said that they just felt knowing
programming would keep them relevant and marketable.
Many of their sentiments corroborated previous findings
about students [6] and their perceptions of programming as
being a vehicle for broadening career options. In fact, even
though our respondents never or rarely wrote code as part
of their job, the survey responses showed that the majority
(75.7%) agreed to some extent that learning programming
would make them more marketable in today’s job market
for their chosen career path. Similarly, 64.3% agreed to
some extent with the statement, “If I were to start my
education all over again, I would have taken more
programming courses.”

Advice for future conversational programmers
Our final open-ended question solicited advice from
respondents for future employees in a similar role who
would be working with software developers. We received
2050 respondents for this question (a response rate of
65.0%). We classified respondents’ advice into five main
categories (Table 4).

Learn Programming
We found that almost half of the respondents (48.2%) gave
advice to learn programming in some form. We highlight
three themes that emerged from these sorts of advice.

First, respondents emphasized learning general
programming or computer science concepts to improve
communication with developers:

Without a doubt I would advise on learning the basics about
computer programing even if you aren't considering developing a
fluency or expertise; the basics help you understand the
foundational building blocks, or logic, for the work and gives you
a small toolset to help communicate more effectively.
Another common advice was to learn a specific
programming language(s)—there were a variety of
suggestions about which language to learn:

Non-comp-sci graduates must learn at least one of the core
programming languages (C#, Java, C++...) and do a mid size
project in it. This will setup the groundwork to learn anything
else much easier.

At a minimum, people should have a working knowledge of
HTML/CSS. While these are not actual programming languages
(they are markup languages), they provide a bridge between
UX/UI design, for example, and dev.

A large number of respondents (21.9%) gave the specific
advice to enroll in formal programming courses—in most
cases, the advice was to take at least one programming
course during formal education:

Take at least an introductory course in whatever area you are
working in. For example, if you work on the [database product]
team, understand the basics of RDBMSs. If you work on a cloud
service team, understand the basics of client-server, and scale.
Just enough to understand how the pieces fit together.

Understand Context of Software Development
In addition to learning programming, another common
advice (18.9%) for conversational programmers was to be
well-versed in the general principles of software
development and architecture:

You don't need to learn to code proficiently, but you need to
understand basics about how technology works and how software
can unburden people from non-value added work so they can
focus on things that only people can do. You need to understand
things like what it means to "have an API to call" or what it
means when a decision is "algorithmic" or when a task can be
automated. You don't know how to automate it, but you are very
valuable if you know why something should be automated, and
that it can be.

Another advice was to develop an understanding of the
organizational structure and how software development fits
into the overall process:

Understand the responsibilities and knowledge level of the
individual to whom you're speaking (i.e., are you talking to a
CxO, business analyst, IT manager, or direct [software]
developer?) and adjust your topic, style, & content accordingly.
Understand how these people fit in within an organization - what
motivates them, what are they accountable for, what is their desired
outcome - and that will help you understand what you need to
learn more about in order to be able to support/serve them.

Develop Communication Skills
Another 16.1% of the respondents advised future graduates
to improve communication, interpersonal, and non-
technical skills so that they could better empathize and
work with developers:

Learn to present concepts by being about to partner with
technical resources to “translate” technical vision to non-
technical audiences. Learn the basics of project management,
technical writing, and presentation skills.

Finally, some of our survey respondents (3.3%) also
emphasized the benefits of taking non-technical courses to
develop communication skills:

Balance the technology courses with the communication courses.
Without strong written and spoken communication skills, you only
offer 50% of the value required to be successful.

In summary, given the efforts that current conversational
programmers were making to participate in technical
conversations, it was not surprising that their common
advice for future employees was to develop basic skills in
programming (e.g., by taking at least one course) and to
also foster interpersonal and communication skills.

DISCUSSION
Decades of research, as well as recent high-profile “learn-to-
code” initiatives such as Hour of Code2, have framed
programming as an empowering tool for creating new
software artifacts. One common vision for researchers and

2 https://code.org/learn

Advice for future conversational
programmers in the software industry Percent
learn to code (general concepts, specific
programming languages, taking courses) 48.2 %
understand principles of software
development and software architecture
(without needing to code) 18.9%
develop communication & interpersonal
skills 16.1%
take courses in non-CS subjects (e.g.,
sociology, design, psychology) 3.3%
understand internal company software
frameworks 2.1%

Table 4. Classification of respondents’ advice for future
employees preparing for similar careers

educators is to encourage people to learn programming so
that they can develop computational thinking [37] skills and
become creators and makers. However, our results establish
the existence and characteristics of conversational
programmers in a large software development context who
view programming literacy also as an empowering tool for
communicating about both software artifacts and broader
aspects of the technology business. We now reflect on our
main findings and raise key questions for future research
directions in HCI and computing education.

Programming knowledge as a shared medium for
establishing common ground in conversations
Software development is a highly social activity in that
major decisions are made through conversations. Prior
works have shown that establishing common ground [8] in
conversations can often be difficult for multidisciplinary
teams [17]. There are also a number of studies that shed
light on how software developers should develop
communication skills to facilitate conversations with other
team members [1,15,21]. Our study complements these
findings by showing the other side of the conversational
equation—professionals in roles other than software
development who never or rarely write code on the job and
come from various educational backgrounds. While many
have developed strategies to improve their participation in
technical conversations, (e.g., by relying on experts, asking
questions, and looking up information on their own), half
of them had also invested time in learning programming.
The main implication of our findings is that professionals
in roles other than software development view
programming as a shared medium for achieving common
ground, not just for creating artifacts.

While this paper has focused on how people who do not
write code on the job and still learn programming, it would
be interesting to solicit feedback from software developers
about the topics they would recommend their peers learn in
order to communicate more effectively with colleagues in
different roles. Perhaps we will discover that developers
would like to devote more time to learning the skillsets of
business, sales, marketing, psychology, and sociology, even
though they will not be working full-time in those roles.

A lifelong learning perspective on programming
In addition to the efforts in learning programming on the
job, about two-thirds of our respondents said that they
would take another programming class if they were to start
all over again and about half of our respondents gave the
advice that future employees should take at least one
programming course. But, what is the ideal programming
course for future conversational programmers? Our work
raises a number of questions for future research in HCI and
computing education about training the next generation of
conversational programmers. For example, there have been
many initiatives in creating simplified introductory
programming courses for non-CS majors [e.g., 14], but the
core focus is still on creation (students are taught to write

programs, debug them, and use various development
environments, etc.) While a high number of our
respondents were still engaged in end-user programming
tasks, often they would use their artifacts to aid
conversations. Yet, we rarely explicitly teach for
conversations in our introductory programming curricula.
Are there other pedagogical strategies that we can use to
complement our current intro programming curricula so
that we teach students how to use their programming skills
as a medium for establishing common ground?

Also, since technology and programming languages rapidly
change, it is important for intro programming courses to have
a lifelong perspective and teach transferrable concepts. For
example, big data analytics and cloud computing are
relatively new technologies that did not exist a few years ago
and have introduced new programming paradigms. Just over
20% of our respondents gave the advice that one course
would give future conversational programmers the necessary
raw materials to build skills. But, certainly, many respondents
were investing in learning new skills in analyzing data and
prototyping on the job (even though they had taken a
programming course before).

Role models for learning programming
Given the importance of programming as a way to
facilitate workplace conversations, it would be beneficial
for popular “learn-to-code”2,3 campaigns to broaden their
pitches to become more inclusive of professions beyond
those related to software development. Doing so can
diversify the potential student base for computer science
and programming at both K-12 and college levels, since
students who do not want to become software developers
will still see value in understanding code. If this generation
of young people can find their own role models in positions
such as sales, marketing, management, business operations,
legal affairs, design/UX, and customer service promoting
the value of learning programming, then they are more
likely to feel like programming is a marketable
professional skill for them and not just for aspiring future
software developers or end-user programmers.

Innovations in programming languages and tools
A lot of research in HCI, software engineering and
programming languages has invented new tools and
environments (e.g., Scratch [29], Touch Develop [35], and
AppInventor [38]) for simplifying the programming
experience for beginners. There have also been innovations
in visual programming languages that allow users to visually
demonstrate or sketch their program flow [2,33]. While
many of these efforts have been successful at introducing
basic programming concepts, the focus is still on writing
code and understanding logic and syntax. What could we do

3 http://www.nytimes.com/2015/09/16/nyregion/de-blasio-to-
announce-10-year-deadline-to-offer-computer-science-to-all-
students.html

to enhance future innovation in programming languages and
tools such that the conversational aspect could be embedded
into the languages?

Perhaps there can be some innovations to consider in the
design of new programming environments. For example,
we can develop environments that show learners how a
particular program (or a part of it) could be used as a
conversational tool. In the formal methods community [7],
for instance, there are ways to help testers write the desired
specification in a high-level language (based on
computational logic and without having to write code),
which can then be automatically checked against the code
written by developers using model checking techniques.
Perhaps similar ideas can be adapted to help conversational
programmers better understand and communicate with
developers, without having to become expert programmers.
In addition, crowdsourcing mediums for getting technical
help (e.g., StackOverflow) that are currently used by
developers [23] could also be explored further to help the
needs of conversational programmers.

Limitations
We surveyed employees from only one company, so we
cannot make claims about the generality of our findings
across companies or industry sectors. Also, our sample of
employees was not random since we selected based on job
roles that likely involved discussing technical concepts
with either developers or customers. Those who responded
to the survey may be ones with stronger opinions about
conversational programmers. Thus, the proportions we
report in this paper are not necessarily indicative of the
proportions of employees at XYZ with those sentiments.

CONCLUSION
Over the years, research from HCI and computing
education has helped us better understand the barriers to
learning and teaching programming. However, many of
these insights are based on the assumption that learners
will eventually use coding skills to become professional
developers or domain-specific end-user programmers. Our
results suggest that a large number of professionals who
learn programming on the job are not using their skills to
write code. These learners are conversational programmers
who want to use programming skills as a medium for
establishing common ground in technical conversations
with developers and customers or to improve their
marketability in the software industry.

Although our study was done at a single software
company, as more companies in diverse sectors move
toward offering software-based products and services (e.g.,
automobile manufacturers, health-care providers, financial
advisors), we predict that the population of conversational
programmers will likely grow across industries in the
coming decade. Our study opens up a number of paths for
future research to investigate how to better understand,
support, and educate these conversational programmers.

REFERENCES

1. Andrew Begel and Beth Simon. 2008. Struggles of new
college graduates in their first software development
job. Proceedings of the ACM technical symposium on
Computer science education, ACM, 226–230.

2. Margaret M. Burnett. 1999. "Visual programming," in
Encyclopedia of Electrical and Electronics
Engineering. John G. Webster, Ed. John Wiley and
Sons Inc., New York.

3. Margaret M. Burnett and Brad A. Myers. 2014. Future
of end-user software engineering: beyond the silos.
Proceedings of the on Future of Software Engineering,
ACM, 201–211.

4. José C. Castillo, H. Rex Hartson, and Deborah Hix.
1998. Remote usability evaluation: can users report
their own critical incidents? CHI 98 Conference
Summary on Human Factors in Computing Systems,
ACM, 253–254.

5. Rory Cellan-Jones. 2014. A computing revolution in
schools. BBC News. http://www.bbc.com/news/
technology-29010511

6. Parmit K. Chilana, Celena Alcock, Shruti Dembla,
Anson Ho, Ada Hurst, and Philip J. Guo. 2015.
Perceptions of Non-CS Majors in Intro Programming:
The Rise of the Conversational Programmer.
Proceedings of the IEEE Symposium on Visual
Languages and Human-Centric Computing, 251-259.

7. Edmund M. Clarke, Orna Grumberg, and Doron Peled.
1999. Model checking. MIT press.

8. Herbert H. Clark and Susan E. Brennan. 1991.
Grounding in communication. Perspectives on socially
shared cognition 13: 127–149.

9. John. C. Flanagan. 1954. The critical incident
technique. Psychological bulletin 51, 4: 327–358.

10. Paul Ford. 2015. What is code? Bloomberg
Businessweek. http://www.bloomberg.com/graphics/
2015-paul-ford-what-is-code/

11. Andrea Forte and Mark Guzdial. 2005. Motivation and
nonmajors in computer science: identifying discrete
audiences for introductory courses. IEEE Transactions
on Education 48, 2: 248–253.

12. Mark Guzdial. 2003. A media computation course for
non-majors. Proceedings of the ACM technical
symposium on Computer science education, ACM,
104–108.

13. Mark Guzdial. 2004. Programming environments for
novices. Computer science education research 127–154.

14. Mark Guzdial and Andrea Forte. 2005. Design process
for a non-majors computing course. Proceedings of the
ACM technical symposium on Computer science
education, ACM, 361–365.

15. Michael Hewner and Mark Guzdial. 2010. What game
developers look for in a new graduate: interviews and
surveys at one game company. Proceedings of the ACM
technical symposium on Computer science education,
ACM, 275–279.

16. Caitlin Kelleher and Randy Pausch. 2005. Lowering the
barriers to programming: A taxonomy of programming
environments and languages for novice programmers.
ACM Computing Surveys (CSUR) 37, 2: 83–137.

17. Gary Klein, Paul J. Feltovich, Jeffrey M. Bradshaw, and
David D. Woods. 2005. "Common ground and
coordination in joint activity," in Organizational
simulation. W.R. Rouse and K.B. Boff, eds., John
Wiley & Sons Inc., New York.

18. Andrew J. Ko, Robert Deline, and Gina Venolia. 2007.
Information Needs in Collocated Software
Development Teams. Proceedings of the 29th
international conference on Software Engineering.
IEEE Computer Society, 344–353.

19. Andrew J. Ko, Brad A. Myers, and HH Aung. 2004. Six
Learning Barriers in End-User Programming Systems.
Proceedings of the Symposium on Visual Languages
and Human Centric Computing, IEEE, 199–206.

20. Henry Lieberman, Fabio Paternò, Markus Klann, and
Volker Wulf. 2006. End-user development: An
emerging paradigm. Springer.

21. Paul Luo Li, Andrew J. Ko, and Jiamin Zhu. 2015.
What makes a great software engineer? Proceedings of
the 37th International Conference on Software
Engineering, IEEE, 700–710.

22. Matthew Magain. 2013. How Much Code Should A UX
Designer Write? http://uxmastery.com/how-much-code-
should-a-user-experience-designer-write/

23. Lena Mamykina, Bella Manoim, Manas Mittal, George
Hripcsak, and Bjoern Hartmann. 2011. Design lessons
from the fastest q&a site in the west. Proceedings of the
annual conference on Human factors in computing
systems, ACM, 2857–2866.

24. Brad A. Myers. 1986. Visual programming,
programming by example, and program visualization: a
taxonomy. Proceedings of the annual conference on
Human factors in computing systems ACM, 59–66.

25. Brad A. Myers and Andrew J. Ko. The Past, Present
and Future of Programming in HCI. Human-Computer
Interaction Consortium (HCIC 2009).

26. Brad A. Myers, John F. Pane, and Andrew J. Ko. 2004.
Natural programming languages and environments.
Communications of the ACM 47, 9: 47–52.

27. Bonnie A. Nardi. 1993. A small matter of
programming: perspectives on end user computing.
MIT press.

28. John F. Pane, Brad Myers, and Leah B. Miller. 2002.
Using HCI techniques to design a more usable
programming system. Proceedings of Symposia on
Human Centric Computing Languages and
Environments, IEEE, 198–206.

29. Mitchel Resnick, John Maloney, Andrés Monroy-
Hernández, Natalie Rusk, Evelyn Eastmond, Karen
Brennan, Amon Millner, Eric Rosenbaum, Jay Silver,
Brian Silverman, and Yasmin Kafai. 2009. Scratch:
programming for all. Communications of the ACM 52,
11: 60–67.

30. Tobias Roehm, Rebecca Tiarks, Rainer Koschke, and
Walid Maalej. 2012. How do professional developers
comprehend software? Proceedings of the 34th
International Conference on Software Engineering,
IEEE, 255–265.

31. Douglas Rushkoff. 2010. Program or be programmed:
Ten commands for a digital age. O/R Books, New
York.

32. Christopher Scaffidi, Mary Shaw, and Brad Myers.
2005. Estimating the numbers of end users and end user
programmers. Symposium on Visual Languages and
Human-Centric Computing, IEEE, 207–214.

33. Nan C. Shu. 1988. Visual programming. Van Nostrand
Reinhold New York.

34. Anselm L. Strauss and Juliet M. Corbin. 1998. Basics of
Qualitative Research: Techniques and Procedures for
Developing Grounded Theory. Sage Publications.

35. Nikolai Tillmann, Michal Moskal, Jonathan de Halleux,
and Manuel Fahndrich. 2011. TouchDevelop:
programming cloud-connected mobile devices via
touchscreen. Proceedings of the SIGPLAN symposium
on New ideas, new paradigms, and reflections on
programming and software, ACM, 49–60.

36. Greg Wilson. 2006. Software carpentry. Computing in
Science & Engineering 8: 66.

37. Jeannette M. Wing. 2006. Computational thinking.
Communications of the ACM 49, 3: 33–35.

38. David Wolber. 2011. App inventor and real-world
motivation. Proceedings of the ACM technical
symposium on Computer science education, ACM,
601–606.

