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Word of mouth (WoM) effect in social networks 

 
 Word of mouth (WoM) effect is believed to be a promising 

advertising strategy.  
 Increasing popularity of online social networks may enable large  

scale WoM marketing  
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Existing influence maximization model 

 Social network as a (directed) graph 
 Nodes represent individuals. 
 Edges are social relations. 
 Edge weights (𝑝(𝑢, 𝑣)) measure the strength of 

influence 

 Independent cascade model [Kempe et.al 03] 
 Initially, some seed nodes are activated. 
 At each step, each newly activated node 𝑢 activates its 

neighbor 𝑣 with probability 𝑝(𝑢, 𝑣).  

 Influence maximization: finding top k seeds that 
generates the largest influence spread (i.e. expected 
number of activated nodes) 

 



However, negative opinions may  

emerge and propagate 

 Negative opinions originates from poor 
product/service quality 

 Negative opinions may be more contagious --- 
negativity bias 
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Influence maximization model with 

negative opinion 

 Need to consider the effect of negative 
opinions to deploy influence maximization 
strategy. 

 model the emergence and propagation of 
negative opinion 

 consider negativity bias 

 study influence maximization with negative 
opinions 

 



Negative opinion model 

 Extention of the independent cascade model 
 The quality of the product to be advertised is characterized by 

the quality factor (QF) 𝑞 ∈ [0,1].  
 Each node could be in 3 states 

 Inactive, positive, and negative.  

 When node 𝑣 becomes active,  
 If the influencer is negative, the activated influencee is also negative 

(negative node generates negative opinions). 
 If the influencer is positive, the activated influencee 

 is positive with prob. 𝑞. 
 is negative with prob. 1 −  𝑞. 

 If multiple activations of a node occur at the same step, randomly 
pick one 

 Asymmetric --- negativity bias 
 



Independent Cascading Process 

(without considering QF).  
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Independent Cascading Process 

(when considering QF).  
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Our results (1) 

 Complexity and approximation algorithm results 
 
 
 
 
 
 

 
 
 
 
 

  

Scenario  Objective function Algorithm result Negative 
result 

General directed 
graphs 

Maximize expected 
positive nodes 

 (1 −
1

𝑒
− 𝜀)-approx alg, 

due to submodularity 

Exact sol. is 
NP hard.  

Directed trees 
(arborescences) 

Maximize expected 
positive nodes  

Exists an efficient (1 −
1

𝑒
)-approx. alg 

Same as 
above 

General directed 
graphs 

Maximize expected 
(positive – 
negative) nodes.  

Exists an (1 −
1

𝑒
− 𝜀)-

approx alg. Only when 𝑞 
is sufficiently large 

Same as 
above 

Directed graphs 
with different q 
for different 
people 

Maximize expected 
positive nodes 

NA Objective is 
non-
submodular 



Our results (2) 

 Q: is the knowledge of quality factor  important? 

 guess a “universally good” value q so that regardless of 
the actual quality factor, the seeds are good? 

 No: ∃ social networks s.t. a wrong guess of q could lead 

to a much worse result than the optimal one. (Θ( 𝑛/𝑘)) 

 Intuition: which one seed to select in the following 
graph? 
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Our results (3) --- Main focus 

 Q: what is the bottleneck of the approx. alg.  

 Given a specific seed set S, can we evaluate the expected 
number of positive nodes. 
 In general, #P-hard; can use Monte Carlo to approximate. 

 But exists efficient exact algorithm for arborescence (trees).  

 Developed scalable heuristic based on influence 
calculation alg. for arborescences.  

 
 

 



Greedy algorithms for influence 

maximization  

 Def. Let G be an influence graph. Let 𝑆 ⊆ 𝑉 be a 
seed set. Let 𝜎 𝑆 = expected # of positive nodes 

 Theorem: 𝜎 𝑆  is submodular. 

 Greedy algorithm works: 
 Step 1. Set 𝑆 ← ∅ 

 Step 2. for 𝑖 ← 1 to 𝑘 
 Find 𝑢 in the remaining non-seeds s.t. 𝜎({𝑢} ∪ 𝑆) maximized  

 Set 𝑆 ← 𝑆 ∪ {𝑢} 

 provide 1 −
1

𝑒
 approximation guarantee 

 Computing  𝜎(⋅) function is costly  

 



To overcome the drawback of 

existing greedy algorithm 

 Design efficient algorithm computing 𝜎 𝑆  for 
trees 

 Utilize the algorithm for trees to design scalable 
heuristics for general graphs.  

 

 

 



Computation in directed trees  

(in-arborescences) 

 Without negative opinions, a 
simple recursion computes the 
activation probability of 𝑢: 
 𝑎𝑝 𝑢 =
1 − (1 − 𝑎𝑝 𝑤 𝑝 𝑤, 𝑢 )𝑤∈𝑁𝑖𝑛(𝑢)  

 Difficulty with negative opinions: 
needs to know whether the 
neighbors of 𝑢 is positive or 
negative --- because of negativity 
bias 
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Solutions for in-arborescences 

 Step 1: compute activation probability of 𝑢 
at step 𝑡 (via dynamic programming): 

 

 

 

 

 Step 2: compute positive activation 
probability of 𝑢 at step 𝑡: 

 



Influence computation for  

general graphs 

 Utilize influence computation for trees 

 Heuristic 1: restrict influence to a node 𝑣 to 
a local region --- far-away influence is 
negligible 

 Heuristic 2: “sparcify” the local region of 
node 𝑣 to an in-arborescence by finding only 
the strongest influence path from other 
nodes to 𝑣. 

 

 

 



Experiments  

 NetHEPT: academic collaboration network on high energy 
physics extracted from arXiv.  

 WikiVote: interactions among Wikipedia users.  

  Epinions: extraction of a social network from a website. 
Contains trust-ness information.  

 
Date set NetHEPT WikiVote Epinions 

# of nodes 15,000 7,000 76,000 

# of edges 31,000 101,000 509,000 

Avg. degree 4.12 26.64 13.4 

Max. degree 64 1065 3079 



Influence spread and QF 

 

Convex function because of the 
asymmetric spreading model  



Performance of the heuristic  

 

• Results on NetHEPT. 
• MIA-N is the heuristic, performs nearly as 

good as the original greedy algorithm. 



Performance of the heuristic 

 

• Results on Wikivote and Epinions for q = 0.9. 



Scalability 

 



Future directions 

 Consider other sources of negative opinion 
propagations 

 e.g. from competitors 

 Validation of propagation models with 
negative opinions 



Questions? 


