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Abstract

We study efficient algorithms for a natural learning problem
in markets. There is one seller with m divisible goods and
n buyers with unknown individual utility functions and bud-
gets of money. The seller can repeatedly announce prices and
observe aggregate demand bundles requested by the buyers.
The goal of the seller is to learn the utility functions and bud-
gets of the buyers. Our scenario falls into the classic domain
of “revealed preference” analysis. Problems with revealed
preference have recently started to attract increased interest
in computer science due to their fundamental nature in under-
standing customer behavior in electronic markets. The goal
of revealed preference analysis is to observe rational agent
behavior, to explain it using a suitable model for the utility
functions, and to predict future agent behavior. Our results
are the first polynomial-time algorithms to learn utility and
budget parameters via revealed preference queries in classic
Fisher markets with multiple buyers. Our analysis concen-
trates on linear, CES, and Leontief markets, which are the
most prominent classes studied in the literature. Some of our
results extend to general Arrow-Debreu exchange markets.

1 Introduction
In this paper, we study the following learning problem.
There is one seller with m divisible goods, and n buyers
with individual utility functions and budgets of money. The
seller can repeatedly announce prices, and the buyers request
demands – bundles of goods that they can afford and that
maximize their utility. The goal of the seller is to learn the
utility functions and budgets of the buyers.

This scenario represents a natural learning problem with
“revealed preference” in the classic Fisher market model.
Revealed preference analysis has a long history in the eco-
nomics literature (Samuelson 1948; Afriat 1967; Varian
2005). Here a number of observations of agent behavior
are either generated by a stochastic process or actively ob-
tained by a learner through queries. The goal is to explain
the observed behavior using a suitable model for their util-
ity function and to predict future agent behavior. More re-
cent work has also studied different goals of the learner,
such as revenue maximization (see, e.g., (Amin et al. 2015;
Roth, Ullman, and Wu 2015) and our discussion of related
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work below). The algorithmic issues in this domain are
starting to attract interest due to numerous applications of
problems with revealed preference in online markets. With
the advent of big data technology, retailers like Amazon or
Tesco collect a large amount of sales data and have a vital
interest in gaining insight into the underlying preferences of
customers. Such information is even more critical for spe-
cialized businesses who rely more heavily on a particular
customer base.

Similar to recent work (Balcan et al. 2014), we concen-
trate on query learning where a learner can repeatedly query
a market (without competing sellers) by setting prices for
all its goods. Upon a price query, the learner receives as
feedback for each good the sum of demands of all buyers.
In contrast to previous work, we advance the study of algo-
rithms for revealed preference beyond a single buyer with a
single utility function. We assume the more realistic case of
multiple buyers and aggregate demand feedback. In fact, our
query model is exactly the same as the classic tâtonnement
model to find a market equilibrium in economics (Wal-
ras 1874; Codenotti, Pemmaraju, and Varadarajan 2005;
Cole and Fleischer 2008; Bei, Garg, and Hoefer 2015).
However, our goal is not to find an equilibrium but to learn
the unknown buyer utilities via revealed preference feed-
back.

We study query complexity in Fisher markets with divis-
ible goods where buyers have budgets of money that they
can spend to purchase a bundle of goods to optimize their
utility function. We study linear, constant elasticity of sub-
stitution (CES), and Leontief utilities, which are the most
central utility functions in the market literature. We assume
that all parameters in these functions and the money bud-
gets are given by L-bit integers, and the seller knows the
bound L. While the seller knows the number n of buyers, it
does not know their utility parameters or budgets. We show
how to learn the set of utility functions and the amount of
money associated with buyers that have this function. Note
that since the feedback is the sum of demands, it is impos-
sible to distinguish buyer identities and to learn, e.g., that a
particular utility function belongs to buyer number 5.

More generally, we also extend some of our results to
Arrow-Debreu exchange markets, where agents bring en-
dowments of goods instead of money. When the learner sets
prices, agents exchange their endowment into money and



then request a demand bundle of goods that they can afford
and that maximizes the utility. The goal is to learn endow-
ments and utilities from aggregate demand feedback.

We present the first algorithms to learn utility function pa-
rameters and endowments in Fisher and Arrow-Debreu ex-
change markets. Our algorithms require only a number of
queries that is polynomial in n, m and L. Before we de-
scribe our contributions in detail, let us formally introduce
the model and some basic technical terms.

1.1 Preliminaries
We consider a Fisher market with a set N of n buyers and a
single seller that has a setM ofm divisible goods. The seller
has a fixed amount of supply of each good, and w.l.o.g. we
assume the supply for each good is normalized to 1. Each
buyer i has an initial endowment bi of money or budget.
Buyer i also has a utility function ui : Rm+ 7→ R. The utility
functions studied are of the form

ui(xi) =

∑
j

(aijxij)
ρ

1/ρ

,

where aij ≥ 0 and 1 ≥ ρ ≥ −∞ are fixed parameters, and
xi = (xi1, . . . , xim) is a bundle of goods. In this paper, we
consider linear (ρ = 1), Leontief (ρ = −∞), and general
CES (1 > ρ > −∞) utility functions.

Given a price vector p = (p1, p2, . . . , pm), a demand of
buyer i is a bundle of goods xi that the buyer can afford
with its endowment and that maximizes its utility. More for-
mally, a demand is xi = argmax{ui(xi) |

∑
j xijpj ≤

bi, and ∀j : xij ≥ 0}. The aggregated demand of good j is
defined as Zj =

∑
i xij where xi is a demand of buyer i.

Fisher markets are a special class of more general (Arrow-
Debreu) exchange markets. In such a market, agents are
simultaneously sellers and buyers. Instead of money, each
agent has an initial endowment ei = (ei1, . . . , eim) with
eij ≥ 0 for all goods. Without loss of generality, we assume∑
i eij = 1 for every j, i.e. the total supply of each good re-

mains 1. For price vector p, the value of the endowment of
agent i becomes bi =

∑
j eijpj , and the agent will request

a demand bundle as defined above. Formally, if we consider
“money” as a good, budgets can be seen as endowments and
Fisher markets as a special case of exchange markets.

In an unknown market, the utility function ui as well as
the initial endowment for each agent i are unknown. In each
round, one can query the market by proposing a price vector
(p1, p2, . . . , pm). Every agent i then picks a demand bundle,
and one observes the aggregated demand Zj of each good j.

We concentrate on a revealed preference problem and
study how to learn the utility functions and endowments of
all agents. We assume that all utility parameters (aij)i,j
are non-negative L-bit integers. Similarly, all budgets bi
in Fisher markets are non-negative L-bit integers. For ex-
change markets, the endowments eij are rational numbers
of two non-negative L-bit integers.

When querying the market with any price vector p,
an oracle returns us the aggregated demand vector Z =
(Z1, . . . , Zm) with regard to the queried price vector. Since

p is known, we can calculate the money spent on each good
p · Z = (p1Z1, . . . , pmZm). We will find it convenient to
assume that the oracle directly returns Q(p) = p ·Z, where
we use Qj(p) = pjZj to denote the money spent on j.

Initially we only know L, the number of goodsm, and the
number of agents n. Our goal is to learn all the utility pa-
rameters and endowments (or budgets) using as few number
of queries to the oracle as possible. For many of the mar-
kets discussed here, demand bundles are unique. Only when
we discuss linear utility functions, agents might have more
than one demand bundle to choose from. We here make no
particular assumptions on how the oracle breaks these ties.
Our queries will always ensure that there is a unique demand
bundle for every agent, even for linear markets.

1.2 Our Contribution
We present efficient algorithms to learn market parameters
in Fisher and exchange markets. Aggregate demands are the
most natural and most prominent approach to query feed-
back in markets with multiple agents. However, some inher-
ent ambiguities cannot be resolved with such queries. For an
agent with linear utility, we would receive the same feedback
if there were several agents with the same utility and the
same total budget. Hence, in linear markets it is impossible
to learn the exact number of agents, and our algorithms for
these markets do not take n as input. The learnable descrip-
tion of the market becomes a set of utility functions and the
total budget of agents with each utility function. For linear
Fisher markets, we design an algorithm that computes such
a description using O(n2m+nmL) queries. It does not use
the number n of buyers as input, but the running time can
be bounded in n since the number of parameters required
to describe the market are upper bounded by n(m + 1).
We use a dynamic programming approach that can be ex-
tended to work even for exchange markets, where we also
learn the initial endowments of all agents. The algorithm
uses O(n2m2 +nm2L) queries and returns the set of utility
functions present in the market, and for each utility function
the total endowment of all agents that have this utility.

For Fisher markets with Leontief utilities, our algorithm
uses efficient algorithms for the factorization of polynomi-
als (Kaltofen 1982; Lenstra, Lenstra, and Lovász 1982) and
uniquely determines all utility parameters and budgets us-
ing O(n3m) queries. It can easily be adapted to also work
for Fisher markets with general CES utilities using O(n3m)
queries. It is an interesting open problem to adapt it to ex-
change markets with Leontief and general CES utilities.

1.3 Related Work
Learning from revealed preferences is a classical approach
in economics to learn about consumer preferences from buy-
ing patterns. There is a large body of work on this topic,
which was first introduced by Samuelson (1948). It has been
studied broadly in two frameworks. One is the query learn-
ing framework, which the current work belongs to. It al-
lows to choose prices and observe the purchase decisions of
the buyer. The goal here is to exactly learn the utility func-
tion of the agent. The performance of the learner is mea-
sured in terms of the number of queries needed. Recently,



Balcan et al. (2014) gave efficient learning algorithms for a
general class of utility functions including linear, separable
piecewise linear concave, and Leontief. Amin et al. (2015)
propose efficient algorithms for a profit maximization prob-
lem of a merchant that queries a single buyer with a lin-
ear utility function. In another related work, Roth, Ullman,
and Wu (2015) study profit maximization of a leader in a
Stackelberg game when the follower’s utility function is un-
known. Note that in this paper, we do not consider profit
maximization but instead focus on learning the utility func-
tions. Clearly, once these are determined, a variety of dif-
ferent objectives can be considered for optimization. For
example, one can construct online learning scenarios using
our algorithms for linear utilities similar as in (Amin et al.
2015).

Note that all these works deal with a single agent only.
In our case, there are multiple agents but we can query
only aggregate demand of these agents. Clearly, if we as-
sume that individual demand bundles of each agent can
be distinguished, there is a trivial solution by applying the
algorithms from (Balcan et al. 2014) for each agent se-
quentially. In contrast, aggregate demand does not rely
on such strong assumptions and represents the most promi-
nent approach to query markets, e.g., in natural price up-
date dynamics and general equilibrium theory (Walras 1874;
Mas-Colell, Whinston, and Green 1995). Our goal here is
to learn the underlying utility function and budget of each
agent. With aggregate demands, learning becomes more
challenging, and we develop new tools and insights.

Another framework is statistical (PAC) learning, in which
we are given what a buyer bought at prices sampled from
an unknown distribution. The goal is to learn the under-
lying utility function in a way to accurately or approx-
imately predict future demands when faced with a price
from the same distribution. There are a number of ap-
proaches within this framework (Beigman and Vohra 2006;
Zadimoghaddam and Roth 2012; Balcan et al. 2014). Our
scenario is similar to recent results for a single agent (Bal-
can et al. 2014). However, due to aggregation of demand
over multiple agents, it does not fall into the framework
of D-dimensional linear hypotheses, and thus the statisti-
cal framework and the multi-class support vector machine of
Daniely and Shalev-Shwartz (2014) are not applicable here.

Apart from these, revealed preference analysis has been
applied in several other recent works (Blum, Mansour, and
Morgenstern 2015b; 2015a; Jabbari et al. 2015) in auctions,
mechanism design, revenue maximization, etc.

We study learning utilities in markets with CES utility
functions. They were introduced in (Solow 1956; Dickin-
son 1954) and prominently used by Arrow et al. (1961) to
model production functions and predict economic growth.
CES utilities have since become one of the most widely
used families of utility functions in the economics litera-
ture (de la Grandville 2009) due to their versatility and flex-
ibility in economic modeling. The popular modeling lan-
guage MPSGE (Rutherford 1999) for equilibrium analysis
uses CES functions to model consumption and production.

2 Linear Utilities
In this section, we assume that every agent i has a linear util-
ity function defined by ui(xi) =

∑
j aijxij . We call vector

ai = (ai1, . . . , aim) the preference vector of agent i. In
principle, all numbers aij are L-bit integers but are other-
wise unknown. For convenience, we will assume a normal-
ization to aiki = 1 for every agent i, where ki is the smallest
value such that aiki is non-zero. Then all other aij with
j 6= ki are ratios of two L-bit integers. Since linear prefer-
ences are invariant to scaling with a positive scalar, this does
not make a qualitative difference.

With linear utilities, one can completely characterize the
demand of agents: under price vector p, an allocation xi is
a demand for agent i with preference vector ai if and only if
xi · p = ei · p and for every xik > 0, aikpk = max`

ai`
p`

.

2.1 Fisher Markets
In a Fisher market with linear utility buyers, each buyer i
can be represented as a tuple (ai, bi) where ai is the prefer-
ence vector and bi the budget. Given a Fisher market with
n buyers and m goods, denote B = {(a1, b1), . . . , (an, bn)}
as the set of all buyers. We assume here that each buyer i has
a different preference vector ai, since a linear market allows
to treat buyers with the same preference vector as a single
one with the accumulated budget.

Learning budgets with known preference vectors. Let
us first concentrate on a simpler problem: Assume the pref-
erence vector ai for each buyer i is known, how can we learn
the budgets bi? For any value x ∈ R+, we let x+ = x + ε
and x− = x − ε, where ε > 0 is a small enough value such
that ε < |aij − ai′j | for any 1 ≤ j ≤ m and 1 ≤ i, i′ ≤ n
with aij 6= ai′j . Since we assume that all utilities are ratios
of two L-bit integers, it suffices to set ε = 2−2L. Next, we
consider a simple algorithm for learning the budgets with
given preference vectors.
Lemma 1. Given the preference vectorsA of a set of n buy-
ers, LIN-LEARN-BUDGET learns the budgets of these buy-
ers using n queries.

Proof. Before we show correctness, we briefly outline the
main idea of algorithm LIN-LEARN-BUDGET. We first
learn the budgets of buyers in A1 by observing the demand
of good 1. Then we recursively invoke the algorithm with
a reduced set of buyers A \ A1 and a reduced set of goods.
Note that, in principle, we can only query the complete mar-
ket with all buyers and goods. However, since we have
learned all budgets and preferences of buyers in A1, we can
compute their demand bundles in future queries and can re-
duce the demands returned by the oracle accordingly. Also,
no buyer inA\A1 spends any budget on good 1. Hence, we
can drop good 1 and buyers A1 from consideration.

We will now show correctness of the algorithm. By re-
verse induction on the set of goods, we assume that the bud-
gets for buyer setA\A1 are determined when treating goods
{2, . . . ,m}. Note that the base case of our induction is the
last good m, where we have A\(A1 ∪ . . .∪Am) = ∅, since
otherwise such a buyer would have ai = 0. Now, by in-
duction we assume that LIN-LEARN-BUDGET (A\A1,M \



Algorithm 1: LIN-LEARN-BUDGET (A,M,L)

Input : Set of buyers with preference vectors
A = {a1, . . . ,an}, set of goods M , precision
bound L

Output: Buyer preferences and budgets
B = {(a, b) | a ∈ A}.

Let A1 = {ai | ai ∈ A, ai1 > 0} and n1 = |A1|.
Sort preference vectors of A1 in non-decreasing

lexicographical order, number buyers a1 ≺ · · · ≺ an1
.

ε← 2−2L−1

for i← 1 to n1 do
p = (p1 = ai1 = 1, p2 = a+i2, . . . , pm = a+im)
b← Q1(p)
for i′ ← 1 to i− 1 do

if maxj{
ai′j
pj
} = ai′1

p1
= 1 then

b← b− bi′

Associate preference vector ai with budget bi = b.
Run LIN-LEARN-BUDGET (A \ A1,M \ {1}, L).
return {(ai, bi) | 1 ≤ i ≤ n}

{1}, L) learns the budgets of A\A1 correctly. It suffices to
show the correctness of the algorithm for buyers in A1. Re-
call that by normalization, ai1 = 1 for all ai ∈ A1.

The idea of the algorithm is to learn the budgets of buyers
inA1 one by one by the preference vector in lexicographical
order. Now assume by induction that we have already cor-
rectly learned the budget bi′ of every buyer i′ < i in A1. At
iteration i, let p be the price vector that we queried in this
round. Note that the value of Q1(p) equals to the sum of
budgets of all buyers with good 1 in their demand set1.

• For buyer i, we have ai1
p1

= 1 and aij
pj

=
aij

a+ij
< 1 for any

j 6= m. Hence buyer i’s budget is included in Q1(p).
• For every buyer i′ < i, good 1 is the (unique) demand

good if and only if maxj

{
ai′j
pj

}
= ai′1

p1
= 1. This is

exactly the condition that we used in the algorithm, and
we remove bi′ from Q1(p) in this case.

• Next, for every buyer i′′ > i, since ai ≺ ai′′ , i.e., there
must exist some j such that aij < ai′′j . Hence for the
same price vector p, we have ai′′j

pj
=

ai′′j
a+ij

> 1 = ai′′1
p1

.

This means good m will not be in the demand bundle of
i′′, hence its budget will not be included in Q1(p).

• For every buyer in set A\A1, it will never request good 1
under any price vector.

Hence we can conclude that the value b at the end of iteration
i is exactly the budget of buyer i.

Remark. LIN-LEARN-BUDGET works correctly as long
as the inputA is a superset of the set of all preference vectors

1By the definition of ε, it is easy to check that if good 1 is in
some buyer’s demand set, that buyer will demand only good 1.

in the market. If A contains some preference vector that no
buyer has, the algorithm will assign a corresponding budget
0 to this vector in the output.

Learning preference vectors. The next step is to identify
all possible preference vectors that could belong to a buyer
with non-zero budget. Our approach is to learn all possible
values good by good. More specifically, for each good j, we
want to learn Sj = {aij | 1 ≤ i ≤ n}, which is the set of
possible values that buyers have for good j. The proof of the
following lemma is deferred to the full version.
Lemma 2. For any good j, we can learn all values in Sj
using at most O(nL) queries.

All candidate preference vectors must be contained in
S = S1 × S2 × · · · × Sm, but the set S may contain nm
vectors in the worst case, where n is the actual number of
buyers. In order to avoid computing the budgets for all expo-
nentially many preference vectors in S (with almost all vec-
tors ending up with budget 0), we consider a dynamic pro-
gramming approach. We study markets with only a subset
of fewer than m goods and observe an “aggregated” buyer
behavior in these markets.

More precisely, for every 1 ≤ j ≤ m, we construct Bj as
a set of buyers of a market with goods 1, . . . , j as following.
Here a[1 : j] = (a1, . . . , aj), the subvector of a with the
first j elements.

1. For any (a, b) ∈ B, add (a[1 : j], b) to Bj . The only
exception is a[1 : j] = 0, which we will treat separately.

2. After step (1), in case there are multiple buyers in Bj
with some same preference a′, merge them into one sin-
gle buyer (a′, b′), in which b′ is the sum of all budgets of
these buyers.
Intuitively, if we keep the prices of all goods j+1, . . . ,m

very high (i.e., pkak > max1≤`≤j
p`
a`

for every j < k ≤ m),
then no buyer is interested in buying any of those goods. The
only exception are buyers with a` = 0 for all 1 ≤ ` ≤ j,
which we will exclude for now and treat them separately.
Consequently, the behavior of B on the first j goods is equiv-
alent to a buyer setBj on a market with only the first j goods.
If we provide the preference vector set Aj = {a | (a, b) ∈
Bj} (or any superset of Aj) to LIN-LEARN-BUDGET, the
algorithm will successfully compute the corresponding bud-
gets and output the buyer set Bj (and budget 0 for all vec-
tors that are in the input but not in Aj). Note that the al-
gorithm will only specify the prices of the first j goods for
each query. We keep the prices of the remaining goods large
enough, such that no buyer will be interested in them.

For the final algorithm we now do the following. Assume
that we have correctly determined Bj for some j ≥ 1. To
determine Bj+1, we note that Aj+1 ⊆ Aj × Sj+1. Thus,
we feed Aj × Sj+1 into LIN-LEARN-BUDGET (with very
high prices on goods j + 2, . . . ,m). This tells us the bud-
get corresponding to each of these preference vectors and
thereby determines Bj+1 and Aj+1 (by removing all entries
with zero budget). Note that we have |Aj | < n and |Sj | < n
for every j, thus the procedure runs in polynomial time. By
removing preference vectors with zero budget, we can thus
iteratively restrict the set of candidate preference vectors.



Algorithm 2: LIN-FISHER-MAIN (m,L)

Input : number of goods m, precision bound L
Output: Set of buyers with preference vectors and

corresponding budgets B = {(a, b)}.
Construct Sj , for all 1 ≤ j ≤ m, as in Lemma 2.
b← Q(1, 2L + 1, 2L + 1, . . . , 2L + 1)
A1 ← {(1)}, B1 ← {((1), b)}
for j ← 2 to m do
A′j ← {(a, aj) | a ∈ Aj−1, aj ∈ Sj}

∪ {(0, . . . , 0, 1)}
B′j ← LIN-LEARN-BUDGET (A′j , {1, . . . , j}, L)
Aj = {a | (a, b) ∈ B′j , b > 0}
Bj = {(a, b) | (a, b) ∈ B′j , b > 0}

return Bm

In addition, there might be buyers with ai` = 0 for all
1 ≤ ` ≤ j and ai,j+1 > 0. These buyers did not appear in
the demands for goods 1, . . . , j. We know that their pref-
erence vector has ai,j+1 = 1. We thus also add (0j , 1)
in our candidate set, and due to the large prices on goods
j + 2, . . . ,m they will only demand good j + 1. Hence,
we will correctly capture their total budget in this round and
continue to correctly subdivide them in later iterations. For
the overall algorithm see LIN-FISHER-MAIN. A straightfor-
ward analysis of the running time gives us the main theorem
of this section.
Theorem 1. An unknown Fisher market with linear utility
functions can be learned using O(n2m + nmL) queries in
polynomial time.

2.2 Exchange Markets
We now extend our analysis to exchange markets. To learn
the endowments of each agent, we note the following prop-
erties in our previous algorithm for Fisher markets:

(1) The price vector queried in the algorithm always has p1 =
1. Hence, Q1(p) is both the aggregated demand of good
1, as well as the amount of money spend on good 1.

(2) In any query within the algorithm, every agent either
spends all its budget on good 1, or spends nothing on good
1. Hence, there is no ambiguity in Q1(p).
Property (2) is essentially a consequence of our condition

that our queries result in a unique demand bundle for every
agent. Thus, we can also slightly alter a queried price and
get the same output. More precisely, there is a sufficiently
small value ε′ > 0 with the following property. For any
price vector p queried in LIN-FISHER-MAIN and any good
j, if we increase the price of good j by ε′ and keep other
prices unchanged, then property (2) does still hold. This
follows since all prices and preference values come from a
finite set based on ratios of L-bit numbers (or (3L+ 1)-bits
if prices are based on ε = 2−2L). Thus, it is obvious that
a sufficiently small ε′ exists that keeps the unique demand
bundle the same. For this, it is sufficient to preserve the
strict inequalities between the maximum bang-per-buck ra-
tio maxj aij/pj and the one of every other good. Here aij

Algorithm 3: LIN-EXCHANGE (m,L, k)

Run LIN-FISHER-MAIN (m,L), but replace each query
Q(p) in the algorithm by 1

ε′ [Q(pk+)−Q(p)].
Return the computed set B

Algorithm 4: LIN-EXCHANGE-MAIN (m,L)

Input : number of goods m, precision bound L
Output: Set of agents with preference vectors and

initial endowments Bj = {(a, e)}.
for j ← 1 to m do
Bj ←LIN-EXCHANGE (m,L, j)

A ← {a | (a, b) ∈
⋃
j Bj}

B ← ∅
foreach a ∈ A do

for j ← 1 to m do

ej ←
{
bj if there exists (a, bj) ∈ Bj
0 otherwise.

Add (a, e = {e1, . . . , em}) to B.
return B

is itself a ratio of two L-bit numbers and pj is a (3L+1)-bit
number. Hence, the denominator of each bang-per-buck ra-
tio is a number of at most (4L+1) bits, and when comparing
two of these, the common denominator becomes a number
of at most 8L+2 bits. Thus, a (very conservative) sufficient
value is ε′ = 2−8L−2.

Next, for a price vector p, let pk+ be the price vector
where we increase the price of good k by ε′ and keep other
prices unchanged. Now LIN-EXCHANGE (m,L, k) is the
following algorithm: Since for every agent i, it either spends
all its money on good j in bothQ(pk+) andQ(p), or spends
nothing on good j in both queries. Furthermore, for an agent
i with initial endowment ei, its money is increased by ε′eik
when we change the price vector from p to pk+. Thus, by
replacing Q(p) by 1

ε′ [Q(pk+) − Q(p)], we essentially re-
place each agent i with initial endowment ei by an agent
with fixed budget eik. This reduces the problem to the Fisher
market case and allows us to use the previous results to iden-
tify the endowment of good k of each agent. Hence, by run-
ning LIN-EXCHANGE m times for each good k, we are able
to fully learn the initial endowment of each agent as well as
their preference vectors. The final algorithm is summarized
in LIN-EXCHANGE-MAIN, and the following theorem sum-
marizes our result.
Theorem 2. An unknown exchange market with linear util-
ity functions can be learned usingO(n2m2+nm2L) queries
in polynomial time.

3 CES Utilities
In this section we consider markets where each buyer
has utilities with constant elasticity of substitution (CES).
The utility function for buyer i is of the form ui(xi) =(∑

j (aijxij)
ρ
)1/ρ

, with parameter ρ < 1. We assume aij



and bj are rational, for every 1 ≤ i ≤ n, 1 ≤ j ≤ m.
Fact 1. For each buyer i with CES utility function and any
given price vector p = (p1, . . . , pm), there exists a unique
demand bundle xi given by

xij =
wij
qi
p

1
ρ−1

j bi , (1)

where wij = a
1

1−ρ
ij and qi =

∑
k wikp

ρ
ρ−1

k .
This follows from solving the optimization problem and

combining
∂ui
∂xij

· 1
pj

=
∂ui
∂xij′

· 1

pj′

for all j 6= j′ with constraint
∑m
j=1 xijpj = bi.

3.1 Fisher Markets with Leontief Utilities
In a Fisher market with CES utilities, each buyer i has a fixed
budget bi of money. We start our analysis in the special case
of Leontief utilities – CES utility functions with ρ = −∞.
When we apply this condition to Eqn (1), we obtain

xij =
wijbi∑
k wikpk

,

and Zj =
∑
i xij =

∑
i

wijbi∑
k wikpk

, where wij = 1/aij .
Note that Leontief utilities are only well-defined if all aij >
0. We here consider a slight generalization that proves useful
below. We assume that each buyer i is interested in a subset
Si of goods, where wij > 0 holds for all j ∈ Si, and wij =
0 and xij = 0 for all j 6∈ Si. We will learn all wij correctly,
which allows to identify subset Si and aij for each j ∈ Si.
Theorem 3. An unknown Fisher market with Leontief util-
ities can be learned using O(n3m) queries in polynomial
time.

Proof. For Leontief utilities we again normalize w.l.o.g. to
wiki = 1 for every buyer i, where we define ki to be the
smallest value such that wiki > 0. Similar to linear utilities,
we define Fj = {i | ki = j} and first learn the utility
functions of buyers in F1 by observing the demand of good
1. We then proceed to F2, . . . ,Fm.

We set the price vectors according to the following for-
mat: Given x, y > 0, we set p1 = y and p2 = x, p3 =
x2, . . . , pm = xm−1. The demand of good Z1 can then be
written as the following bivariate rational polynomial

Z1(x, y) =
∑
i∈F1

bi
y + wi2x+ wi3x2 + · · ·+ wimxm−1

.

Note that only buyers from F1 will demand good 1. We re-
formulate Z1(x, y) = P (x,y)

Q(x,y) , where P (x, y) and Q(x, y)

are all bivariate polynomials with degree no more than
n(m− 1). In particular, we have

Q(x, y) =
∏
i∈A1

(
y +

m∑
k=1

wikx
k−1

)
.

All terms in Q(x, y) or P (x, y) with non-zero coefficients
are of form xαyβ where 1 ≤ α ≤ n(m−1) and 1 ≤ β ≤ n.

This means both Q(x, y) and P (x, y) have no more than
n2(m − 1) non-zero coefficients. Consider all these coeffi-
cients as variables. A point (x∗, y∗) and the corresponding
Z1(x

∗, y∗) can be transformed into a linear equation of these
variables, more precisely,

P (x∗, y∗) = Z1(x
∗, y∗)Q(x∗, y∗) .

Hence, by picking k = 2n3m + 1 pairs of positive num-
bers (x1, y1), (x2, y2), . . . , (xk, yk), querying price vector
(yi, xi, x

2
i , . . . , x

m−1
i ) in round i and observing the corre-

sponding demand Z1(xi, yi) for i = 1, . . . , k, one can get
2n3m+1 linear equations. Solving this linear system (which
can be done in polynomial time) yields us the values of all
coefficients in polynomial P (x, y) and Q(x, y).
Polynomial Factorization: Polynomial rings over a field
are unique factorization domains, and polynomials of form
y+ f(x) (where f(x) is an arbitrary univariate polynomial)
are all irreducible. This means Q(x, y) can be uniquely fac-
torized into

∏
i(y+

∑
k wikx

k−1). Further, Kaltofen (1982)
and Lenstra, Lenstra, and Lovász (1982) show that such a
factorization can be computed in polynomial time. Thus, by
learning this factorization, one also learns all parameterswij
in every buyer’s utility function.
Discovering Budgets: The final step is to learn the bud-
get bi for each buyer i ∈ F1. Let polynomial Ri(x, y) =
Q(x, y)/(y +

∑
k wikx

k−1). We have

P (x, y) =
∑
i∈A1

bi ·Ri(x, y) . (2)

It is also easy to check that Ri(x, y) are all linearly inde-
pendent. Hence Eqn (2) is the unique linear combination of
Ri(x, y) for P (x, y). The coefficients of such combination,
which are exactly the budgets bi for each buyer i ∈ F1, can
again be learned by solving a set of linear equations. We
omit the details here.
Proceed with F2, . . . ,Fm: After learning the utility func-
tions of buyers in F1, we proceed with buyers in F2 using
the same approach with the demand of good 2, and then to
F3, . . . ,Fm. The algorithm and analysis remain the same
except for one change: when learning utilities of buyers in
Fj , buyers in F1, . . . ,Fj−1 may also be demanding good j
at all queried price vectors. Since we already know utility
functions and budgets of these buyers, we can compute ex-
actly how much of good j they demand for any price vector.
We can then subtract these demands from Zj , and the re-
maining value are demands from Fj . This allows us to learn
the utilities and budgets of all buyers.

Note that when applying the algorithm for Fj , we do not
need to query a new set of 2n3m + 1 prices. Instead, we
revisit the same set of demand vectors that we collected for
F1, and use Zj , the demands of good j, as our data for learn-
ing utilities of buyers in Fj . Hence, the overall number of
queries for the algorithm remains in O(n3m).

3.2 Fisher Markets with CES Utilities
For general CES utility functions, the excess demand is

Zj =

n∑
i=1

xij = p
1
ρ−1

j

n∑
i=1

wijbi
qi

.



Let us rewrite it as

Zj

p
1
ρ−1

j

=

n∑
i=1

wijbi∑
j wijp

ρ
ρ−1

j

.

Note that we can compute the value of all wij by querying
appropriate price vectors p1,p2, . . . ,pk for Leontief utili-

ties. For general CES utility functions, we use p′j = p
ρ
ρ−1

j

andZ ′j =
Zj

p
1
ρ−1
j

to turn the problem into a Leontief case. Ob-

serve that by (1) for CES functions, aij = 0 implies wij = 0
and xij = 0. Nevertheless, the algorithm for the Leontief
case above can be applied, since we explicitly treated the
generalization that allows wij = 0. This implies the follow-
ing theorem.
Theorem 4. An unknown Fisher market with general CES
utilities can be learned usingO(n3m) queries in polynomial
time.
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