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Abstract 
 

The increasing popularity of GPS device has boosted 

many Web applications where people can upload, browse 

and exchange their GPS tracks. In these applications, 

spatial or temporal search function could provide an 

effective way for users to retrieve specific GPS tracks they 

are interested in. However, existing spatial-temporal 

index for trajectory data has not exploited the 

characteristic of user behavior in these online GPS track 

sharing applications. In most cases, when sharing a GPS 

track, people are more likely to upload GPS data of the 

near past than the distant past. Thus, the interval between 

the end time of a GPS track and the time it is uploaded, if 

viewed as a random variable, has a skewed distribution. 

In this paper, we first propose a probabilistic model to 

simulate user behavior of uploading GPS tracks onto an 

online sharing application. Then we propose a flexible 

spatio-temporal index scheme, referred to as Compressed 

Start-End Tree (CSE-tree), for large-scale GPS track 

retrieval. The CSE-tree combines the advantages of B+ 

Tree and dynamic array, and maintains different index 

structure for data with different update frequency. 

Experiments using synthetic data show that CSE-tree 

outperforms other schemes in requiring less index size 

and less update cost while keeping satisfactory retrieval 

performance. 

 

 

1. Introduction 
 

In recent years, with decreasing price and increasing 

locality accuracy, GPS devices have become more and 

more prevalent in modern life. Hence, as never before, 

lots of GPS track data, e.g. users’ GPS tracks, have been 

accumulated both continuously and unobtrusively. 

The large amounts of GPS data have given rise to a 

generation of novel applications on the Web. One major 

trend is online GPS track sharing applications which 

allows users to upload, share and browse GPS track and 

related multimedia content [2, 3, 4, 5, 6, 7] over Web 

maps. Compared to traditional text-based description, 

visualizing users’ GPS tracks over Web maps can provide 

a more explicit, concise and fancy approach to express 

their life experience. Consequently, users can recall their 

own past events better, and obtain more information from 

other people’s experience when they browse a GPS track. 

As more and more GPS tracks are accumulated, how to 

manage and index these GPS data become an important 

issue in these Web applications. Meanwhile, users also 

need an efficient approach to retrieve the specific GPS 

tracks they are interested in. However, existing search 

method by tags, like activity tags and region tags [2, 3, 7], 

offered by these Web applications cannot satisfy users’ 

needs. For instance, a user in New York City may want to 

find a relaxing walking trail near his house in an ordinary 

weekend. In this scenario, search by region tags like NYC 

would be too large for the user, and tags are also 

insufficient to express the temporal query of the user. 

Thus, spatio-temporal search function, which allows users 

to retrieve the trajectories within a given spatial range and 

temporal interval, would provide an effective way of 

managing GPS data and improving user experience. 

Although some spatio-temporal indexing schemes for 

trajectory data have been proposed in the past years, they 

are not optimized for GPS track sharing applications on 

the Web. We observe that users tend to upload GPS tracks 

of the near past more frequently than GPS tracks of the 

distant past. For instance, users are more likely to upload 

GPS tracks of today than those of months ago. This 

observation also holds in other data sharing applications 

such as Flickr and YouTube. People are more likely to 

upload the images/videos they took recently than those of 

long time ago. Thus, traditional spatio-temporal indexing 

schemes, like R tree or its variants, are not optimal to 

handle the skewed nature of accumulative GPS tracks. 

In this paper, we propose Compressed Start-End Tree 

(CSE-tree) for the GPS data sharing applications based on 

users’ uploading behavior. In this scheme, we first 

partition the space into disjoint cells that cover the whole 

spatial region, and then maintain a flexible temporal index 

for each spatial cell. To insert a new GPS track, we divide 



the track into segments according to spatial partition. Then 

each segment is inserted into the temporal index of 

corresponding spatial grid. For all segments in a temporal 

index, they are divided into several groups according to 

end time of the segment. We observed that for different 

groups, the frequency of new updates is different. CSE-

tree uses B+ tree index for frequently updated groups and 

sorted dynamic array for rarely updated ones. The update 

frequency of a group may change as time goes by, so we 

transform a B+ tree index into a sorted dynamic array if 

update frequency of a group drops below a threshold.  In 

all, the contributions of our work lie in that: 

 • A stochastic process model is proposed to 

simulate user behavior of uploading GPS tracks to online 

sharing applications. This model can also be applied to 

other data sharing applications on the Web. 

• A novel indexing scheme is optimized to the user 

behavior of uploading GPS tracks. Our scheme requires 

less index space and less update cost while keeping 

satisfactory retrieval performance. 

The rest of this paper is organized as follows: We make 

a survey of related work in Section 2, and introduce the 

preliminaries of this paper, including application, term 

definition and query type in Section 3. Then we present 

our model for user behavior of uploading GPS tracks in 

Section 4 and our indexing scheme is proposed in Section 

5. After presenting the experiment result in Section 6, we 

conclude our paper in Section 7. 

 

2. Related work 
 

Many online GPS track sharing applications already 

exist on the Web. “GPS exchange forum” [4] provides a 

public space where users can exchange plain GPS track 

files by posting literal descriptions of the original creator 

and other people’s comments. “GPS sharing” [5] 

improves the user interface by displaying the uploaded 

GPS track on a digital map and marking the positions 

where the user has taken an image. It also computes basic 

statistics of the track, including length, date and ascent. 

“Mountain Bike” [2] not only presents tracks and images 

on map, but also allows users to add their own tags to 

describe the track, such as “hilly”, “muddy”, and 

“relaxing”. Users can search tracks by tag names. Tag-

based search function is also provided in “Wikiwalki” [7], 

and it focuses on “country” and “activity”. People are 

fond of these novel applications for good reasons. For 

his/her personal use, an individual can better recall and 

enjoy his/her past events. For public use, it is more 

convenient to share other people’s life experience. For 

example, when they are planning an outdoor activity like 

jogging and cycling, they would like to find out whether a 

certain track is suitable for them. One who wants to relax 

would avoid a track labeled “tiresome” or “challenging”, 

while these tracks may be attractive for those who want to 

exercise more. Another use is to discover other users with 

similar interests of travelling and form online 

communities, as what [7] is trying to do. However, none 

of these applications offers spatial and temporal search 

functions that allow users to specify his/her query range 

over maps. 
Another work that is related to ours is indexing 

trajectory data (such as GPS track). Such indices largely 

fall into two categories: indices that optimize queries 

about the future positions of spatiotemporal objects, and 

those that optimize historical queries. The later is more 

related to ours. For index of historical queries, there are 

mainly three approaches. One straightforward way of 

indexing historical trajectory data is by using any 

multidimensional access method like R-tree and its 

variants [9, 10, 11, 12, 13]. But these approaches do not 

take advantage of the special properties of time dimension, 

thus introduces excessive overlapping between index 

nodes and therefore leads to decreased query performance. 

The second approach uses overlapping and multi-version 

structures, such as MR-tree [14], HR-tree [15] and 

MV3R-tree [16]. This approach builds a separate R-tree 

for each time stamp and shares common parts between 

two consecutive R-trees. Though this approach allows 

efficient temporal query, it also requires excessive storage. 

The third approach divides the spatial dimension into 

grids, and then builds separate temporal index for each 

grid. This category includes SETI [17], SEB-tree [18] and 

MTSB-tree [19]. Since this approach has been proved to 

have better insertion and query performance [17, 18, 19], 

the index proposed in this paper also use spatial partition 

method. 

For temporal index of spatial partition method, SETI 

uses R-tree in each grid. MTSB-tree uses TSB-tree which 

assumes historical data will not be updated, thus 

unsuitable for our scenario. SEB-tree represents track 

segment within a spatial grid by its start and end time 

stamp, thus it can index these segments as points in a two 

dimensional plane. Our CSE-tree differs from SEB-tree in 

two aspects. First, we divide track into groups using a 

different criterion. Second, we employ different index 

strategies for data with different update frequency. 

 

3. Preliminary 
 

This section first introduces an application scenario in 

which spatio-temporal search functions is leveraged to 

improve state-of-the-art GPS track sharing applications. 

Then we formulate the GPS track search problem with 

definitions of several key terms and query types used 

throughout this paper. 

 

3.1. Application 
 

The work described in this paper is a part of research of 

our project GeoLife [1], which focuses on visualization, 



organization, fast retrieval and effectively mining of GPS 

track data for both personal and public use. We have 

implemented an online GPS track sharing platform on 

which users can upload GPS data, browse their own 

information, search and share others’ GPS tracks. Figure 1 

shows the user interface of spatio-temporal search 

function in GeoLife. The CSE-tree proposed in this paper 

has been deployed in our platform to support efficient 

online insertion and query of GPS tracks. In Figure 1(a), 

users can specify temporal query range by inputting start 

time and end time. In Figure 1(b), users can specify spatial 

query by clicking the map to input two diagonal points of 

a rectangle.  

We have also performed a user study to testify the 

effectiveness of spatio-temporal search function in 

improving user experience. Fifty users carrying GPS 

device over a period of six months have uploaded 3,236 

GPS tracks to our system. These GPS tracks are further 

leveraged to model user behavior in Section 4 and 

generate synthetic data in Section 6. 

  
          (a) Temporal search                  (b) Spatial search          

Figure 1. Spatio-temporal search of GeoLife 

 

3.2. Definition 
 

Figure 2 gives an illustration of a typical GPS track. 

Each track consists of a sequence of track entries. A track 

entry can be formulated as <latitude, longitude, time 

stamp>. Connecting these entries sequentially forms a 

track, as depicted in the right part of Figure 2.  

     Latitude, longitude, Time

P1:     Lat1,     long1,       T1

P2:     Lat2,     long2,       T2

         ………...

Pn:     Latn,     longn,       Tn P1

Pn
P2 P3

Pn-1

start time: T1

end time: Tn

Figure 2. GPS track and corresponding track 

    Let Ts denote the start time of the track, and Te denote 

the end time of the track. The duration of a GPS track 

(𝑇𝑑𝑢𝑟 ) is the time interval between the end time (𝑇𝑒) and 

the start time (𝑇𝑠) of the track. Put formally, 

𝑇𝑑𝑢𝑟 = 𝑇𝑒 − 𝑇𝑠            (1) 

    Since the user cannot upload a track onto the Web 

immediately after it ends, there must a time interval 

between 𝑇𝑒  and the time it is uploaded onto a website 

(𝑇𝑢𝑝 ). This interval is defined as 𝑇𝑖𝑛𝑡 . Put formally, 

𝑇𝑖𝑛𝑡 = 𝑇𝑢𝑝 − 𝑇𝑒         (2) 

3.3. Query 
 

A spatio-temporal query should include both spatial 

and temporal predicate. The spatial predicate specifies a 

rectangular region represented by its four boundaries. The 

temporal predicate specifies a time span between the 

minimum and the maximum temporal boundary of the 

query, symbolized as 𝑇𝑖𝑚𝑒𝑚𝑖𝑛  and 𝑇𝑖𝑚𝑒𝑚𝑎𝑥 .  

For spatial predicate, the index should retrieval all 

tracks that overlap with the query’s spatial input. In Figure 

3(a), spatial query is to retrieve all tracks that intersect 

with spatial query input, such as Track1 and Track2. For 

temporal predicate, the desired result is to retrieve all GPS 

tracks that satisfy: 

 
𝑇𝑒 > 𝑇𝑖𝑚𝑒𝑚𝑖𝑛

𝑇𝑠 < 𝑇𝑖𝑚𝑒𝑚𝑎𝑥

             (3) 

On a two-dimensional plane where the horizontal axis 

denotes Ts and vertical axis denotes Te, a track can be 

represented as a point on the plane. Therefore, the 

temporal query specified by < 𝑇𝑖𝑚𝑒𝑚𝑖𝑛 , 𝑇𝑖𝑚𝑒𝑚𝑎𝑥 > is to 

retrieve all points that fall in the grey “Query Region” part 

of the plane in Figure 3(b).  

Ts

Te

Query 

RegionQuery 

Region

Spatial query

Timemax

Timemin

Track1 Track3

Track2

 
           (a) Spatial query                 (b) Temporal query 

Figure 3. Spatial and temporal query 

 

4. Modeling user behavior 
 

In order to model user behavior of uploading GPS 

tracks, we need to investigate the distribution of the 

following three random variables: 𝑇𝑢𝑝 ,  𝑇𝑖𝑛𝑡  and 𝑇𝑑𝑢𝑟 . 

Then we propose a model to simulate user behavior. 

 

4.1. Uploading process 
 

Similar to the webpage requests to a server, uploading 

GPS tracks to an online application can be viewed as 

random events in time that occur independently of one 

another. Thus according to queuing theory, these events 

can be modeled as a Poisson process, i.e. for intensity λ, 

the number of uploaded GPS tracks in time interval (t, t+ τ] 

follows Poisson distribution with parameter λτ: 

𝑃  𝑁 𝑡 + 𝜏 −  𝑁 𝑡  = 𝑘 =
𝑒−λτ 𝜆𝜏 𝑘

𝑘!
    

𝑘 = 0,1,2 …        (4) 



4.2. Distribution of 𝐓𝐝𝐮𝐫 
 

The duration of GPS track 𝑇𝑑𝑢𝑟  can be viewed as a 

random variable. Figure 4 shows the distribution of 

duration of tracks collected in our user study.  

 
Figure 4. Track Duration Distribution 

Intuitively, people would neither move very far nor 

very near outdoors before they stop. From the data 

collected in the user study mentioned in Section 3.1, we 

assume that the distribution of 𝑇𝑑𝑢𝑟  follows normal 

distribution. Put formally,  

𝑇𝑑𝑢𝑟 ~𝑁(µ, 𝜎2)            (5) 

 

4.3. Distribution of  𝐓𝐢𝐧𝐭 
 

If viewing Tint as a random variable, we observe that it 

has a skewed distribution. The reason is as follows. First, 

when sharing a GPS track, people are more likely to 

upload GPS data of the near past than the distant past. For 

instance, users are more likely to upload a GPS track of 

today than that of months ago. Second, people do need 

some time to transfer the track data from GPS device to a 

website.  The distribution of 𝑇𝑖𝑛𝑡 , therefore, should be a 

combination of the two aforementioned effects. 

Although we cannot perform statistical analysis on the 

large-scale GPS tracks from existing online applications 

directly, as shown in Figure 5, the distribution of Tint can 

be inferred from our analysis on users’ upload behavior on 

Flickr. The data is summarized from 57,243 images which 

were uploaded by different users from July 1st, 2007 to 

November 8th, 2007. In Figure 5, the solid line represents 

our analysis of Flickr data. The horizontal axis denotes the 

time span between the images’ taken time and uploaded 

time. 

 
Figure 5. Interval Distribution 

However, since the smallest time unit maintained by 

Flickr is day, the probability of different hours within a 

day cannot be inferred from statistical evidence. 

Intuitively, if we look into the hours in the first day, there 

must be a time gap between the end time of GPS track and 

the time it is uploaded onto an online sharing application. 

Thus we append the broken line showing the distribution 

of probability in the first day. We assume that users’ 

motivation of uploading GPS tracks varies in a way 

similar to radio signal transmitting in propagation 

environment. i.e., Tint follows Rayleigh distribution.  

𝑇𝑖𝑛𝑡 ~ 𝑅𝑎𝑦𝑙𝑒𝑖𝑔ℎ 𝜆             (6) 

 

4.4. Generating Synthetic data 
 

Given the information above, user behavior of 

uploading GPS tracks can be simulated by five steps: 

1. Generate a series of 𝑇𝑢𝑝 using Poisson process. 

2. Generate 𝑇𝑖𝑛𝑡  by Rayleigh distribution, and deduce 

𝑇𝑒  by using the transform of equation (1).  

                               𝑇𝑒 = 𝑇𝑢𝑝 − 𝑇𝑖𝑛𝑡   

3. Generate 𝑇𝑑𝑢𝑟 by normal distribution. 

4. Generate Ts by using the transform of equation (2) 

𝑇𝑠  = 𝑇𝑒 − 𝑇𝑑𝑢𝑟  

5. Using Ts and Te as the first and last time stamp, we 

can generate all GPS points of the track with GSTD 

method [20]. 

 

5. Index design 
 

5.1 Overall Structure 
 

Similar to [17, 19], we divide the space into disjoint 

cells that cover the whole spatial region, and then 

maintain a temporal index for each spatial cell, as 

illustrated in Figure 6. The whole spatial region can be 

partitioned into uniform cells using grid based indexing 

method or uneven grid using quad-tree indexing method.  

 
Figure 6. Overall Structure and Track Segmentation                         

Each uploaded GPS track is assigned a unique trackID 

when it enters the system. In order to insert a track into the 

index, we first partition the track into segments by spatial 

grids. Then each segment is inserted into the temporal 

index of corresponding spatial grid. 

To execute a query, first we retrieve the spatial grids 

that overlap with query’s spatial predicate, and a candidate 

cell list is produced. Then for each cell in candidate cell 
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list, its local temporal index is searched to find tracks that 

intersect the temporal predicate and trackIDs are returned. 

Finally, trackIDs from different cells are merged to 

remove duplicates and we get the final result. 

While the overall insertion and query operations are 

similar to previous index structures [17, 18], the major 

difference lies in temporal index, which is named 

“Compressed Start End Tree” (CSE-tree). Further detail of 

local temporal index is explicated in the sections below. 

 

5.2. CSE-tree 
 

CSE-tree is essentially a two-dimensional index 

structure for temporal index of each spatial grid. After a 

track is partitioned into segments by spatial grids, each 

segment is inserted into corresponding temporal index, i.e., 

CSE-tree of the spatial grid. In a two-dimensional plane 

where the horizontal coordinate denotes Ts and the 

vertical coordinate denotes Te, a track segment can be 

represented by a point on the plane.  

The overall structure of a CSE-tree is illustrated in 

Figure 7. Since Te must be greater than the Ts, all points 

presenting a segment fall in the upper left part of the plane. 

All points are divided into several groups by Te. For each 

group, a Start Time Index is built to index points within 

the group. For all groups, one End Time Index is built to 

index different groups.  

The End Time Index is implemented as a B+ tree for 

indexing <key, value> pair. The key is the numerical 

value of the dividing lines of different groups, like t0, t1, t2, 

t3, …, ti and ti+1. The value is a pointer to Start Time Index 

like S0, S1 and Si. The partition criterion is determined in 

insertion process. For an index entry in End Time Index 

whose key is ti, it should cover all track segments whose 

Te is between [ti, ti+1) in the spatial grid and the entry’s 

value is the pointer to Start Time Index Si.  

The Start Time Index is also organized as a B+ tree 

structure indexing <key, value> pair. The key is Ts of the 

segment and value is < Te, trackID> pair of the segment. 

Ts

End 

time 

index
ti

t2

t1

t0

S1

S0

ti+1

Si index points 

with 

Ti <= Te < Ti+1

Te

…...

Start Time Index 

Si

 
Figure 7. CSE-tree structure 

Three operations including insertion, search, and 

compression are designed for CSE-tree. The insertion 

operation is performed to add new GPS track segments 

into CSE-tree while the search operation is implemented 

to handle temporal queries on CSE-tree. The compression 

operation is based on our observation that insertion into 

the index is not distributed evenly, as we have discussed 

in Section 4.3. Therefore, we can use different index 

structures for the frequently updated and rarely updated 

part of data. The compression operation is called when the 

part of data’s update frequency drops below a threshold to 

make the conversion between different index structures. 

 

5.2.1. Insertion One important parameter in insertion 

process is Partition Threshold T. A dividing line in end 

time dimension is drawn as soon as the number of items in 

the last Start Time Index reaches T. Upon the insertion of 

a new track segment, CSE-tree first looks up the End Time 

Index with Te to find the largest key smaller than Te. The 

corresponding value of the <key, value> pair is the 

pointer to a Start Time Index. Then the Start Time Index is 

updated using key Ts and value < Te, trackID>. Finally the 

last Start Time Index is checked to see if the number of 

items in this index exceeds Partition Threshold T. If so, a 

routine is called to create a new Start Time Index and 

insert a <key, value> pair into End Time Index where key 

is the maximum Tend in the last Start Time Index and 

value is the pointer to the newly created Start Time Index. 

Figure 8 gives a brief illustration of the insertion 

process. Assume that Partition Threshold T equals three. 

When the first two points (P1, P2) in the last division is 

inserted, no partition line is drawn (Figure 8(a)). When the 

third point comes (P3), after it is inserted into 

corresponding Start Time Index, the item number in the 

last Start Time Index reaches Partition Threshold T, so a 

new dividing line is drawn and a new Start Time Index is 

created. The numerical value of the dividing line equals 

the maximum value of Te in the last Start Time Index (P2’s 

Te). We then insert End Time Index with a <key, value> 

pair whose key is the value of P2’s Te and value is pointer 

to newly created Start Time Index. (Figure 8(b)) 

Ts

Te

P1

P2

Ts

Te

P1

P2

P3

 
         (a) Before inserting P3              (b) After inserting P3 

Figure 8. An example of CSE-tree insertion  

The insertion algorithm can be further optimized by an 

analysis of distribution of insertion frequency. In Figure 9, 

due to the Rayleigh distribution of Tint, the portion of data 

whose end time is near “now” is updated more frequently. 

Therefore, we can first check up the last few Start Time 

Indexes like Sj+1 and Sj. If the new insertion can be inserted 

into the last few Start Time Indexes, then we can avoid the 

cost of searching the entire End Time Index. 



now

now
insert

frequency

Sj+1

Sj

...

Si

Ts

Te

 
Figure 9. CSE-tree insertion frequency 

 

5.2.2 Search In a CSE-tree, in order to find all GPS tracks 

that intersect with the temporal predicate of a query, we 

need to perform the three steps. First, we look up the End 

Time Index with 𝑇𝑖𝑚𝑒𝑚𝑖𝑛  and we can get Start Time 

Indexes that contain tracks whose end time is greater than 

Timemin. In Figure 10, Given query <𝑇𝑖𝑚𝑒𝑚𝑖𝑛 , 𝑇𝑖𝑚𝑒𝑚𝑎𝑥 >,  

the first step should return Tree1, Tree2 and Tree3. 

Second, we use 𝑇𝑖𝑚𝑒𝑚𝑎𝑥 to look up each Start Time Index 

to find the tracks whose start time is less than 𝑇𝑖𝑚𝑒𝑚𝑎𝑥 . 

Finally, we filter out undesired tracks in the Start Time 

Indexes that intersect with Timemin. In Figure 10, Tree1 

contains some tracks whose 𝑇𝑒  is less than 𝑇𝑖𝑚𝑒𝑚𝑖𝑛 , and 

they are filtered out before returning results to the users. 

Timemax

Timemin
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t1

t2

t3

Ts

Te

Tree3

 
Figure 10. CSE-tree search operation 

5.2.3 CSE-tree compression In the previous discussion, 

we assume that Start Time Index and End Time Index are 

implemented using B+ tree. However, as data accumulate, 

the tree structure would grow larger and larger. Although 

B+ tree performs well for frequent updates, this advantage 

is quite unnecessary for archive data. According to the 

analysis of user behavior in Section 4, though uploading a 

GPS track a long time ago is possible, its frequency is low 

and higher insertion cost for these archive data would not 

affect overall performance significantly. Hence the index 

for archive data only needs to guarantee speedy response 

to query, but not insertion. Therefore, the B+ tree index 

can be replaced by a simple dynamic array structure for 

archive data that is uploaded long time ago and the index 

size can be greatly reduced. An illustration is given in the 

Figure 9. The current time “now” is shown as a broken 

line that is constantly moving as time elapses. Si, Sj and 

Sj+1 represent three Start Time Indexes. Sj and Sj+1 have a 

higher frequency of being updated and Si have a lower 

frequency. Therefore, Sj and Sj+1 may be organized using 

B+ trees while Si uses a sorted dynamic array.  

The operation that transforms a B+ tree into a dynamic 

array is defined as “compression”. It is implemented by 

reading all data from B+ tree leaves and creating a new 

sorted dynamic array containing all these data. Since this 

compression operation is time-consuming, it is carried out 

in an off-line manner to ensure high index performance. 

We also maintain a “time flag” for each Start Time Index, 

recording the last time the corresponding Start Time Index 

is updated. The system checks these time flags 

periodically. When the difference between the current 

time and the time of last update exceeds a threshold, i.e., 

the Start Time Index has not been updated for a long time, 

we assume that future update on this index is also unlikely, 

and we can call the “compress” routine and transform a 

B+ tree index to a dynamic array. 

 

6. Experiment 
 

Since spatial grid partition is already thoroughly 

discussed and compared to other index structures such as 

3DR-tree [17, 18], we only present the experiment results 

concerning our temporal index and compare CSE-tree to 

the R-tree [17] and SEB-tree [18]. 

 

6.1. Settings 
 

The experiments are carried out on a PC with 3.00 GHz 

Intel Pentium 4 CPU, Windows XP SP2 platform, and 

0.99 GB RAM. The inner node size of B+ tree is 64 byte, 

which is the cache line size of Pentium 4 CPU. According 

to [21], making the inner node size equal to the size of 

CPU cache line can increase B+ tree cache hits and 

decrease cache miss, thus improving the overall 

performance. Leaf size of B+ tree is 1024 byte. 

Test data is generated following the steps in Section 

4.4. We use synthetic data instead of real data because 

data in GeoLife is collected in our user study and 

uploaded according to a systematic plan, thus cannot 

reflect arrival process of new upload in real world. The 

time unit hereafter is hour. For the Poisson process that 

simulates arrival of uploaded tracks, we used intensity 

values of 100, 300, 500 and 700, meaning there are 100, 

300, 500 and 700 uploaded tracks to the website on 

average. The total duration of the process is 2400, 

meaning 2400 hours, or 100 days. The parameter of 

Rayleigh distribution for Tint is 1.07. The mean of 𝑇𝑑𝑢𝑟  is 

0.42 and variance is 0.98. All these parameters are 

estimated from the result of our user study in Section 3.1. 

 

6.2. Results 
 

Our indexing scheme is compared and evaluated from 

three aspects, namely, index size, average number of node 



access in one insertion and average number of node access 

in one query. The horizontal axis of the following figures 

denotes the intensity of arrival of uploaded tracks. 

 

6.2.1. Index Size We insert all synthetic data into the R-

tree, SEB-tree and CSE-tree. Index size is shown below.   

 
Figure 11. Index size comparison 

The result shows that R-tree has the largest index size, 

because overlapping areas between nodes introduce 

excessive redundancy. SEB-tree takes up less index size 

than R-tree since the area covered by node are mutually 

exclusive, and therefore no overlapping between nodes 

exists.  CSE-tree further reduces index size by converting 

a B+ tree into a dynamic array when update of the 

corresponding portion of data becomes less frequent. 

 

6.2.2. Insertion Performance The number of node access 

for one insertion is illustrated in Figure 12. We count the 

average number of node access of 500 insertions, after the 

index is built with data in Section 6.2.1. R-tree has the 

largest number of node access, because R-tree is balanced 

tree, but distribution of new insertions is skewed. As a 

result, much inner node split is incurred and the overall 

performance deteriorates. CSE-tree requires less node 

access in one insertion than SEB-tree due to the 

optimization mechanism discussed in Section 5.2.1.  

 
Figure 12. Mean number of node access in one insertion 

As shown in Figure 13, the portion of data surrounded 

by the broken line has greater frequency of new insertions. 

For CSE-tree, the majority of new insertions will happen 

to the last few Start Time Indexes, thus we can avoid 

looking up End Time Index by simple checking the last 

few Start Time Indexes. This optimization process 

mentioned in Section 5.2.1 significantly reduces number 

of node access incurred in the insertion. The insertion 

algorithm of SEB-tree, however, has to first find the 

vertical column, and then searches within the vertical 

column, thus results in more node access. 
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(a) CSE-tree                 (b) SEB-tree 

Figure 13. Comparison of insertion 

6.2.3. Query Performance The selectivity of a temporal 

query is defined as the fraction of the total temporal span 

covered by the query. In our experiment, the total 

temporal span is 2400 hours. So a query with selectivity 

0.1% spans 2.4 hours. We generated totally 30,000 queries, 

of which one third has selectivity 0.01%, one third has 0.1% 

and one third has 1%. The queries are evenly distributed 

over the whole temporal span. The mean number of node 

access is illustrated in Figure 14. Our results show that R-

tree has the worst performance because if inner nodes 

have overlapping areas, the R-tree has to search all 

candidates respectively. Both CSE-tree and SEB-tree 

require much less node access than R-tree. CSE-tree 

requires slightly more node access than SEB-tree due to 

compression operation to CSE-tree. In a compression 

operation, a less frequently updated B+ tree is replaced by 

a dynamic array in order to save index space, but a binary 

search on a dynamic array incurs slightly more node 

access than search on a B+ tree. 

 
Figure 14. Mean number of node access in one query 

 

6.2.4. Partition Threshold T of CSE-Tree Defined in 

Section 5.2.1, Partition Threshold T of CSE-Tree 

determines the time a new Start Time Index is created 

during insertion process. We have tested the effect of 

Partition Threshold T on the performance of CSE-Tree. 

Intensity of upload arrival rate is 500. Generation of data 

and query is the same with Section 6.2.3. The 

experimental results are shown in Figure 15. The query 

time in Figure 15 (b) is the total time of 30000 queries. 

Insertion time is more or less the same for different T 

values, thus omitted for the sake of concision.  

Our first observation is that index size increases as T 

gets larger. The reason is that larger T value has two 

effects on the size of CSE-tree. First, larger T means 

larger size of each Start Time Index. Second, the number 

of Start Time Index will be smaller. But the first effect is 

more important to the overall size of CSE-tree. 
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Another observation is that search time first drops then 

increases as T value grows. Our reason is that when T is 

small, there would be a greater number of Start Time 

Indexes, and the search process has to access more Start 

Time Indexes to find the desired result. However, if T is 

too large, there are more tracks in each Start Time Index. 

As a result, the time cost of search within each Start Time 

Index would be high. Also, for the Start Time Index that 

intersect with a query’s 𝑇𝑖𝑚𝑒𝑚𝑖𝑛 , it would take more time 

to filter out undesired segment. Take the query in Figure 

10 for instance, if  Partition Threshold T increases, Tree1 

will becomes larger, and it will consume more time to 

search within Tree1 and to filter out tracks whose 𝑇𝑒  is 

less than 𝑇𝑖𝑚𝑒𝑚𝑖𝑛 . The overall query performance of 

CSE-tree is decided by the two above-mentioned effects. 

When T is small, the former effect is greater, but the later 

one becomes dominant when T value exceeds 15000.   

 

(a) Index size                                         (b) Search 

Figure 15. Effect of Partition Threshold T 

 

7. Conclusion 
 

In this paper, motivated by the observation on user 

behavior of uploading GPS tracks onto Web applications, 

we proposed a flexible spatio-temporal indexing scheme, 

CSE-tree, to help system effectively manage large volume 

of GPS tracks and provide fast retrieval service for Web 

users. A model that simulates such user behavior has been 

proposed based on stochastic process theory as well as 

statistical analysis on the data collection uploaded by 

users in real world. Over the synthetic data generated by 

the model, CSE-tree is compared with SEB-tree and R-

tree. Experiments show that CSE-tree incurs slightly more 

node access than SEB-tree for query but requires less 

index size and cost less node access for insertion. CSE-

tree also requires less index size than R-tree and cost less 

node access for both insertion and query than R-tree. 

In the future, we would further investigate how to 

make a smooth transition between a B+ tree, which has 

faster insertion but requires more index size, and a sorted 

dynamic array, which has slower insertion but requires 

less index size. This would enable us to improve our 

compression algorithm with a series of intermediate stages 

between a B+ tree and a dynamic array, varying according 

to the frequency of new updates.  
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