
A Flexible Spatio-temporal Indexing Scheme for Large-scale GPS Track

Retrieval

Longhao Wang, Yu Zheng, Xing Xie, Wei-Ying Ma
Microsoft Research Asia, 4F, Sigma Building, NO.49 Zhichun Road, Beijing 100080, China

{v-lowang, yuzheng, xingx, wyma}@microsoft.com

Abstract

The increasing popularity of GPS device has boosted

many Web applications where people can upload, browse

and exchange their GPS tracks. In these applications,

spatial or temporal search function could provide an

effective way for users to retrieve specific GPS tracks they

are interested in. However, existing spatial-temporal

index for trajectory data has not exploited the

characteristic of user behavior in these online GPS track

sharing applications. In most cases, when sharing a GPS

track, people are more likely to upload GPS data of the

near past than the distant past. Thus, the interval between

the end time of a GPS track and the time it is uploaded, if

viewed as a random variable, has a skewed distribution.

In this paper, we first propose a probabilistic model to

simulate user behavior of uploading GPS tracks onto an

online sharing application. Then we propose a flexible

spatio-temporal index scheme, referred to as Compressed

Start-End Tree (CSE-tree), for large-scale GPS track

retrieval. The CSE-tree combines the advantages of B+

Tree and dynamic array, and maintains different index

structure for data with different update frequency.

Experiments using synthetic data show that CSE-tree

outperforms other schemes in requiring less index size

and less update cost while keeping satisfactory retrieval

performance.

1. Introduction

In recent years, with decreasing price and increasing

locality accuracy, GPS devices have become more and

more prevalent in modern life. Hence, as never before,

lots of GPS track data, e.g. users’ GPS tracks, have been

accumulated both continuously and unobtrusively.

The large amounts of GPS data have given rise to a

generation of novel applications on the Web. One major

trend is online GPS track sharing applications which

allows users to upload, share and browse GPS track and

related multimedia content [2, 3, 4, 5, 6, 7] over Web

maps. Compared to traditional text-based description,

visualizing users’ GPS tracks over Web maps can provide

a more explicit, concise and fancy approach to express

their life experience. Consequently, users can recall their

own past events better, and obtain more information from

other people’s experience when they browse a GPS track.

As more and more GPS tracks are accumulated, how to

manage and index these GPS data become an important

issue in these Web applications. Meanwhile, users also

need an efficient approach to retrieve the specific GPS

tracks they are interested in. However, existing search

method by tags, like activity tags and region tags [2, 3, 7],

offered by these Web applications cannot satisfy users’

needs. For instance, a user in New York City may want to

find a relaxing walking trail near his house in an ordinary

weekend. In this scenario, search by region tags like NYC

would be too large for the user, and tags are also

insufficient to express the temporal query of the user.

Thus, spatio-temporal search function, which allows users

to retrieve the trajectories within a given spatial range and

temporal interval, would provide an effective way of

managing GPS data and improving user experience.

Although some spatio-temporal indexing schemes for

trajectory data have been proposed in the past years, they

are not optimized for GPS track sharing applications on

the Web. We observe that users tend to upload GPS tracks

of the near past more frequently than GPS tracks of the

distant past. For instance, users are more likely to upload

GPS tracks of today than those of months ago. This

observation also holds in other data sharing applications

such as Flickr and YouTube. People are more likely to

upload the images/videos they took recently than those of

long time ago. Thus, traditional spatio-temporal indexing

schemes, like R tree or its variants, are not optimal to

handle the skewed nature of accumulative GPS tracks.

In this paper, we propose Compressed Start-End Tree

(CSE-tree) for the GPS data sharing applications based on

users’ uploading behavior. In this scheme, we first

partition the space into disjoint cells that cover the whole

spatial region, and then maintain a flexible temporal index

for each spatial cell. To insert a new GPS track, we divide

the track into segments according to spatial partition. Then

each segment is inserted into the temporal index of

corresponding spatial grid. For all segments in a temporal

index, they are divided into several groups according to

end time of the segment. We observed that for different

groups, the frequency of new updates is different. CSE-

tree uses B+ tree index for frequently updated groups and

sorted dynamic array for rarely updated ones. The update

frequency of a group may change as time goes by, so we

transform a B+ tree index into a sorted dynamic array if

update frequency of a group drops below a threshold. In

all, the contributions of our work lie in that:

 • A stochastic process model is proposed to

simulate user behavior of uploading GPS tracks to online

sharing applications. This model can also be applied to

other data sharing applications on the Web.

• A novel indexing scheme is optimized to the user

behavior of uploading GPS tracks. Our scheme requires

less index space and less update cost while keeping

satisfactory retrieval performance.

The rest of this paper is organized as follows: We make

a survey of related work in Section 2, and introduce the

preliminaries of this paper, including application, term

definition and query type in Section 3. Then we present

our model for user behavior of uploading GPS tracks in

Section 4 and our indexing scheme is proposed in Section

5. After presenting the experiment result in Section 6, we

conclude our paper in Section 7.

2. Related work

Many online GPS track sharing applications already

exist on the Web. “GPS exchange forum” [4] provides a

public space where users can exchange plain GPS track

files by posting literal descriptions of the original creator

and other people’s comments. “GPS sharing” [5]

improves the user interface by displaying the uploaded

GPS track on a digital map and marking the positions

where the user has taken an image. It also computes basic

statistics of the track, including length, date and ascent.

“Mountain Bike” [2] not only presents tracks and images

on map, but also allows users to add their own tags to

describe the track, such as “hilly”, “muddy”, and

“relaxing”. Users can search tracks by tag names. Tag-

based search function is also provided in “Wikiwalki” [7],

and it focuses on “country” and “activity”. People are

fond of these novel applications for good reasons. For

his/her personal use, an individual can better recall and

enjoy his/her past events. For public use, it is more

convenient to share other people’s life experience. For

example, when they are planning an outdoor activity like

jogging and cycling, they would like to find out whether a

certain track is suitable for them. One who wants to relax

would avoid a track labeled “tiresome” or “challenging”,

while these tracks may be attractive for those who want to

exercise more. Another use is to discover other users with

similar interests of travelling and form online

communities, as what [7] is trying to do. However, none

of these applications offers spatial and temporal search

functions that allow users to specify his/her query range

over maps.
Another work that is related to ours is indexing

trajectory data (such as GPS track). Such indices largely

fall into two categories: indices that optimize queries

about the future positions of spatiotemporal objects, and

those that optimize historical queries. The later is more

related to ours. For index of historical queries, there are

mainly three approaches. One straightforward way of

indexing historical trajectory data is by using any

multidimensional access method like R-tree and its

variants [9, 10, 11, 12, 13]. But these approaches do not

take advantage of the special properties of time dimension,

thus introduces excessive overlapping between index

nodes and therefore leads to decreased query performance.

The second approach uses overlapping and multi-version

structures, such as MR-tree [14], HR-tree [15] and

MV3R-tree [16]. This approach builds a separate R-tree

for each time stamp and shares common parts between

two consecutive R-trees. Though this approach allows

efficient temporal query, it also requires excessive storage.

The third approach divides the spatial dimension into

grids, and then builds separate temporal index for each

grid. This category includes SETI [17], SEB-tree [18] and

MTSB-tree [19]. Since this approach has been proved to

have better insertion and query performance [17, 18, 19],

the index proposed in this paper also use spatial partition

method.

For temporal index of spatial partition method, SETI

uses R-tree in each grid. MTSB-tree uses TSB-tree which

assumes historical data will not be updated, thus

unsuitable for our scenario. SEB-tree represents track

segment within a spatial grid by its start and end time

stamp, thus it can index these segments as points in a two

dimensional plane. Our CSE-tree differs from SEB-tree in

two aspects. First, we divide track into groups using a

different criterion. Second, we employ different index

strategies for data with different update frequency.

3. Preliminary

This section first introduces an application scenario in

which spatio-temporal search functions is leveraged to

improve state-of-the-art GPS track sharing applications.

Then we formulate the GPS track search problem with

definitions of several key terms and query types used

throughout this paper.

3.1. Application

The work described in this paper is a part of research of

our project GeoLife [1], which focuses on visualization,

organization, fast retrieval and effectively mining of GPS

track data for both personal and public use. We have

implemented an online GPS track sharing platform on

which users can upload GPS data, browse their own

information, search and share others’ GPS tracks. Figure 1

shows the user interface of spatio-temporal search

function in GeoLife. The CSE-tree proposed in this paper

has been deployed in our platform to support efficient

online insertion and query of GPS tracks. In Figure 1(a),

users can specify temporal query range by inputting start

time and end time. In Figure 1(b), users can specify spatial

query by clicking the map to input two diagonal points of

a rectangle.

We have also performed a user study to testify the

effectiveness of spatio-temporal search function in

improving user experience. Fifty users carrying GPS

device over a period of six months have uploaded 3,236

GPS tracks to our system. These GPS tracks are further

leveraged to model user behavior in Section 4 and

generate synthetic data in Section 6.

 (a) Temporal search (b) Spatial search

Figure 1. Spatio-temporal search of GeoLife

3.2. Definition

Figure 2 gives an illustration of a typical GPS track.

Each track consists of a sequence of track entries. A track

entry can be formulated as <latitude, longitude, time

stamp>. Connecting these entries sequentially forms a

track, as depicted in the right part of Figure 2.

 Latitude, longitude, Time

P1: Lat1, long1, T1

P2: Lat2, long2, T2

 ………...

Pn: Latn, longn, Tn P1

Pn
P2 P3

Pn-1

start time: T1

end time: Tn

Figure 2. GPS track and corresponding track

 Let Ts denote the start time of the track, and Te denote

the end time of the track. The duration of a GPS track

(𝑇𝑑𝑢𝑟) is the time interval between the end time (𝑇𝑒) and

the start time (𝑇𝑠) of the track. Put formally,

𝑇𝑑𝑢𝑟 = 𝑇𝑒 − 𝑇𝑠 (1)

 Since the user cannot upload a track onto the Web

immediately after it ends, there must a time interval

between 𝑇𝑒 and the time it is uploaded onto a website

(𝑇𝑢𝑝). This interval is defined as 𝑇𝑖𝑛𝑡 . Put formally,

𝑇𝑖𝑛𝑡 = 𝑇𝑢𝑝 − 𝑇𝑒 (2)

3.3. Query

A spatio-temporal query should include both spatial

and temporal predicate. The spatial predicate specifies a

rectangular region represented by its four boundaries. The

temporal predicate specifies a time span between the

minimum and the maximum temporal boundary of the

query, symbolized as 𝑇𝑖𝑚𝑒𝑚𝑖𝑛 and 𝑇𝑖𝑚𝑒𝑚𝑎𝑥 .

For spatial predicate, the index should retrieval all

tracks that overlap with the query’s spatial input. In Figure

3(a), spatial query is to retrieve all tracks that intersect

with spatial query input, such as Track1 and Track2. For

temporal predicate, the desired result is to retrieve all GPS

tracks that satisfy:

𝑇𝑒 > 𝑇𝑖𝑚𝑒𝑚𝑖𝑛

𝑇𝑠 < 𝑇𝑖𝑚𝑒𝑚𝑎𝑥

 (3)

On a two-dimensional plane where the horizontal axis

denotes Ts and vertical axis denotes Te, a track can be

represented as a point on the plane. Therefore, the

temporal query specified by < 𝑇𝑖𝑚𝑒𝑚𝑖𝑛 , 𝑇𝑖𝑚𝑒𝑚𝑎𝑥 > is to

retrieve all points that fall in the grey “Query Region” part

of the plane in Figure 3(b).

Ts

Te

Query

RegionQuery

Region

Spatial query

Timemax

Timemin

Track1 Track3

Track2

 (a) Spatial query (b) Temporal query

Figure 3. Spatial and temporal query

4. Modeling user behavior

In order to model user behavior of uploading GPS

tracks, we need to investigate the distribution of the

following three random variables: 𝑇𝑢𝑝 , 𝑇𝑖𝑛𝑡 and 𝑇𝑑𝑢𝑟 .

Then we propose a model to simulate user behavior.

4.1. Uploading process

Similar to the webpage requests to a server, uploading

GPS tracks to an online application can be viewed as

random events in time that occur independently of one

another. Thus according to queuing theory, these events

can be modeled as a Poisson process, i.e. for intensity λ,

the number of uploaded GPS tracks in time interval (t, t+ τ]

follows Poisson distribution with parameter λτ:

𝑃 𝑁 𝑡 + 𝜏 − 𝑁 𝑡 = 𝑘 =
𝑒−λτ 𝜆𝜏 𝑘

𝑘!

𝑘 = 0,1,2 … (4)

4.2. Distribution of 𝐓𝐝𝐮𝐫

The duration of GPS track 𝑇𝑑𝑢𝑟 can be viewed as a

random variable. Figure 4 shows the distribution of

duration of tracks collected in our user study.

Figure 4. Track Duration Distribution

Intuitively, people would neither move very far nor

very near outdoors before they stop. From the data

collected in the user study mentioned in Section 3.1, we

assume that the distribution of 𝑇𝑑𝑢𝑟 follows normal

distribution. Put formally,

𝑇𝑑𝑢𝑟 ~𝑁(µ, 𝜎2) (5)

4.3. Distribution of 𝐓𝐢𝐧𝐭

If viewing Tint as a random variable, we observe that it

has a skewed distribution. The reason is as follows. First,

when sharing a GPS track, people are more likely to

upload GPS data of the near past than the distant past. For

instance, users are more likely to upload a GPS track of

today than that of months ago. Second, people do need

some time to transfer the track data from GPS device to a

website. The distribution of 𝑇𝑖𝑛𝑡 , therefore, should be a

combination of the two aforementioned effects.

Although we cannot perform statistical analysis on the

large-scale GPS tracks from existing online applications

directly, as shown in Figure 5, the distribution of Tint can

be inferred from our analysis on users’ upload behavior on

Flickr. The data is summarized from 57,243 images which

were uploaded by different users from July 1st, 2007 to

November 8th, 2007. In Figure 5, the solid line represents

our analysis of Flickr data. The horizontal axis denotes the

time span between the images’ taken time and uploaded

time.

Figure 5. Interval Distribution

However, since the smallest time unit maintained by

Flickr is day, the probability of different hours within a

day cannot be inferred from statistical evidence.

Intuitively, if we look into the hours in the first day, there

must be a time gap between the end time of GPS track and

the time it is uploaded onto an online sharing application.

Thus we append the broken line showing the distribution

of probability in the first day. We assume that users’

motivation of uploading GPS tracks varies in a way

similar to radio signal transmitting in propagation

environment. i.e., Tint follows Rayleigh distribution.

𝑇𝑖𝑛𝑡 ~ 𝑅𝑎𝑦𝑙𝑒𝑖𝑔ℎ 𝜆 (6)

4.4. Generating Synthetic data

Given the information above, user behavior of

uploading GPS tracks can be simulated by five steps:

1. Generate a series of 𝑇𝑢𝑝 using Poisson process.

2. Generate 𝑇𝑖𝑛𝑡 by Rayleigh distribution, and deduce

𝑇𝑒 by using the transform of equation (1).

 𝑇𝑒 = 𝑇𝑢𝑝 − 𝑇𝑖𝑛𝑡

3. Generate 𝑇𝑑𝑢𝑟 by normal distribution.

4. Generate Ts by using the transform of equation (2)

𝑇𝑠 = 𝑇𝑒 − 𝑇𝑑𝑢𝑟

5. Using Ts and Te as the first and last time stamp, we

can generate all GPS points of the track with GSTD

method [20].

5. Index design

5.1 Overall Structure

Similar to [17, 19], we divide the space into disjoint

cells that cover the whole spatial region, and then

maintain a temporal index for each spatial cell, as

illustrated in Figure 6. The whole spatial region can be

partitioned into uniform cells using grid based indexing

method or uneven grid using quad-tree indexing method.

Figure 6. Overall Structure and Track Segmentation

Each uploaded GPS track is assigned a unique trackID

when it enters the system. In order to insert a track into the

index, we first partition the track into segments by spatial

grids. Then each segment is inserted into the temporal

index of corresponding spatial grid.

To execute a query, first we retrieve the spatial grids

that overlap with query’s spatial predicate, and a candidate

cell list is produced. Then for each cell in candidate cell

0

0.05

0.1

0.15

0.2

0.25

5 10 15 20 25 30 35 40 45 50 55 60

P
ro

b
a
b

il
it

y

Duration of GPS track (Minutes)

0

0.1

0.2

0.3

0.4

0.5

0.6

0 1 2 3 4 5 6 7 8 22 23 24 25 26

P
ro

b
a
b

il
it

y

Interval between date image uploaded and date image taken (day)

Spatial index

Temporal

index

Segment 1 Segment 2 Segment 3

track

list, its local temporal index is searched to find tracks that

intersect the temporal predicate and trackIDs are returned.

Finally, trackIDs from different cells are merged to

remove duplicates and we get the final result.

While the overall insertion and query operations are

similar to previous index structures [17, 18], the major

difference lies in temporal index, which is named

“Compressed Start End Tree” (CSE-tree). Further detail of

local temporal index is explicated in the sections below.

5.2. CSE-tree

CSE-tree is essentially a two-dimensional index

structure for temporal index of each spatial grid. After a

track is partitioned into segments by spatial grids, each

segment is inserted into corresponding temporal index, i.e.,

CSE-tree of the spatial grid. In a two-dimensional plane

where the horizontal coordinate denotes Ts and the

vertical coordinate denotes Te, a track segment can be

represented by a point on the plane.

The overall structure of a CSE-tree is illustrated in

Figure 7. Since Te must be greater than the Ts, all points

presenting a segment fall in the upper left part of the plane.

All points are divided into several groups by Te. For each

group, a Start Time Index is built to index points within

the group. For all groups, one End Time Index is built to

index different groups.

The End Time Index is implemented as a B+ tree for

indexing <key, value> pair. The key is the numerical

value of the dividing lines of different groups, like t0, t1, t2,

t3, …, ti and ti+1. The value is a pointer to Start Time Index

like S0, S1 and Si. The partition criterion is determined in

insertion process. For an index entry in End Time Index

whose key is ti, it should cover all track segments whose

Te is between [ti, ti+1) in the spatial grid and the entry’s

value is the pointer to Start Time Index Si.

The Start Time Index is also organized as a B+ tree

structure indexing <key, value> pair. The key is Ts of the

segment and value is < Te, trackID> pair of the segment.

Ts

End

time

index
ti

t2

t1

t0

S1

S0

ti+1

Si index points

with

Ti <= Te < Ti+1

Te

…...

Start Time Index

Si

Figure 7. CSE-tree structure

Three operations including insertion, search, and

compression are designed for CSE-tree. The insertion

operation is performed to add new GPS track segments

into CSE-tree while the search operation is implemented

to handle temporal queries on CSE-tree. The compression

operation is based on our observation that insertion into

the index is not distributed evenly, as we have discussed

in Section 4.3. Therefore, we can use different index

structures for the frequently updated and rarely updated

part of data. The compression operation is called when the

part of data’s update frequency drops below a threshold to

make the conversion between different index structures.

5.2.1. Insertion One important parameter in insertion

process is Partition Threshold T. A dividing line in end

time dimension is drawn as soon as the number of items in

the last Start Time Index reaches T. Upon the insertion of

a new track segment, CSE-tree first looks up the End Time

Index with Te to find the largest key smaller than Te. The

corresponding value of the <key, value> pair is the

pointer to a Start Time Index. Then the Start Time Index is

updated using key Ts and value < Te, trackID>. Finally the

last Start Time Index is checked to see if the number of

items in this index exceeds Partition Threshold T. If so, a

routine is called to create a new Start Time Index and

insert a <key, value> pair into End Time Index where key

is the maximum Tend in the last Start Time Index and

value is the pointer to the newly created Start Time Index.

Figure 8 gives a brief illustration of the insertion

process. Assume that Partition Threshold T equals three.

When the first two points (P1, P2) in the last division is

inserted, no partition line is drawn (Figure 8(a)). When the

third point comes (P3), after it is inserted into

corresponding Start Time Index, the item number in the

last Start Time Index reaches Partition Threshold T, so a

new dividing line is drawn and a new Start Time Index is

created. The numerical value of the dividing line equals

the maximum value of Te in the last Start Time Index (P2’s

Te). We then insert End Time Index with a <key, value>

pair whose key is the value of P2’s Te and value is pointer

to newly created Start Time Index. (Figure 8(b))

Ts

Te

P1

P2

Ts

Te

P1

P2

P3

 (a) Before inserting P3 (b) After inserting P3

Figure 8. An example of CSE-tree insertion

The insertion algorithm can be further optimized by an

analysis of distribution of insertion frequency. In Figure 9,

due to the Rayleigh distribution of Tint, the portion of data

whose end time is near “now” is updated more frequently.

Therefore, we can first check up the last few Start Time

Indexes like Sj+1 and Sj. If the new insertion can be inserted

into the last few Start Time Indexes, then we can avoid the

cost of searching the entire End Time Index.

now

now
insert

frequency

Sj+1

Sj

...

Si

Ts

Te

Figure 9. CSE-tree insertion frequency

5.2.2 Search In a CSE-tree, in order to find all GPS tracks

that intersect with the temporal predicate of a query, we

need to perform the three steps. First, we look up the End

Time Index with 𝑇𝑖𝑚𝑒𝑚𝑖𝑛 and we can get Start Time

Indexes that contain tracks whose end time is greater than

Timemin. In Figure 10, Given query <𝑇𝑖𝑚𝑒𝑚𝑖𝑛 , 𝑇𝑖𝑚𝑒𝑚𝑎𝑥 >,

the first step should return Tree1, Tree2 and Tree3.

Second, we use 𝑇𝑖𝑚𝑒𝑚𝑎𝑥 to look up each Start Time Index

to find the tracks whose start time is less than 𝑇𝑖𝑚𝑒𝑚𝑎𝑥 .

Finally, we filter out undesired tracks in the Start Time

Indexes that intersect with Timemin. In Figure 10, Tree1

contains some tracks whose 𝑇𝑒 is less than 𝑇𝑖𝑚𝑒𝑚𝑖𝑛 , and

they are filtered out before returning results to the users.

Timemax

Timemin

Tree0

Tree1

Tree2

t0

t1

t2

t3

Ts

Te

Tree3

Figure 10. CSE-tree search operation

5.2.3 CSE-tree compression In the previous discussion,

we assume that Start Time Index and End Time Index are

implemented using B+ tree. However, as data accumulate,

the tree structure would grow larger and larger. Although

B+ tree performs well for frequent updates, this advantage

is quite unnecessary for archive data. According to the

analysis of user behavior in Section 4, though uploading a

GPS track a long time ago is possible, its frequency is low

and higher insertion cost for these archive data would not

affect overall performance significantly. Hence the index

for archive data only needs to guarantee speedy response

to query, but not insertion. Therefore, the B+ tree index

can be replaced by a simple dynamic array structure for

archive data that is uploaded long time ago and the index

size can be greatly reduced. An illustration is given in the

Figure 9. The current time “now” is shown as a broken

line that is constantly moving as time elapses. Si, Sj and

Sj+1 represent three Start Time Indexes. Sj and Sj+1 have a

higher frequency of being updated and Si have a lower

frequency. Therefore, Sj and Sj+1 may be organized using

B+ trees while Si uses a sorted dynamic array.

The operation that transforms a B+ tree into a dynamic

array is defined as “compression”. It is implemented by

reading all data from B+ tree leaves and creating a new

sorted dynamic array containing all these data. Since this

compression operation is time-consuming, it is carried out

in an off-line manner to ensure high index performance.

We also maintain a “time flag” for each Start Time Index,

recording the last time the corresponding Start Time Index

is updated. The system checks these time flags

periodically. When the difference between the current

time and the time of last update exceeds a threshold, i.e.,

the Start Time Index has not been updated for a long time,

we assume that future update on this index is also unlikely,

and we can call the “compress” routine and transform a

B+ tree index to a dynamic array.

6. Experiment

Since spatial grid partition is already thoroughly

discussed and compared to other index structures such as

3DR-tree [17, 18], we only present the experiment results

concerning our temporal index and compare CSE-tree to

the R-tree [17] and SEB-tree [18].

6.1. Settings

The experiments are carried out on a PC with 3.00 GHz

Intel Pentium 4 CPU, Windows XP SP2 platform, and

0.99 GB RAM. The inner node size of B+ tree is 64 byte,

which is the cache line size of Pentium 4 CPU. According

to [21], making the inner node size equal to the size of

CPU cache line can increase B+ tree cache hits and

decrease cache miss, thus improving the overall

performance. Leaf size of B+ tree is 1024 byte.

Test data is generated following the steps in Section

4.4. We use synthetic data instead of real data because

data in GeoLife is collected in our user study and

uploaded according to a systematic plan, thus cannot

reflect arrival process of new upload in real world. The

time unit hereafter is hour. For the Poisson process that

simulates arrival of uploaded tracks, we used intensity

values of 100, 300, 500 and 700, meaning there are 100,

300, 500 and 700 uploaded tracks to the website on

average. The total duration of the process is 2400,

meaning 2400 hours, or 100 days. The parameter of

Rayleigh distribution for Tint is 1.07. The mean of 𝑇𝑑𝑢𝑟 is

0.42 and variance is 0.98. All these parameters are

estimated from the result of our user study in Section 3.1.

6.2. Results

Our indexing scheme is compared and evaluated from

three aspects, namely, index size, average number of node

access in one insertion and average number of node access

in one query. The horizontal axis of the following figures

denotes the intensity of arrival of uploaded tracks.

6.2.1. Index Size We insert all synthetic data into the R-

tree, SEB-tree and CSE-tree. Index size is shown below.

Figure 11. Index size comparison

The result shows that R-tree has the largest index size,

because overlapping areas between nodes introduce

excessive redundancy. SEB-tree takes up less index size

than R-tree since the area covered by node are mutually

exclusive, and therefore no overlapping between nodes

exists. CSE-tree further reduces index size by converting

a B+ tree into a dynamic array when update of the

corresponding portion of data becomes less frequent.

6.2.2. Insertion Performance The number of node access

for one insertion is illustrated in Figure 12. We count the

average number of node access of 500 insertions, after the

index is built with data in Section 6.2.1. R-tree has the

largest number of node access, because R-tree is balanced

tree, but distribution of new insertions is skewed. As a

result, much inner node split is incurred and the overall

performance deteriorates. CSE-tree requires less node

access in one insertion than SEB-tree due to the

optimization mechanism discussed in Section 5.2.1.

Figure 12. Mean number of node access in one insertion

As shown in Figure 13, the portion of data surrounded

by the broken line has greater frequency of new insertions.

For CSE-tree, the majority of new insertions will happen

to the last few Start Time Indexes, thus we can avoid

looking up End Time Index by simple checking the last

few Start Time Indexes. This optimization process

mentioned in Section 5.2.1 significantly reduces number

of node access incurred in the insertion. The insertion

algorithm of SEB-tree, however, has to first find the

vertical column, and then searches within the vertical

column, thus results in more node access.

Ts

Te

Ts

Te

(a) CSE-tree (b) SEB-tree

Figure 13. Comparison of insertion

6.2.3. Query Performance The selectivity of a temporal

query is defined as the fraction of the total temporal span

covered by the query. In our experiment, the total

temporal span is 2400 hours. So a query with selectivity

0.1% spans 2.4 hours. We generated totally 30,000 queries,

of which one third has selectivity 0.01%, one third has 0.1%

and one third has 1%. The queries are evenly distributed

over the whole temporal span. The mean number of node

access is illustrated in Figure 14. Our results show that R-

tree has the worst performance because if inner nodes

have overlapping areas, the R-tree has to search all

candidates respectively. Both CSE-tree and SEB-tree

require much less node access than R-tree. CSE-tree

requires slightly more node access than SEB-tree due to

compression operation to CSE-tree. In a compression

operation, a less frequently updated B+ tree is replaced by

a dynamic array in order to save index space, but a binary

search on a dynamic array incurs slightly more node

access than search on a B+ tree.

Figure 14. Mean number of node access in one query

6.2.4. Partition Threshold T of CSE-Tree Defined in

Section 5.2.1, Partition Threshold T of CSE-Tree

determines the time a new Start Time Index is created

during insertion process. We have tested the effect of

Partition Threshold T on the performance of CSE-Tree.

Intensity of upload arrival rate is 500. Generation of data

and query is the same with Section 6.2.3. The

experimental results are shown in Figure 15. The query

time in Figure 15 (b) is the total time of 30000 queries.

Insertion time is more or less the same for different T

values, thus omitted for the sake of concision.

Our first observation is that index size increases as T

gets larger. The reason is that larger T value has two

effects on the size of CSE-tree. First, larger T means

larger size of each Start Time Index. Second, the number

of Start Time Index will be smaller. But the first effect is

more important to the overall size of CSE-tree.

0

10

20

30

40

50

60

70

80

100 300 500 700

in
d

e
x

si
ze

 (
M

B
)

intensity of upload

R-tree

SEB-tree

CSE-tree

0

20

40

60

80

100

120

140

100 300 500 700

n
u

m
b

e
r

o
f

n
o

d
e

 a
cc

e
ss

intensity of upload

R-tree

SEB-tree

CSE-tree

0

200

400

600

800

1000

1200

1400

1600

100 300 500 700

n
u

m
b

e
r

o
f

n
o

d
e

 a
cc

e
ss

intensity of upload

R-tree

SEB-tree

CSE-tree

Another observation is that search time first drops then

increases as T value grows. Our reason is that when T is

small, there would be a greater number of Start Time

Indexes, and the search process has to access more Start

Time Indexes to find the desired result. However, if T is

too large, there are more tracks in each Start Time Index.

As a result, the time cost of search within each Start Time

Index would be high. Also, for the Start Time Index that

intersect with a query’s 𝑇𝑖𝑚𝑒𝑚𝑖𝑛 , it would take more time

to filter out undesired segment. Take the query in Figure

10 for instance, if Partition Threshold T increases, Tree1

will becomes larger, and it will consume more time to

search within Tree1 and to filter out tracks whose 𝑇𝑒 is

less than 𝑇𝑖𝑚𝑒𝑚𝑖𝑛 . The overall query performance of

CSE-tree is decided by the two above-mentioned effects.

When T is small, the former effect is greater, but the later

one becomes dominant when T value exceeds 15000.

(a) Index size (b) Search

Figure 15. Effect of Partition Threshold T

7. Conclusion

In this paper, motivated by the observation on user

behavior of uploading GPS tracks onto Web applications,

we proposed a flexible spatio-temporal indexing scheme,

CSE-tree, to help system effectively manage large volume

of GPS tracks and provide fast retrieval service for Web

users. A model that simulates such user behavior has been

proposed based on stochastic process theory as well as

statistical analysis on the data collection uploaded by

users in real world. Over the synthetic data generated by

the model, CSE-tree is compared with SEB-tree and R-

tree. Experiments show that CSE-tree incurs slightly more

node access than SEB-tree for query but requires less

index size and cost less node access for insertion. CSE-

tree also requires less index size than R-tree and cost less

node access for both insertion and query than R-tree.

In the future, we would further investigate how to

make a smooth transition between a B+ tree, which has

faster insertion but requires more index size, and a sorted

dynamic array, which has slower insertion but requires

less index size. This would enable us to improve our

compression algorithm with a series of intermediate stages

between a B+ tree and a dynamic array, varying according

to the frequency of new updates.

8. Reference

[1] Y. Zheng, et al, Learning Transportation Mode from Raw

GPS Data for Geographic Application on the Web. In Proc.

of WWW’08, Beijing, China. 2008

[2] Mountain Bike. http://www.mtb-

tracks.co.uk/northyorkmoors/default.aspx

[3] Bikely: http://www.bikely.com/

[4] GPS Track route exchange forum:

http://www.gpsxchange.com/

[5] GPS sharing: http://gpssharing.com/

[6] SlamXR. http://www.msslam.com/slamxr/slamxr.htm

[7] Wikiwalki. http://www.wikiwalki.com

[8] H. Marios, G. Kollios, V. J. Tsotras, D. Gunopulos.

Indexing Spatialtemporal Archives. The VLDB Journal,

15(2): 143-164, 2006

[9] G. Kollios, V. J. Tsotras, D. Gunopulos, A. Delis, M.

Hadjieleftheriou. Indexing animated objects using

spatiotemporal access methods. IEEE Trans. Knowl. Data

Eng. 13(4), 758-777(2001)

[10] C. Kolovson, M. Stonebraker. Segment Indexes: Dynamic

indexing techniques for multi-dimensional interval data. In:

Proceedings of the ACM SIGMOD Conference on

Management of Data, pp. 138–147 (1991)

[11] A. Kumar, V. J. Tsotras, C. Faloutsos. Designing access

methods for bitemporal databases. IEEE Trans. Knowl.

Data Eng. 10(1), 1-20 (1998)

[12] B. Salzberg, V. J. Tsotras. Comparison of access methods

for time-evolving data. Commun. ACM 31(2), 158–221

(1999)

[13] Y. Theodoridis, T. Sellis, A. Papadopoulos, Y.

Manolopoulos. Specifications for efficient indexing in

spatiotemporal databases. In: Proceedings of the

International Conference on Scientific and Statistical

Database Management, pp. 123–132 (1998)

[14] X. Xu, J. Han, and W. Lu. RT-Tree: An Improved R-Tree

Indexing Structure for Temporal Spatial Databases. In Proc.

of the Intl. Symp. on Spatial Data Handling, SDH, pages

1040–1049, July 1990.

[15] M. A. Nascimento, J. R. O. Silva. Towards historical R-

trees. In Proc. of the ACM Symp. on Applied Computing,

SAC, pages 235–240, Feb. 1998.

[16] Y. Tao, D. Papadias. MV3R-Tree: A spatio-temporal

access method for timestamp and interval queries. In:

Proceedings of the International Conference on Very Large

Data Bases, pp. 431–440(2001)

[17] V. P. Chakka, A. Everspaugh, and J. M. Patel. Indexing

Large Trajectory Data Sets with SETI. In Proc. of the Conf.

on Innovative Data Systems Research(CIDR), 2003

[18] Z. Song, N. Roussopoulos. SEB-tree: An Approach to

Index Continuously Moving Objects. Proceedings of

International Conference of Mobile Data Management,

pages 340–344, Jan. 2003.

[19] P. Zhou et al. Close Pair Queries in Moving Object

Databases. Proceedings of ACM GIS, page 2-11, 2005

[20] Y.Theodoridis, J. R. O. Silva, M. A. Nascimento. On the

Generation of Spatiotemporal Datasets. Advances in Spatial

Databases, 6th International Symposium, Lecture Notes in

Computer Science, Springer, page 147–164, 1999

[21] J. Rao, K. A. Ross, Making B+-tree Cache Sensitive in

Main Memory. Proceedings of ACM SIGMOD Conference,

2000, pp. 475-486.

11.3
11.4
11.5
11.6
11.7
11.8
11.9

12
12.1

5000 10000 15000 20000 25000

In
d

ex
 S

iz
e

(
M

B
)

Partition Threshold T

0

10

20

30

40

5000 10000 15000 20000 25000

T
im

e
(

se
co

n
d

)

Partition Threshold T

