XFabric: A Reconfigurable In-Rack Network for Rack-Scale Computers

Sergey Legtchenko Nicholas Chen
Microsoft Research Microsoft Research
Hugh Williams
Microsoft Research
Abstract

Rack-scale computers are dense clusters with hundreds
of micro-servers per rack. Designed for data center
workloads, they can have significant power, cost and per-
formance benefits over current racks. The rack network
can be distributed, with small packet switches embed-
ded on each processor as part of a system-on-chip (SoC)
design. Ingress/egress traffic is forwarded by SoCs that
have direct uplinks to the data center. Such fabrics are
not fully provisioned and the chosen topology and uplink
placement impacts performance for different workloads.

XFabric is a rack-scale network that reconfigures the
topology and uplink placement using a circuit-switched
physical layer over which SoCs perform packet switch-
ing. To satisfy tight power and space requirements in the
rack, XFabric does not use a single large circuit switch,
instead relying on a set of independent smaller circuit
switches. This introduces partial reconfigurability, as
some ports in the rack cannot be connected by a cir-
cuit. XFabric optimizes the physical topology and man-
ages uplinks, efficiently coping with partial reconfigura-
bility. It significantly outperforms static topologies and
has a performance similar to fully reconfigurable fabrics.
We demonstrate the benefits of XFabric using flow-based
simulations and a prototype built with electrical cross-
point switch ASICs.

1 Introduction

There is a trend in large-scale data centers towards higher
per-rack server density. While a typical compute rack to-
day is composed of 40 to 50 blade servers interconnected
through a Top of Rack (ToR) switch, hardware ven-
dors increasingly propose energy-efficient, high density
micro-servers, designed for data center workloads [[17}
27,35]. Rack-scale computers, such as AMD SeaMi-
cro [44]], HP Moonshot [1]] and Boston Viridis [8]] are up

* while on internship from UCSB.

Daniel Cletheroe
Microsoft Research

Xiaohan Zhao*
Microsoft Research

Antony Rowstron
Microsoft Research

to rack-scale high density clusters of micro-servers with
tight integration of the network, storage and compute.
For example, the Boston Viridis supports hundreds of
SoCs in one standard data center rack. Rack-scale com-
puters are optimized for commodity data center work-
loads and have significant power, cost and performance
benefits over traditional racks [4}[21]/22,/38|] and attract
increasing research interest [5/6} 14,/ 16.{39/42].

Higher server density requires a redesign of the in-rack
network. A fully provisioned 40 Gbps network with 300
SoCs would require a ToR switch with 12 Tbps of bisec-
tion bandwidth within a rack enclosure which imposes
power, cooling and physical space constraints. For ex-
ample, the peak power draw (for power, compute, stor-
age and networking) is limited by the power distribution
used in data centers and the amount of heat that the in-
rack cooling is able to dissipate and is around 9-16 kW
for a typical high density rack today [3]]. To address these
challenges, some proposed designs replace a ToR switch
by a “distributed fabric” where the packets forwarding is
done by the servers. If the system uses SoCs then a small
packet switch can be embedded on the server’s SoC. For
example, Boston Viridis uses the Calxeda EnergyCore
SoC which has an embedded packet switch supporting
eight 10 Gbps lanes. Each SoC is connected to a subset
of SoCs in the rack, forming a multi-hop, bounded de-
gree topology, e.g. mesh or torus. Each SoC forwards
in-rack traffic from other SoCs and ingress/egress traffic
is tunneled through a set of SoCs that have direct uplinks
to the data center network.

Distributed fabrics are cost effective, but lack the flex-
ibility of a fully provisioned network. Bisection band-
width and end-to-end latency in the rack are a function
of the network topology, and the best topology depends
on the expected workload. Ingress/egress traffic is for-
warded through multiple hops in the rack to an uplink,
interfering with in-rack traffic. Lack of flexibility leads
to suboptimal performance and complicates the design.
For example, the HP Moonshot has three independent

networks with different topologies within the same en-
closure: a radial fabric for ingress/egress traffic, and
multi-hop storage and 2D torus fabrics for in-rack traffic.

XFabric is a rack-scale network that maintains the
benefits of a distributed fabric but allows workload-
specific reconfigurability of the topology and uplinks.
XFabric is organized as a packet-switched network run-
ning over a physical circuit-switched network that allows
the physical topology of the fabric to be dynamically re-
configured. This could be achieved by using a single
large circuit switch that would provide full reconfigura-
bility, so any two SoC ports in the rack can be directly
connected. However, XFabric needs to operate within
the space and power limitations of the rack.

To achieve this, XFabric uses partial reconfigurabil-
ity. It partitions the physical layer into a set of smaller
independent circuit switches such that each SoC has a
port attached to each partition. Packets can be routed
between the partitions by the packet switches embedded
in the SoCs. The partitioning significantly reduces the
circuit switch port requirements enabling a single cross-
point switch ASIC to be used per partition. This makes
XFabric deployable in a rack at reasonable cost.

However, the challenge is that the fabric is no longer
fully reconfigurable, as SoC ports attached to different
crosspoint switch ASICs cannot be connected directly.
XFabric uses a novel topology generation algorithm that
is optimized to generate a topology and determine which
circuits should be established per partition. It also gen-
erates the appropriate forwarding tables for each SoC
packet switch. The algorithm is efficient, and XFabric
can instantiate topologies frequently, e.g. every second
at a scale of hundreds of SoCs, if required. Additionally,
it is able to place uplinks to the data center enabling them
to be efficiently reconfigured.

XFabric uses insights from extensive work on re-
configurable data center-scale networks that enable dy-
namically reconfigurable network links between ToR
switches [13},120,123,124,/41,/47]. Similar to prior work,
e.g. OSA [13]] and FireFly [24]], the topology is recon-
figured at the physical layer, and network traffic is for-
warded through multiple hops over the reconfigurable
topology. XFabric differs in that it has been designed
to operate at a rack-scale with SoCs that have embedded
packet switches with multiple ports. It neither relies on
wireless technology that cannot be used in the rack, nor
requires a single large circuit switch. Designed for cost-
effective in-rack deployments, XFabric sacrifices full re-
configurability for partial reconfigurability and demon-
strates that this still provides good performance.

We have a prototype cluster, which uses 27 servers em-
ulating SoCs and an XFabric network built with custom
32-port switches using low cost commodity crosspoint
switch ASICs. We evaluate XFabric using this prototype

and a flow-based simulator at larger scale. The results
show that under realistic workload assumptions, the per-
formance of XFabric is up to six times better than a static
3D-Torus topology at rack scale. We also show it pro-
vides comparable performance to a fully reconfigurable
network while consuming five times less power.

The rest of the paper is organized as follows. Sec.
motivates our design and Sec. [3| provides an overview
of XFabric. Sec. [details the algorithms used by the
controller. Sec. [5] describes our current implementation
of XFabric. Sec.[6|evaluates the performance of XFabric.
Finally, Sec.[7)and 8 present related work and conclude.

2 Partial Reconfigurability

Reconfigurable networks have been traditionally pro-
posed at data center scale [[13,20123L[24L141,/47]. In these
networks, each ToR has d reconfigurable ports and the
set of d ToRs to which each ToR is directly connected is
dynamically adapted to match the traffic demand. This
has been implemented either with wireless (e.g. RF-
based or free-space optics) [23}24] or Optical Circuit
Switches (OCS) [13,[20,41,/47]. In the latter case, all
d ports of all the n ToRs are connected to the same OCS
that acts as a circuit switch with n x d ports: any port
can be connected to any port of any ToR and the network
topology is fully reconfigurable.

XFabric is focused on providing reconfigurability at
the rack-scale, which has unique challenges because of
the additional constraints due to physical space, power
and cooling limitations. At the densities that can po-
tentially be achieved using SoCs, the number of ports is
high. If the switch functionality is distributed across the
SoCs and a distributed network fabric is used, the num-
ber of ports required will be even higher. For example,
a fully reconfigurable distributed fabric with 256 SoCs
and 6 ports per SoC for in-rack communication requires
1,536 ports. This port count is too high to use a sin-
gle crosspoint switch ASIC. It is possible to build a cir-
cuit switch implemented as a folded Clos network with
multiple crosspoint switches, however, a folded Clos to
support n X d ports requires 5 X n x d ports to be provi-
sioned [|13]], which, for this example setup would require
5 %256 x 6 = 17,680 ports.

Fitting this in the rack can be challenging, but pow-
ering and cooling it will be hard. The per-port power
draw ranges from 0.14 W for a typical optical circuit
switch [11] to 0.28 W for a 10 Gbps electrical circuit
switch [12]]. The switches would consume between 1.3
to 2.6 kW, representing a significant fraction of the power
provisioned for a high density rack today [3]]. Given that
as we increase density the compute and storage power re-
quirements will also increase we need to manage power

Internal
crosspoint

Controller Uplink crosspoint
Generate L
topology Control —
=Eo- —‘\
' p
Estimate Configure Uplinks
demand Data plane) ¢
0

data center

Chassis {

Figure 1: XFabric architecture, d =6,/ =4 and ¢ = 6.

resources carefully. A fully reconfigurable fabric is prob-
ably not acceptable.

In the rest of the paper, we refer to a circuit switch
that is of a scale that can be implemented using a single
crosspoint switch ASIC as simply a crosspoint switch,
while one that is implemented as a folded Clos network
of multiple crosspoint switches as a Clos circuit switch.

XFabric exploits the observation that full reconfigura-
bility is not necessary. XFabric provides a partially re-
configurable fabric in which each SoC port can be con-
nected to a subset of the SoC ports in the rack. XFabric
has d independent physical networks each with a single
circuit switch. Each SoC has a port attached to each of
the d networks. This means that each SoC port can be
connected to any other SoC. Hence, for 256 SoCs with 6
ports per SoC we would need 6 crosspoint switches each
with 256 ports. Currently, commodity 160-port electrical
crosspoint switches capable of switching 10 Gbps links
are available [[12]]. We believe that a single crosspoint
switch ASIC could be built to support approximately 350
ports. This is compared to requiring 7,680 ports for a
full folded Clos circuit switch at this scale, requiring 22
crosspoint switch ASICs at 350 ports per ASIC.

Partial reconfigurability performs better in terms of
cost and power. In terms of power, if we used a 256-
port electrical crosspoint switch then for 256 SoCs with
six 10 Gbps ports, XFabric would require 0.4 kW versus
a fully reconfigurable fabric using a folded Clos circuit
switch that would require 2.2 kW. In terms of cost, the
per port cost is approximately $3, hence XFabric would
have a cost of about $4.6K, while a fully reconfigurable
fabric would cost $23K.

Partial reconfigurability limits the physical network
topologies that can be instantiated, which potentially
impacts performance. In the next section we describe
XFabric in detail, and in Section [|empirically show that
the impact on performance is minimal.

3 XFabric Architecture Overview

The XFabric architecture combines a packet-switched
layer 2 operating over a circuit-switched layer 1. It is
assumed that each SoC has an embedded packet switch
and exposes d ports for internal rack communication e.g.
d = 6 [46]. Each of these ports is reconfigurable and is
connected to a crosspoint switch called an internal cross-
point. Figure[I|shows the architecture, with d = 6. There
are six internal crosspoints, and we highlight for SoCs S
and S, the links to each of the six internal crosspoints,
which could be done on printed circuit board (PCB).
Each rack has [/ uplinks from the rack to the data cen-
ter network to carry traffic for destinations outside the
rack. The value of [is a function of the expected use for
the rack; the Boston Viridis chassis has four 10 Gbps up-
links for 48 SoCs [[8]. Each SoC has one uplink port to
handle ingress/egress traffic to destinations outside the
rack in addition to the d internal rack communication
ports. Each SoC uplink port is connected to an uplink
crosspoint which has a set of ports connected to the data
center network. For example, in Figure [T]there are 4 up-
links. In operation, the SoCs that do not have their uplink
port connected to one of the / external links tunnel their
ingress/egress traffic to a SoC which is connected.
XFabric ensures that all d ports on each of the n SoCs
are connected to other SoCs and all the / uplinks are con-
nected to SoC uplink ports. We assume that each cross-
point has s ports, and that s = n. Due to the fact that
a crosspoint with n SoCs connected can establish n/2
circuits, we assume that n is even. While our design is
not fundamentally restricted to electrical circuit switch-
ing, this technology offers several benefits. Crosspoint
ASICs are commodity low cost components [12,/50,/54]
which are compact and have a low reconfiguration la-
tency. For example, the M21605 crosspoint switch ASIC
has 160 12.5 Gbps ports, is available in a 45 mm pack-
age and has a maximum reconfiguration latency of only
70 ns [12]. Uplink crosspoints connect SoCs’ uplink
ports directly to the data center network which requires
the uplink crosspoint to support the PHY used outside
the rack. The d internal ports can use the same or dif-
ferent PHY depending on the SoC implementation. It
could be standard, e.g. backplane Ethernet [53] or pro-
prietary [40], for example to reduce power consumption.
At layer 2, packets are forwarded by the SoCs over
the instantiated physical topology using multi-hop rout-
ing. Packet switching operates independently from cir-
cuit switching, i.e. circuits are not established on a per-
packet or per-flow basis. The physical topology recon-
figuration is performed every interval ¢, where ¢ is in the
order of seconds. This removes the XFabric reconfigu-
ration logic from the data path, simplifying the design
and is motivated by the observation that circuits only

need to be reconfigured when the workload traffic pattern
changes sufficiently to make reconfiguration beneficial.
Layer 2 packet switching over layer 1 circuit switching
forms the data plane of XFabric.

XFabric is managed by an in-rack controller that re-
ceives from each SoC estimates of its traffic demand to
other SoCs and the uplink. Figure [I] shows the work-
flow of the controller. Periodically, it aggregates the in-
formation received from the SoCs into a rack-scale de-
mand matrix and computes a new topology optimized for
the demand. It then instantiates the topology in the data
plane by establishing new circuits at the physical layer
and updates the layer 2 forwarding tables. We assume
that the packet switches on the SoCs support function-
ality to allow them to program their forwarding tables,
e.g. OpenFlow [40]. The topology generation algorithm
is lightweight and operates within the limitations im-
posed by the partially reconfigurable fabric, only produc-
ing topologies that can be instantiated by the network.

The SoC on which the controller executes needs to
be connected to a micro-controller associated with each
crosspoint ASIC through a control plane shown in dotted
lines in Figure[I] Our current prototype supports Ether-
net and USB control planes and we assume that a small
fraction (e.g. 3) have their uplink ports connected to this
network rather than an uplink crosspoint. The controller
is designed to use only soft state and the reconfiguration
process is resilient to the failure of the controller. If the
controller fails then the network will be left in a consis-
tent state and the controller can be started on another SoC
which is connected to the control plane.

4 XFabric Configuration

XFabric needs to determine the mapping of the uplinks to
SoCs and the internal fabric topology. The uplink map-
ping is performed first, because ingress/egress traffic in-
duces load on the internal fabric while routed to the SoCs
with external uplinks. Before describing the uplink map-
ping and internal topology generation algorithms, we de-
scribe how XFabric estimates the traffic demand.

4.1 Traffic Demand Estimation

For internal traffic, each SoC maintains a vector of length
n and records the total number of bytes sent to each SoC
in the rack. For external traffic, the SoC maintains two
values, 7; and T, the total number of bytes sent and re-
ceived, respectively. Periodically, this information is sent
to the controller through the data plane and the counters
are reset, and we call these demand vectors.

The controller maintains two vectors v; and v, of size
n for ingress/egress traffic in which v;[S] is the number
of bytes sent and v, [S] the number of bytes received by

S during the interval. The controller aggregates the de-
mand vectors into an n X n demand matrix, dm, such
that dm|[S, S»] represents a demand weight from S to
S>, maintained using a weighted average.

4.2 Uplink Configuration Algorithm

The uplink configuration selects / SoCs that will be di-
rectly connected to the data center network and to which
other SoCs need to tunnel their external traffic.

Conceptually, the controller partitions the n SoCs in
the rack into [sets and places an uplink on one of the
SoCs in each set. This SoC acts as a gateway to the data
center network for the rest of the SoCs in the set. The
controller aims to balance traffic between uplinks using
the demand vectors v; and v,. Ideally, the aggregate ex-
ternal traffic demand is the same across all sets and for
each set, the uplink is placed on the SoC with heaviest
external traffic demand.

The placement algorithm operates in two stages. First,
for each of the / uplinks, it selects the SoC S that has
the highest demand D, [S] = v;[S] + v,[S] and no uplink
and places the uplink on S. In the second stage, the al-
gorithm determines the sets of SoCs associated to each
uplink. This is done by ordering SoCs without uplinks
by their D, and iteratively assigning the SoC with high-
est demand to the set with the least aggregate demand.
Ordering SoCs by demand ensures that SoCs with high
demand will be fairly balanced across sets. Once all the
SoCs have been assigned, source and destination SoCs
for all external traffic are known. Based on this knowl-
edge, the algorithm builds a traffic matrix dm,, in which
dm,[S1,8,] is the ingress (and dm,[S>,S]] the egress)
traffic demand between a SoC S| and its uplink placed on
S». The algorithm then creates a matrix dm,;; which is a
sum of dm,,; and dm. This matrix is used by the topology
generation algorithm to optimize the in-rack topology to
both internal and external traffic.

4.3 Topology Generation Algorithm

This phase computes a topology optimized for dmy;; by
reducing the hop count between SoCs with high demand.

Forwarding high bandwidth traffic through multiple
hops consumes bandwidth per link and incurs load on
each SoC packet switch it traverses. Lower hop count
thus results in lower link load and less resources spent
on forwarding, improving network goodput [13]]. For la-
tency sensitive traffic, such as in-memory storage using
RDMA [18]], reducing the round trip time is important.
A one hop latency of 1 microsecond versus a four hop
latency of 4 microseconds is significant.

Conceptually, for each pair of SoCs in the rack, the al-
gorithm assigns a weight based on their relative demand.

Input:
socs < SoC_list|n]
dmyy; < demand_matrix
port_map < XbarToSoCPortMapping|c]
Output:
Packet ForwardingTables
CircuitAssignment circuits|c]|

1 topo « Disconnected Topology(socs)
2 SoC_pairs < Order_By_Demand (socs,dmg;)
3 xbar_map <+ To Xbar(SoC_pairs, port_map)
4 while SoC_pairs # @ do
5 partition_count < 0
6 foreach soc in socs do
7 part[soc] = {soc}
8 partition_count <— partition_count + 1
9 foreach pair in SoC_pairs do
10 if part|pair.src] # part|pair.dest] then
1 xbars < xbar_map|pair]
12 xbar < Best_Ranked(xbars,SoC_pairs)
13 xbars|xbar|.Add_Circuit({ pair.src, pair.dest })
14 topo.Add _Undirected_Edge(pair.src, pair.dest)
15 Merge(part|pair.src, part|pair.dest])
16 partition_count = partition_count — 1
17 foreach p in SoC_pairs do
18 if xbar_map.Conflict(p, pair,xbar) then
19 xbar_map|p|.Remove(xbar)
20 if xbar_map|p] = & then
21 xbar_map.Remove(p)
2 SoC_pairs.Remove(p)
23 else if p = pair then
24 | SoC_pairs.Reinsert(p, p.demand)
25 if partition_count = 1 then
26 | break

27 return {ropo.ComputeForwardingTables(), circuits}
Algorithm 1: XFabric topology generation algorithm.

It then iteratively computes disjoint maximum weight
spanning trees until all SoC ports in the rack have been
assigned. The resulting topology is a union of maximum
weight spanning trees and has three key properties. First,
by construction it is fully connected, i.e., there exists a
path between each pair of SoCs. Second, it maximizes
resource usage as all ports are assigned. Finally, as span-
ning trees are of maximum weight, SoC pairs with heavy
traffic demand are satisfied in priority. A key challenge is
to support partial reconfigurability and to do this within
the constraints imposed by the physical topology.
Algorithm [1| describes the process in detail. The al-
gorithm inputs are a list of SoCs and crosspoint ports
to which each is attached (socs and port_map, which
are initialized at boot time) and the demand matrix
dmyy;. It starts by initializing three data structures: topo,
SoC_pairs and xbar_map (lines 1 to 3). The first is a
fully disconnected topology in which each SoC in the
rack is represented by a vertex and to which edges will be
greedily added. We define the demand between a pair of
SoCs {S],Sz} as D{51 S = dmy; [51] [SQ} +dmyg; [Sz} [Sl]
and SoC_pairs is a list of all pairs of SoCs that can be
connected through each crosspoint, ordered by their de-
mands in descending order (highest first). The last is a

dictionary that associates each pair of SoCs to a set of
crosspoints through which they can be connected. Ini-
tially, each pair of SoCs can be connected through any of
the d crosspoints.

The main loop (lines 4 to 26) performs a sequence of
spanning tree computations and stops when no more SoC
pairs can be connected (line 4). The maximum weight
computation is based on Kruskal’s algorithm [32]: it
starts with a set of partitions, one for each SoC (lines 5 to
8), and greedily reduces the number of partitions by con-
necting the two SoCs that are not in the same partition
and have the highest demand (line 10). This results in
two partitions being merged as their SoCs are no longer
disconnected (lines 15-16). If only one partition remains,
all SoCs are connected by a maximum weight spanning
tree (line 25-26).

In order to connect a pair of SoCs, the algorithm se-
lects one of the crosspoints through which the connec-
tion can be made (lines 11-12). Crossbar ports cannot
be reused for multiple circuits simultaneously, therefore
connecting a pair of SoCs {S;, S»} through a crosspoint
C implies that S or S» can no longer be connected to
other SoCs through C. It means that establishing a circuit
in C negatively impacts its ability to satisfy remaining de-
mand. In order to select a crosspoint in which connecting
S1 to Sy has the least negative impact, a ranking between
the crosspoints is performed (line 12). The ranking func-
tion computes the aggregate demand of all connections
between Sp, S> to any other SoC that has a free port in
C. This represents the demand that C would not be able
to satisfy if {S;, S»} was established, hence the cross-
point with the lowest value is selected. At that point,
both the pair of SoCs and the crosspoint have been deter-
mined and the corresponding undirected edge and circuit
are added (lines 13-14). Finally, the algorithm updates
SoC _pairs and xbar_map (lines 17 to 24). It removes
C from all the pairs in xbar_map that can no longer be
connected through C (line 18-19). If the SoC pair can
no longer be connected through any of the crosspoints,
it is removed from SoC_pairs (lines 21 to 22). As two
SoCs can be connected through multiple crosspoints at
the same time, the pair that has just been connected is
not removed from the SoC_pairs but reinserted after the
last pair that has some unsatisfied demand (line 24). That
way, if all pairs with demand have been connected, the
algorithm can add secondary direct connections between
high demand pairs, increasing the bandwidth.

The algorithm executes in polynomial time and once
all circuits have been assigned, the topology is optimized
for dmy;;. The algorithm has the property that in addition
to computing an optimized topology, it also finds the cir-
cuit assignment that instantiates that topology in the par-
tially reconfigurable fabric. The result of the algorithm
is a set of forwarding tables derived from the computed

topology and the circuit assignment that is merged with
the uplink circuit assignment. The controller uses this
information to reconfigure the data plane.

4.4 Reconfiguration

To instantiate a new topology, the XFabric controller
needs to update the circuit switches (layer 1) and ensure
all forwarding tables in each SoC are updated (layer 2).
This cannot be achieved instantaneously, and can lead to
instability during the update interval. The goal of recon-
figuration is to minimize this window of instability.

We considered two general approaches. Inspired by
SWAN [25]], we experimented with incrementally chang-
ing the physical topology to ensure that packets can be
successfully routed. This requires identifying a set of in-
termediate topologies, and then moving traffic off links
that are to be reconfigured and then stepping through
multiple different intermediate configurations. This ap-
proach leads to larger reconfiguration periods: the time
taken to reconfigure is approximately constant and in-
dependent of the number of links being reconfigured,
so migrating through x intermediate topologies takes x
times the reconfiguration delay. Hence, we adopted the
approach of performing a single reconfiguration.

Before triggering the reconfiguration, the controller
sends new circuit assignments to every circuit switch
through the control plane and new forwarding state to the
SoCs through the data plane. Each circuit switch receives
a map packet composed of a list of port mappings and a
bitmap to indicate which ports need to be reconfigured.
The micro-controller on the switch loads the circuit as-
signments into a set of registers on the crosspoint ASIC
and acknowledges the controller, but does not instanti-
ate the circuits. The physical topology must remain un-
changed at this stage as the controller has no out-of-band
mechanism to communicate with the SoCs. Each SoC re-
ceives its new forwarding tables together with the MAC
address of the SoC that will be connected to each of its
ports and a unique 64-bit version number for the config-
uration. This is efficiently encoded so the forwarding ta-
ble, plus all the other information for a XFabric with 512
SoCs is less than 1 KB. Each SoC runs a process that
receives and stores the update, but again does not repro-
gram any forwarding tables. Once all the SoCs have ac-
knowledged the update information, all circuit switches
and SoCs are ready for the reconfiguration.

The controller triggers the reconfiguration by trans-
mitting a reconfigure packet to each circuit switch
through the control plane. When received, the micro-
controller on the circuit switch reprograms its crosspoint
ASIC to the configuration specified in the map. At this
point the physical network (layer 1) has been reconfig-
ured, but the forwarding tables at the SoCs have not yet

been updated. Once every circuit switch has acknowl-
edged, the controller uses a simple flood-based mech-
anism to trigger the use of the new forwarding tables
on each SoC. It sends on each of its ports a reconfig-
uration message which includes the new configuration
version number. If a SoC with an old forwarding table
receives the reconfiguration message, it starts using the
new one and issues a reconfiguration message on all its
ports. SoCs with new forwarding tables ignore reconfig-
uration messages. This process ensures rapid reconfigu-
ration, in the worst case the number of rounds will be the
diameter of the network.

It is essential that the data plane rapidly converges to
a consistent state, even if the controller fails during the
process. In particular, if the failure occurs after sending
out a reconfigure to a subset of the circuit switches,
the physical topology could be left in an inconsistent
state. To address this, we ensure that each circuit switch
that receives a reconfigure and has not yet reconfig-
ured broadcasts the message through the control plane.

A failure of the controller before the broadcast of the
reconfiguration in the data plane could lead to stale for-
warding state at layer 2. To avoid this, we allow the
SoCs to locally trigger the update of the forwarding ta-
bles. It does this by monitoring the local MAC addresses
of SoCs attached to its ports: if a packet is received from
a different MAC address than expected the SoC flushes
the current forwarding table and uses the new one. After
this local update, the SoC broadcasts a reconfiguration
message, ensuring that the new forwarding state is prop-
agated despite the failure of the controller.

During the reconfiguration of the switches any packets
in flight at the switch can be corrupted or lost. However,
thanks to the low switching latency of electrical cross-
point ASICs (see Section [3), we observe the packet loss
to be low in practice (see Section [6) and rely on end-to-
end transport protocols to recover from the packet loss.

5 XFabric Implementation

We have built a prototype XFabric platform, consist-
ing of a set of seven electrical circuit switch units and
27 servers, each configured with eight 1 Gbps Ethernet
NICs and a single Intel Xeon E5520 8-core 2.27GHz
CPU running Windows Server 2008 R2 Enterprise. Each
server emulates a SoC with an embedded packet switch
that has six NIC ports for in-rack traffic. One NIC port is
used as an uplink port and the last port is connected to a
ToR switch for debug and experiment control.

Each circuit switch unit has 32 ports and each server is
connected to all 7 circuit switches. Six serve as internal
crosspoints and the last one is an uplink crosspoint with
four uplinks (I = 4). The switches use the Analog De-
vices ADN4605 asynchronous fully non-blocking cross-

point switch ASIC [51]. Currently, they are connected
to the servers using standard Ethernet cables, hence we
need transceivers to convert the signal to and from the
ASIC to 1000Base-T which is supported by the servers.
This has significant cost and power overhead implica-
tions and is due to using standard servers instead of SoCs
in the prototype platform. Each crosspoint ASIC is man-
aged by an ARM Cortex-M3 micro-controller that con-
figures it via an SPI serial bus and transceivers through
12C. The current design does not support 10 Gbps links,
but we are in the process of designing a version with
160 10 Gbps ports using the Macom M21605 crosspoint
ASIC [12]. In the experiments we use USB 1.1 to com-
municate with the control plane due to lack of spare
Ethernet ports per server. Ethernet is supported by our
switches and improves control plane latency by about an
order of magnitude compared to USB.

The packet switch emulation is done in software,
which allows us to understand the full functionality re-
quired before implementing it in hardware. The emulator
uses two kernel drivers and a user-level process, and im-
plements an OpenFlow-like API that provides access to
the forwarding table, and callbacks on certain conditions.
It binds to the six NIC ports used for internal traffic and
the port used for the uplink. It also provides a virtualized
NIC, to which an unmodified TCP/IP stack is bound to
allow unmodified applications to be run on the testbed.

6 Evaluation

In this section we evaluate XFabric. First, we compare
the performance of a reconfigurable fabric to static phys-
ical topologies. Then, we evaluate the efficiency of the
algorithms used in XFabric. Finally, we show the bene-
fits and overheads of XFabric dynamic reconfiguration.
In the experiments we evaluate XFabric using the pro-
totype described in Section [5] In order to allow us to
evaluate XFabric at scale we also use a simple flow-based
simulator. We start by describing the fabric topologies,
workloads and metrics used during the evaluation.

6.1 Topologies

We compare against three different topologies, two static
and one dynamic. The first static topology is a 3D
Torus (3DTorus). This topology has been widely used in
HPC [15//48] and has been proposed in data centers [2],
in particular at rack scale [44]. It has the highest path
length and lowest bisection bandwidth, but has a high
disjoint path diversity and low cabling complexity.

The second one is a static random topology (Random).
Random topologies have also been proposed for use in
data centers [45]] and are known to be “expander” graphs
with high bisection bandwidth and low diameter.

We also use a dynamic reconfigurable network (OSA)
inspired by OSA. In this network the topology is config-
ured using the topology generation algorithm proposed
in [13]]. Our goal is to compare against the topology gen-
eration algorithm and we do not simulate additional fea-
tures, such as the flexible link capacity described in [[13]].
Our implementation of the algorithm uses the same graph
library as OSA [33]. This network uses a Clos circuit
switch to which all the internal ports of all the SoCs are
connected, so it is fully reconfigurable.

For the simulation results, unless otherwise stated, we
assume the rack contains 343 SoCs each with d = 6 in-
ternal ports per SoC and one uplink port. In all cases we
assume that the number of ports for the internal cross-
points is s = n and for the uplink crosspoint s =n+1[. We
assume there are six internal crosspoints (as d = 6), and
one uplink crosspoint with / = 8. Unless otherwise stated
the uplinks are uniformly distributed across the SoCs and
each SoC sends ingress/egress traffic to its nearest uplink
in terms of path length.

We use 343 SoCs as it allows us to compare against a
3D Torus of size 7° = 343. This is a challenge for XFab-
ric, as a crosspoint with n ports establishes n/2 circuits
so, if n is odd, one port cannot be connected to any other
port on the same crosspoint. So, we will end up with 6
unused ports across all the SoCs. In practice, XFabric
uses an even number of SoCs to avoid this issue. To han-
dle the odd n configurations we form three pairs of cross-
points and in each pair statically connect a random SoC
of one crosspoint to a different SoC in the second cross-
point. This means these static circuits are never reconfig-
ured and results in strictly worse performance compared
to allowing them to be reconfigured.

6.2 Workloads

We selected two workloads with well-identified traffic
patterns, both based on real-world measurements.
Production cluster workload. This is a trace of 339
servers running a production workload in a mid-sized
enterprise data center [[7]. The data was collected over
a period of 6.8 days and contains per-TCP-flow infor-
mation including the source and destination IP address,
the number of bytes transferred and a mapping from the
servers’ hostnames to the IP addresses of their NICs. We
group flows based on source and destination hostnames.
Flows in which the source or destination IP address does
not correspond to a known hostname are considered as
uplink traffic. The traffic is clustered, with heavy com-
munication between servers with common hostname pre-
fixes, and many-to-one traffic patterns: servers with a
common hostname prefix often exchange traffic with a
specific server with a different hostname prefix. This is
consistent with the patterns described in [30].

100

Lower is B3DTorus

w

B3DTorus

=
2
6 " Higher is g better @ Random
7. B3DTorus Lower is ;' 25 O Random better E 10
£ = :
§ @ Random better s 2 m XFabric = B XFabric
2]
z4 B XFabric B s Q0sA i T OSA
® 3 TOSA z 5
<, 21 B
= g
E 1 E 0.5
0 & o 0.1
Production LiveJournal Production LiveJournal Production LiveJournal

(a) Path length (b) Average path diversity (c) Bottleneck link load

Figure 2: Performance summary of different fabrics for Production and LiveJournal workloads.

LiveJournal. Distributed platforms such as Pregel [34] | Fabric | #ports [Cost [Power draw |
or Tao [9] enable efficient processing of large graphs by Clos Circuit Switch || 10,290 | $30.9K 2.9 kW
partitioning the graph across a set of SoCs such that each XFabric 2,058 $6.2K 0.6 kKW

SoC is assigned a set of vertices from the original graph.
To generate a graph processing workload we use a trace
collected from LiveJournal in December 2006 [36]. It in-
cludes 95.4% of users at that time, representing 5.2 mil-
lion nodes and 48.7 million edges with an average edge
degree of 18.7 edges per node. We shard the vertices
into partitions using METIS, an offline graph partition-
ing algorithm [31] to uniformly partition the graph while
minimizing traffic between partitions. There is one parti-
tion per SoC and we assume that the computation makes
progress by message passing along the edges of the par-
titioned graph. The traffic is proportional to the number
of the social graph edges between SoCs and is modeled
as a constant bit rate over time.

For both workloads we map the workload onto the
SoCs randomly. We also explored topology-aware work-
load placement using heuristic-based approaches for the
static topologies [[10]. For these we found that topology-
aware placement always performs better than the ran-
dom placement, but was always worse than the topol-
ogy generated by XFabric. In practice, topology-aware
placement is not easily feasible, and would often re-
quire migrating data between servers and is challenging
to achieve dynamically. Due to lack of space, we only
present results for random placement.

In the simulations each workload is mapped into a sin-
gle traffic matrix tm such that for each pair of SoCs it
stores the number of bytes sent and received between
these SoCs. For the production trace, to scale beyond
339 SoCs, we augment the original trace by duplicating
a random set of SoCs with non-zero traffic. For experi-
ments with less than 339 SoCs, we subsample the trace
by taking a random subset of the SoCs that have traffic.

6.3 Maetrics

Across the experiments we use a number of metrics:
Path length. For each packet, we measure the path
length from source to destination in number of hops.

Table 1: Estimated cost & power, 343 SoCs, 6 ports/SoC.

Since each hop adds a delay while forwarding traffic, this
metric is a proxy for end-to-end latency.

Path diversity. This metric accounts for the fault tol-
erance of the topology, it measures the number of dis-
joint shortest paths that exist for each packet. Two paths
are disjoint if they share no common link. Therefore, if
there are k shortest paths for all the flows in the topol-
ogy, k — 1 links can fail without impacting the average
path length of the traffic. Route diversity also improves
traffic load balancing allowing traffic to be spread across
disjoint shortest paths.

Bottleneck link load. The metric measures the conges-
tion within the topology by measuring the link load on
the most congested link in the topology.

6.4 XFabric Performance

The two static topologies, 3D Torus and Random, do not
require any additional hardware other than the switching
functionality provided in the SoCs. Both the OSA and
XFabric require additional ASICs to enable the recon-
figurability. Any benefit obtained from being reconfig-
urable needs to be offset against the increased overheads
this induces. Table|l{shows the number of ports required
and the estimated cost and power consumption for XFab-
ric and OSA assuming $3 per port and 0.28 W per port
for 343 SoCs. OSA is a fully reconfigurable fabric sup-
porting 2,058 ports, thus using a folded Clos. XFabric re-
quires d crosspoint ASICs with n ports, connecting each
SoC to each of the d crosspoints. This has a significant
benefit in terms of cost and power.

This first simulation experiment evaluates the relative
performance of the four topologies using the two work-
loads. For each configurable fabric we take the global
demand matrix ¢m and optimize the network for tm. Fig-

OSA XFabric

Path length (#hops)
o B N W H» U O

3D Torus

2 8 32 128
Skew (cluster size)

Random

(a) Clustered workload

OSA XFabric

Random

Path length (#hops)
o = N W b~ 0O

\

‘ 3D Torus

2 4 8 16 32 64 128 256
Skew (#random destinations/SoC)

(b) Random destinations workload

Figure 3: Impact of traffic skew on path length

ure [2(a)| shows the average path length achieved by all
the fabrics. Across both workloads the reconfigurable
fabrics, XFabric and OSA, achieve shorter average path
lengths than the static topologies. For Production, XFab-
ric has an average path length of only 1.06 hops, which is
6 times less than 3D Torus and 3.7 times less than Ran-
dom. For the LiveJournal workload, the path length for
the reconfigurable fabrics is also lower but not by such a
margin. As we will demonstrate later, the reason is due
to the traffic skew. The LiveJournal workload has a lower
skew. Comparing the performance of OSA and XFabric,
we see for the Production workload that they both pro-
vide comparable performance. Notably for LiveJournal,
even though OSA has a fully reconfigurable fabric it per-
forms worse than XFabric. Having more flexibility in the
fabric is insufficient, you also need an algorithm that can
reconfigure the fabric to exploit the full flexibility.

Figure shows the path diversity for all four fab-
rics with both workloads. These results show that the
reconfigurable fabrics instantiate topologies with lower
path diversity. The path length reduction benefits being
shown in Figure [2(a)| are achieved at the expense of re-
ducing path diversity, shorter path lengths offer less op-
portunity for forwarding through different links. The 3D
Torus has the highest path diversity, but also has the high-
est path length. This is an interesting trade-off where
reconfigurability can provide benefit. Lowering path di-
versity can impact resilience to failure, and it also lowers
the aggregate bandwidth available on the shortest paths
between two SoCs. For reconfigurable fabrics, a link or
SoC failure can be overcome by calculating a new topol-
ogy that minimizes the impact of the failure. XFabric
also can link multiple ports between the same SoCs, so
providing multiple 1-hop links between two SoCs, and

hence increase the aggregate bandwidth.

To understand this further, Figure[2(c)| shows the num-
ber of flows that traverse each link. A flow from a to b
is routed over the set of shortest paths in the topology
between a and b and is registered on each link in the
path. To achieve this each flow is split into f subflows
of constant size, where f is much larger than the num-
ber of paths. The simulator estimates path congestion
by counting the number of flows registered on the most
loaded link in a path. To place a subflow, the simulator’s
transport layer checks if multiple shortest paths exist. If
so two are randomly selected, and the simulator places
the flow on the least congested one. This simulates traffic
routing though multiple paths for any workload on top of
any topology. Furthermore, the flow routing scheme en-
sures a good load balance of the traffic across links [|37]].
Figure |2(c)| shows the percentage of flows that traverse
the bottleneck link for each workload and topology. The
most congested links on all topologies for both work-
loads have approximately the same load, except for the
3D Torus that benefits from its high path diversity.

The trade-off between path length and diversity also
impacts the total network load across all links. The load
imbalance across links is reduced when path diversity is
high: in the 3D Torus the load is better balanced across
links due to load balancing across multiple paths. How-
ever, because of the higher path length, the overall total
load on links in the network is higher. The other topolo-
gies have a lower average total network link load than the
3D Torus, but a higher skew. However, XFabric aggres-
sively reduces path length without significantly increas-
ing load skew because optimization leads to links being
shared across fewer source destination pairs.

We now focus on the performance of XFabric with
Production, our most realistic workload, to evaluate the
performance of uplink placement. Figure shows the
path length of the ingress/egress traffic in the fabric be-
fore it reaches a gateway SoC with an attached uplink.
It shows that XFabric efficiently places uplinks on SoCs
with heavy ingress/egress traffic: the path length is on
average reduced by 32% compared to the Random topol-
ogy and 37% compared to the 3DTorus.

Finally, we vary the number of SoCs in the fabric
to evaluate performance at different scales. Figure
shows the average path lengths for XFabric, Random and
3D Torus topologies when the number of SoCs is varied.
In the worst case, for 512 SoCs, the average path length
between SoCs in the rack is 1.6 hops only, showing that
optimizing the topology at up to rack-scale is beneficial.

Reconfigurable fabrics perform better for workloads
with high traffic skew. To understand this more we per-
form a parameter sweep across different traffic skews us-
ing two synthetic workloads. For the first, called clus-
tered, we partition the SoCs into clusters and each SoC

I XFabric
©Random
W 3DTorus

Avg. path length (#hops)

O R N WA OO N

27

64 125
Fabric size (#50Cs)

512

(a) Path length vs. network size

Path length (#hops)

3DTorus Random XFabric

(b) Uplink placement

Figure 4: Scalability and uplink placement performance.

communicates with all other SoCs in the same cluster.
We vary the number of SoCs per cluster between 2 and
343. Intuitively, this results in a set of traffic matrices in
which the traffic skew grows as cluster size drops. Fig-
ure3(a)|shows the path length as a function of the cluster
size for XFabric and OSA with the clustered workload.
The cluster size has no impact on static topologies be-
cause no reconfiguration is performed. When the skew
is high, reconfigurable topologies are able to more effi-
ciently optimize for the skew, up to the point when most
of the traffic is sent through 1 hop. As the cluster size
increases, the traffic pattern shifts to an all-to-all pattern
and performance of reconfigurable fabrics becomes com-
parable to a Random topology. Notably, there is almost
no difference between XFabric and OSA.

We run a second experiment with a different workload
to evaluate the impact of the traffic pattern on path length.
For this workload, called random destinations, each SoC
sends traffic to a random set of k SoCs in the rack. For
low values of k, the workload is very skewed and as it
increases the workload progressively adopts an all-to-all
traffic pattern. However, this results in a less clustered
workload, even when traffic is very skewed. Figure 3(b)]
shows the path length as a function of the number of des-
tinations per SoC for all fabrics. We observe the same
trend as for the clustered workload, with both OSA and
XFabric outperforming static topologies by up to a factor
of 3.5 when the skew is high.

6.5 XFabric Prototype Performance

So far we evaluated the benefits of XFabric at scale us-
ing our simulator. In the next experiment we use our

10

prototype platform to evaluate the dynamic reconfigura-
tion performance of XFabric. Frequent XFabric recon-
figuration is beneficial as it improves the responsiveness
of the fabric to changes in traffic load, improving perfor-
mance. However, too frequent reconfiguration induces
overheads at the packet switching layer as it may result
in packet loss. The reconfiguration of the crosspoints at
layer 1 is not synchronized with layer 2. Too frequent
packet loss can have a negative impact on the throughput
at the transport layer, particularly if TCP is used.

We have created a test framework that uses unmodified
TCP and replays flow-level traces derived from the Pro-
duction workload. The framework opens a new socket
for each flow and starts six flows per SoC concurrently,
operating as a closed loop per SoC, so when one flow fin-
ishes the next is started on the SoC. In each experiment
we configure the network as a 3D Torus and do not allow
the network to reconfigure for the first 2 minutes. Unless
otherwise stated the flow size is selected from the distri-
bution of flow sizes in the Production workload, which
is a typical heavy tailed distribution with a small number
of elephant flows and a high number of mice flows, and
an average flow size of 9.3 MB.

We first evaluate the impact of reconfiguration fre-
quency on performance. We generate a trace with
250,000 flows and vary the reconfiguration period of
XFabric between ¢t = 0.1 to 480 seconds until the trace
run is completed. Figure [5(a)] shows the average path
length of each packet as a function of the reconfiguration
period. As expected, decreasing the reconfiguration pe-
riod reduces the path length. When reconfigured every
30 seconds or less, XFabric achieves more than a 25%
reduction in path length compared to the 3D Torus. The
path length is reduced by approximately 37% (from 2.05
to 1.28 hops) for a reconfiguration interval of a second or
less. This shows that even at small scale, reconfiguring
the topology significantly reduces path length.

In order to understand how reconfiguring the fabric
impacts goodput, Figure[5(b)|shows the average comple-
tion time as a function of the reconfiguration interval. For
each run we define completion time as the execution time
from 2 minutes (when reconfiguration is enabled) to the
end of the trace. The completion time for the 3D Torus
is denoted by the red line and is constant as it does not
reconfigure. We can see that for XFabric, shorter path
length also reduces completion time, because each flow
uses less network resources, increasing overall goodput.
The completion time is reduced by 20% compared to
the 3D Torus for a reconfiguration interval of 1 second.
When reconfigured every 100 ms, the completion time
increases compared to the 1 second interval, despite the
path length being similar for both intervals. This shows
the trade-off between the benefit of reconfiguration ver-
sus potential impact of packet loss on the transport layer.

560

N
[

N
[

540
520
500
480
460
440
420
400

3DTorus

0.1

=
BN
L
[

©-XFabric
3D Torus

o
n

Path length (#hops)
Completion time (sec)

o
o
=

1 10 100
Reconfiguration period (sec)

(a) Path length

1000 1 10

30

Reconfiguration period (sec)

(b) Completion time

=
[BN}

—@ — @ — ®
XFabric- Mice flows only
~@-XFabric

3D Torus

Path length (#hops)

Skewed Uniform

120 240 480 0

o
o U =k

10
Skew (cluster size)

60 20

(c) Impact of workload skew on path length

Figure 5: Prototype performance.

We now explore the impact of traffic skew on perfor-
mance. We set the reconfiguration period to 1 second
and generate a set of traces in which SoCs are divided
into clusters of fixed size ¢, with ¢ = 2 to ¢ = 27. Each
trace has 250,000 flows and for each SoC, the destina-
tion of each flow is randomly selected in the correspond-
ing cluster. Hence for ¢ = 27 the traffic is uniform, and
traffic skew increases as cluster size drops. Figure
shows the average path length as a function of the cluster
size. As expected, for XFabric the path length is lower
when the skew is high. In the extreme, when ¢ = 2, the
average path length is 1.02, which is more than a factor of
2 better compared to the 3D Torus. Notably, XFabric still
has a 35% lower path length than the 3D Torus when the
traffic is uniform. This is because many elephant flows
live long enough to benefit from reconfiguration.

To quantify the impact of elephant flows, we gener-
ate a set of traces in which all flows are smaller than the
median value from the Production flow size distribution.
Each trace has 17 million flows with an average flow size
of 129 KB and a maximum of 365 KB. SoCs are divided
into clusters as previously but each SoC sends sequences
of ten short flows to destinations in its cluster. Each SoC
thus has a relatively stable flow rate, but per-destination
traffic is bursty, which can be compared to real traffic
patterns [43[]. Figure shows that when the traffic is
skewed, XFabric is still able to accurately estimate the
demand without elephant flows because each SoC has a
limited number of destinations and the traffic pattern is
predictable. However, as the traffic gets uniform, XFab-
ric progressively loses the ability to accurately estimate
the demand and the path length becomes comparable to
the static topology.

6.6 Reconfiguration Overheads

We now look at the overheads associated with XFab-
ric reconfiguration. In the first experiment we calcu-
late the average execution time across five runs for OSA
and XFabric to generate a new topology for topology
sizes ranging from 27 to 1024 SoCs. Figure [6(a)] shows
the time taken for OSA normalized to XFabric. In all

11

cases XFabric significantly outperforms OSA. For 512
SoCs and below, XFabric generates topologies in less
than 700ms, while for 1024 SoCs, the topology is gener-
ated in about 3 seconds. This shows that XFabric is able
to optimize any rack-scale topology fast enough for dy-
namic reconfiguration in seconds or less. In comparison,
it takes OSA about 20.5 seconds for the largest topolo-
gies, which is over 6 times longer.

The next experiment measures the end-to-end recon-
figuration latency of XFabric. At the beginning, XFabric
is configured as a 3D Torus and runs an all-to-all work-
load for 60 seconds to allow it to reach steady state. The
controller then generates a new topology and reconfig-
ures the data plane. Figure [6(b)] shows the CDF of re-
configuration delays; each data point is the time taken
for each server to have pushed a new forwarding table
into the local packet switch from when the first cross-
point ASIC was reconfigured. Figure [6(b)|shows that all
servers are reconfigured within 11 ms. The latency for
each micro-controller attached to the crosspoint ASIC to
internally reconfigure it is approximately 40 microsec-
onds. This delay is currently dominated by two factors,
first the latency of the control plane interface which uses
USB 1.1 and has a 1 ms delay, combined with the fact
that the current prototype controller sequentially com-
municates with each of the micro-controllers, hence the
last crosspoint ASIC is reconfigured 8 ms after the first.
This latency would be removed if the controller used an
Ethernet-based control plane.

We now measure the packet loss rate due to reconfig-
uration in the data plane. We run 5 experiments with
the first workload described in Section and a recon-
figuration period set to 1 second. We count all Ethernet
frames sent and received through each NIC on each SoC.
Ethernet frames that are corrupted due to reconfiguration
fail the CRC check and are dropped on the receiver be-
fore being counted. Hence the difference between the
total number of frames sent and received by all SoCs ac-
counts for the loss. We conservatively assume that all lost
frames are due to reconfiguration. The average loss rate
is 0.69 frames per full-duplex link per reconfiguration.
The crosspoint ASICs we use have a switching time of

OSA execution time
(normalized to XFabric)
N W s U N

XFabric 5, 64 343

#SoCs per topology

512 1024

(a) Topology generation time

CDF of reconfigurations
o ©o o o
o N » ()] 00 =

o

5 10
Circuit reconfiguration delay (ms)

15

(b) Reconfiguration time

Figure 6: Reconfiguration overheads.

20 ns [51]], which is the time to transmit 3 bytes at 1 Gbps
and 25 bytes at 10 Gbps. With a minimal Ethernet frame
size of 64 bytes [28|], we expect the worst case loss on
a full-duplex link to be 4 frames per reconfiguration for
both 1 and 10 Gbps.

7 Related Work

The XFabric design is heavily influenced by the Calxeda
SoC design, the first publicly available SoC that incor-
porates a packet switch. This SoC also explicitly pro-
visioned ports for internal communication and a sin-
gle Ethernet uplink port per SoC and we assumed this
model for XFabric. We believe that this is a likely de-
sign point for other SoCs. Calxeda unfortunately col-
lapsed, but we believe that other chip vendors will likely
move in this direction. For example, the Xeon-D pro-
cessor designed by Intel [52] is a low-power SoC with
two 10 Gbps ports per SoC. Oracle recently announced
their next-generation SPARC design with two 56 Gbps
Infiniband controllers co-located with the CPU on sili-
con [26]]. However, currently none of these designs yet
supports embedded packet switches.

Optical Circuit Switching (OCS) has been proposed to
establish physical circuits between ToR switches at the
data center scale [20,47]. They rely on MEMS-based
switches and have high reconfiguration latency. To ad-
dress latency sensitive traffic, c-Through and Helios rely
on a separate packet switched network. Mordia [41]]
routes latency sensitive traffic through circuits by time-
sharing the circuits between servers in a rack. XFabric
differs from these architectures because they do not route
packets over multiple circuits when a direct circuit is not
available. The closest to our proposal is OSA [[13] that

12

allows multi-hop data forwarding between ToRs (servers
in a rack use traditional packet switching). However,
OSA does not address the issue of scaling beyond a sin-
gle circuit switch and assumes all ToRs have all reconfig-
urable ports connected to the same switch. Compared to
OSA, XFabric addresses a set of challenges unique to the
rack scale. It reduces the space and power consumed by
the reconfigurable fabric by using several smaller cross-
point ASICs and deals with uplink management.

Halperin et al. [23]] propose to augment standard data
center networks with wireless flyways used to decongest
traffic hotspots. Zhou et al. [49] improve the technique
by bouncing the signal off the data center ceiling to over-
come physical obstacles. However, the wireless technol-
ogy has a set of physical constraints (e.g. signal interfer-
ence) due to which only a subset of the links are reconfig-
urable while the rest of the traffic is still routed through
the traditional network. FireFly [24] is a data center level
architecture in which the physical layer is supported by
lasers reflected using large ceiling mirrors. However, this
technique is hard to leverage inside a rack.

In HPC, Kamil et al. uses an optical circuit switch to
interconnect packet switches, which can then be pooled
to increase available bandwidth between heavily com-
municating servers [29]. This work differs from XFab-
ric as it considers one large circuit switch for all packet
switches and leverages the high predictability of HPC
workloads to compute efficient topologies.

AN3 [19] performs virtual circuit switching and al-
lows speculative circuit establishment supported by cus-
tom switches implemented in FPGA. This system differs
from our work as it establishes circuits at layer 2 of the
network and operates over a static physical topology.

8 Conclusion

Emerging hardware trends and server densities are go-
ing to challenge the usual approach of connecting all the
servers in a rack to a single ToR switch. One explored so-
lution is to disaggregate the packet-switching functional-
ity across SoCs. Based on the observation that different
network topologies support different workloads we pro-
pose XFabric, a dynamically reconfigurable rack-scale
fabric. It differs from prior work by addressing specific
requirements that arise at rack scale, dealing with power
and space constraints and managing uplink to the data
center network. A prototype XFabric implementation
demonstrates the reconfiguration benefits and shows that
partial reconfigurability achieves the performance of full
reconfigurability at lower cost and power consumption.

Acknowledgments

We are grateful to the anonymous reviewers, and in par-
ticular to our shepherd S. Keshav, for their feedback.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

HP Moonshot System: The World’s First Software-
Defined Server -Family guide, Jan. 2014.

ABU-LIBDEH, H., COSTA, P., ROWSTRON, A.,
O’SHEA, G., AND DONNELLY, A. Symbiotic
Routing in Future Data Centers. ACM SIGCOMM
Computer Communication Review 41, 4 (2011),
51-62.

AFCOM. Data center Standards. http://bit.
1y/1KPoZ0Z.

Amazon joins other web giants trying to design its
own chips. http://bit.1ly/1J5t0fE!

ASANoOVIC, K., AND PATTERSON, D. FireBox:
A Hardware Building Block for 2020 Warehouse-
Scale Computers. In USENIX FAST (2014).

BALAKRISHNAN, S., BLACK, R., DONNELLY,
A., ENGLAND, P., GLASS, A., HARPER, D.,
LEGTCHENKO, S., OGUS, A., PETERSON, E.,
AND ROWSTRON, A. Pelican: A Building Block
for Exascale Cold Data Storage. In Proceedings of
the 11th USENIX conference on Operating Systems
Design and Implementation (2014), USENIX As-
sociation, pp. 351-365.

BALLANI, H., JANG, K., KARAGIANNIS, T.,
KiM, C., GUNAWARDENA, D., AND O’SHEA,
G. Chatty Tenants and the Cloud Network Sharing
Problem. In Proceedings of the 10th USENIX con-
ference on Networked Systems Design and Imple-
mentation (2013), USENIX Association, pp. 171—
184.

BOSTON. Boston Viridis Data Sheet. http://
download.boston.co.uk/downloads/9/3/2/
932c4ecb-692a-47a9-937d-a94bd0f3df1b/
viridis.pdf.

BRONSON, N., AMSDEN, Z., CABRERA, G.,
CHAKKA, P., Dimov, P., DING, H., FERRIS, J.,
GIARDULLO, A., KULKARNI, S., LI, H., ET AL.
Tao: Facebooks Distributed Data Store for the So-
cial Graph. In USENIX ATC (2013).

BURKARD, R., PARDALOS, P., AND PITSOULIS,
L. The Quadratic Assignment Problem. In
Handbook of Combinatorial Optimization (1998),
Kluwer Academic Publishers, pp. 241-338.

Calient S320 Optical Circuit Switch Datasheet.
http://www.calient.net/download/
s320-optical-circuit-switch-datasheet/|

13

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

(20]

(21]

(22]

Macom M21605 Crosspoint Switch Specifica-
tion. http://www.macom.com/products/
product-detail/M21605/.

CHEN, K., SINGLA, A., SINGH, A., RA-
MACHANDRAN, K., XU, L., ZHANG, Y., WEN,
X., AND CHEN, Y. OSA: An Optical Switching
Architecture for Data Center Networks with Un-
precedented Flexibility. IEEE/ACM Transactions
on Networking (TON) 22, 2 (2014), 498-511.

CosTA, P, BALLANI, H., Razavi, K., AND
KAsH, I. R2C2: A Network Stack for Rack-Scale
Computers. In Proceedings of the 2015 ACM Con-
ference on Special Interest Group on Data Commu-
nication (2015), ACM, pp. 551-564.

CRAY. CRAY XT3 Datasheet. http://
WWW . craysupercomputers.com/downloads/
CrayXT3/CrayXT3_Datasheet.pdf,

DAGLIS, A., NOVAKoOVIC, S., BUGNION, E.,
FALSAFI, B., AND GROT, B. Manycore Network
Interfaces for In-Memory Rack-Scale Computing.
In Proceecidings of the 42nd International Sympo-
sium in Computer Architecture (2015), no. EPFL-
CONF-207612.

Dell PowerEdge ¢5220 Microserver.
http://www.dell.com/us/business/p/
poweredge-c5220/pd.

DRAGOJEVIC, A., NARAYANAN, D., HODSON,
O., AND CASTRO, M. FARM: Fast Remote Mem-
ory. In Proceedings of the 11th USENIX Confer-
ence on Networked Systems Design and Implemen-
tation, NSDI (2014), vol. 14.

ERIC CHUNG, ANDREAS NOWATZYK, TOM RODE-
HEFFER, CHUCK THACKER, AND FANG YU. AN3:
A Low-Cost, Circuit-Switched Datacenter Net-
work. Tech. Rep. MSR-TR-2014-35, March 2014.

FARRINGTON, N., PORTER, G., RADHAKRISH-
NAN, S., BAzzAz, H. H., SUBRAMANYA, V.,
FAINMAN, Y., PAPEN, G., AND VAHDAT, A. He-
lios: a Hybrid Electrical/Optical Switch Architec-
ture for Modular Data Centers. ACM SIGCOMM
Computer Communication Review 41, 4 (2011),
339-350.

Intel, Facebook Collaborate on Future Data Center
Rack Technologies. http://intel.1ly/MRpOMOL

Google Ramps Up Chip Design. http://ubm.io/
1iQooNel

http://bit.ly/1KPoZOZ
http://bit.ly/1KPoZOZ
http://bit.ly/1J5t0fE
http://download.boston.co.uk/downloads/9/3/2/932c4ecb-692a-47a9-937d-a94bd0f3df1b/viridis.pdf
http://download.boston.co.uk/downloads/9/3/2/932c4ecb-692a-47a9-937d-a94bd0f3df1b/viridis.pdf
http://download.boston.co.uk/downloads/9/3/2/932c4ecb-692a-47a9-937d-a94bd0f3df1b/viridis.pdf
http://download.boston.co.uk/downloads/9/3/2/932c4ecb-692a-47a9-937d-a94bd0f3df1b/viridis.pdf
http://www.calient.net/download/s320-optical-circuit-switch-datasheet/
http://www.calient.net/download/s320-optical-circuit-switch-datasheet/
http://www.macom.com/products/product-detail/M21605/
http://www.macom.com/products/product-detail/M21605/
http://www.craysupercomputers.com/downloads/CrayXT3/CrayXT3_Datasheet.pdf
http://www.craysupercomputers.com/downloads/CrayXT3/CrayXT3_Datasheet.pdf
http://www.craysupercomputers.com/downloads/CrayXT3/CrayXT3_Datasheet.pdf
http://www.dell.com/us/business/p/poweredge-c5220/pd
http://www.dell.com/us/business/p/poweredge-c5220/pd
http://intel.ly/MRpOM0
http://ubm.io/1iQooNe
http://ubm.io/1iQooNe

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

HALPERIN, D., KANDULA, S., PADHYE, J.,
BAHL, P., AND WETHERALL, D. Augmenting
Data Center Networks with Multi-Gigabit Wireless
Links. In ACM SIGCOMM Computer Communica-
tion Review (2011), vol. 41, ACM, pp. 38-49.

HAaMEDAZIMI, N., QAzi, Z., GuUpTA, H.,
SEKAR, V., DAS, S. R., LONGTIN, J. P., SHAH,
H., AND TANWER, A. FireFly: a Reconfigurable
Wireless Data Center Fabric using Free-Space Op-
tics. In Proceedings of the 2014 ACM conference
on SIGCOMM (2014), ACM, pp. 319-330.

HoNG, C.-Y., KANDULA, S., MAHAJAN, R.,
ZHANG, M., GILL, V., NANDURI, M., AND
WATTENHOFER, R. Achieving High Utilization
with Software-Driven WAN. In ACM SIGCOMM
Computer Communication Review (2013), vol. 43,
ACM, pp. 15-26.

Oracles Sonoma Processor. http://www.
hotchips.org/archives/2010s/hc27/.

HP ProLiant m800 Server Cartridge.
bit.1ly/1JxMIZr,

http://

IEEE. 802.3-2012 IEEE Standard for Ether-
net. http://standards.ieee.org/findstds/
standard/802.3-2012.html,

KAMIL, S., PINAR, A., GUNTER, D., LJEWSKI,
M., OLIKER, L., AND SHALF, J. Reconfigurable
Hybrid Interconnection for Static and Dynamic Sci-
entific Applications. In Proceedings of the 4th
international conference on Computing frontiers

(2007), ACM, pp. 183-194.

KANDULA, S., SENGUPTA, S., GREENBERG, A.,
PATEL, P., AND CHAIKEN, R. The Nature of Data
Center Traffic: Measurements & Analysis. In Pro-
ceedings of the 9th ACM SIGCOMM conference
on Internet measurement conference (2009), ACM,
pp- 202-208.

KARYPIS, G., AND KUMAR, V. Multilevel Algo-
rithms for Multi-Constraint Graph Partitioning. In
Supercomputing (1998).

KRUSKAL, J. B. On the Shortest Spanning Subtree
of a Graph and the Traveling Salesman Problem.
Proceedings of the American Mathematical society

7,1 (1956), 48-50.

LEMON Graph Library.
elte.hu/trac/lemon.

http://lemon.cs.

MALEWICZ, G., AUSTERN, M. H., BIK, A. J.,
DEHNERT, J. C., HORN, I., LEISER, N., AND

14

[35]

(36]

[37]

(38]

(39]

[40]

[41]

(42]

[43]

[44]

CZAJKOWSKI, G. Pregel: a System for Large-
Scale Graph Processing. In SIGMOD (2010).

Microservers Powered by Intel.
//www.intel.com/content/www/us/en/
servers/microservers.html.

http:

MISLOVE, A., MARCON, M., GUMMADI, K. P.,
DRUSCHEL, P., AND BHATTACHARIJEE, B. Mea-
surement and Analysis of Online Social Networks.
In IMC (2007).

MITZENMACHER, M. The Power of Two Choices
in Randomized Load Balancing. Parallel and Dis-
tributed Systems, IEEE Transactions on 12, 10
(2001).

How Microsoft Designs its Cloud-Scale Servers.
http://bit.ly/1HKCy27.

Novakovic, S., DAGLIS, A., BUGNION, E.,
FALSAFI, B., AND GROT, B. Scale-Out NUMA.
ACM SIGARCH Computer Architecture News 42, 1
(2014), 3—18.

OpenFlow Specification.
archive.openflow.org/documents/
openflow-spec-v1.1.0.pdf.

http://

PORTER, G., STRONG, R. D., FARRINGTON, N.,
FORENCICH, A., SUN, P., ROSING, T., FAIN-
MAN, Y., PAPEN, G., AND VAHDAT, A. In-
tegrating Microsecond Circuit Switching into the
Data Center. In ACM SIGCOMM 2013 Conference,
SIGCOMM’13, Hong Kong, China, August 12-16,
2013 (2013), D. M. Chiu, J. Wang, P. Barford, and
S. Seshan, Eds., ACM, pp. 447-458.

PUTNAM, A., CAULFIELD, A. M., CHUNG, E. S.,
CHIOU, D., CONSTANTINIDES, K., DEMME, J.,
ESMAEILZADEH, H., FOWERS, J., GOPAL, G. P.,
GRAY, J., ET AL. A Reconfigurable Fabric for Ac-
celerating Large-Scale Data Center Services. In
Computer Architecture (ISCA), 2014 ACM/IEEE
41st International Symposium on (2014), 1EEE,
pp. 13-24.

ROy, A., ZENG, H., BAGGA, J., PORTER, G.,
AND SNOEREN, A. C. Inside the Social Net-
work’s (Datacenter) Network. In Proceedings of the
2015 ACM Conference on Special Interest Group
on Data Communication (2015), ACM, pp. 123-
137.

SEAMICRO, A. AMD SeaMicro SM15000 Fabric
Compute Systems. http://www.seamicro.com/
sm15000.

http://www.hotchips.org/archives/2010s/hc27/
http://www.hotchips.org/archives/2010s/hc27/
http://bit.ly/1JxM9Zr
http://bit.ly/1JxM9Zr
http://standards.ieee.org/findstds/standard/802.3-2012.html
http://standards.ieee.org/findstds/standard/802.3-2012.html
http://lemon.cs.elte.hu/trac/lemon
http://lemon.cs.elte.hu/trac/lemon
http://www.intel.com/content/www/us/en/servers/microservers.html
http://www.intel.com/content/www/us/en/servers/microservers.html
http://www.intel.com/content/www/us/en/servers/microservers.html
http://bit.ly/1HKCy27
http://archive.openflow.org/documents/openflow-spec-v1.1.0.pdf
http://archive.openflow.org/documents/openflow-spec-v1.1.0.pdf
http://archive.openflow.org/documents/openflow-spec-v1.1.0.pdf
http://www.seamicro.com/sm15000
http://www.seamicro.com/sm15000

[45]

[46]

[47]

[48]

[49]

SINGLA, A., HONG, C.-Y., PoPA, L., AND GOD-
FREY, P. B. Jellyfish: Networking Data Centers
Randomly. In NSDI (2012), vol. 12, pp. 17-17.

SUDAN, K., BALAKRISHNAN, S., LIE, S., XU,
M., MALLICK, D., LAUTERBACH, G., AND BAL-
ASUBRAMONIAN, R. A Novel System Architec-
ture for Web-Scale Applications using Lightweight
CPUs and Virtualized I/O. In High Performance
Computer Architecture (HPCA2013), 2013 IEEE
19th International Symposium on (2013), IEEE,
pp- 167-178.

WANG, G., ANDERSEN, D. G., KAMINSKY, M.,
PAPAGIANNAKI, K., NG, T., KozucH, M., AND
RYAN, M. c-Through: Part-Time Optics in Data
Centers. ACM SIGCOMM Computer Communica-
tion Review 41, 4 (2011), 327-338.

WWW.HPCRESEARCH.NL. IBM BlueGene P&Q.
http://www.hpcresearch.nl/euroben/
Overview/webl2/bluegene.phpl

ZHOU, X., ZHANG, Z.,ZHU, Y., L1, Y., KUMAR,
S., VAHDAT, A., ZHAO, B. Y., AND ZHENG, H.
Mirror Mirror on the Ceiling: Flexible Wireless

15

[50]

(51]

(52]

[53]

[54]

Links for Data Centers. ACM SIGCOMM Com-
puter Communication Review 42, 4 (2012), 443—
454.

Analog Devices ADN4612.
//www.analog.com/media/en/
technical-documentation/data-sheets/
ADN4612.pdf.

http:

Analog Devices ADN4605.
//www.analog.com/en/products/
switches-multiplexers/
digital-crosspoint-switches/adn4605.
html.

http:

Intel Xeon Processor D-1500 Family Prod-
uct Brief. http://www.intel.com/
content/www/us/en/processors/xeon/
xeon-processor-d-brief.html,

10GBase-KR FEC Tutorial. http://www.
ieee802.0rg/802_tutorials/06-July/
10GBASE-KR_FEC_Tutorial_1407.pdf

Vitesse VSC3144. https://wuw.vitesse.com/
products/product/VSC3144,

http://www.hpcresearch.nl/euroben/Overview/web12/bluegene.php
http://www.hpcresearch.nl/euroben/Overview/web12/bluegene.php
http://www.analog.com/media/en/technical-documentation/data-sheets/ADN4612.pdf
http://www.analog.com/media/en/technical-documentation/data-sheets/ADN4612.pdf
http://www.analog.com/media/en/technical-documentation/data-sheets/ADN4612.pdf
http://www.analog.com/media/en/technical-documentation/data-sheets/ADN4612.pdf
http://www.analog.com/en/products/switches-multiplexers/digital-crosspoint-switches/adn4605.html
http://www.analog.com/en/products/switches-multiplexers/digital-crosspoint-switches/adn4605.html
http://www.analog.com/en/products/switches-multiplexers/digital-crosspoint-switches/adn4605.html
http://www.analog.com/en/products/switches-multiplexers/digital-crosspoint-switches/adn4605.html
http://www.analog.com/en/products/switches-multiplexers/digital-crosspoint-switches/adn4605.html
http://www.intel.com/content/www/us/en/processors/xeon/xeon-processor-d-brief.html
http://www.intel.com/content/www/us/en/processors/xeon/xeon-processor-d-brief.html
http://www.intel.com/content/www/us/en/processors/xeon/xeon-processor-d-brief.html
http://www.ieee802.org/802_tutorials/06-July/10GBASE-KR_FEC_Tutorial_1407.pdf
http://www.ieee802.org/802_tutorials/06-July/10GBASE-KR_FEC_Tutorial_1407.pdf
http://www.ieee802.org/802_tutorials/06-July/10GBASE-KR_FEC_Tutorial_1407.pdf
https://www.vitesse.com/products/product/VSC3144
https://www.vitesse.com/products/product/VSC3144

	Introduction
	Partial Reconfigurability
	XFabric Architecture Overview
	XFabric Configuration
	Traffic Demand Estimation
	Uplink Configuration Algorithm
	Topology Generation Algorithm
	Reconfiguration

	XFabric Implementation
	Evaluation
	Topologies
	Workloads
	Metrics
	XFabric Performance
	XFabric Prototype Performance
	Reconfiguration Overheads

	Related Work
	Conclusion

