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ABSTRACT

Recurrent Neural Networks (RNNs) using Long-Short
Term Memory (LSTM) architecture have demonstrated the
state-of-the-art performances on speech recognition. Most
of deep RNNs use the softmax activation function in the last
layer for classification. This paper illustrates small but con-
sistent advantages of replacing the softmax layer in RNN with
Support Vector Machines (SVMs). The parameters of RNNs
and SVMs are jointly learned using a sequence-level max-
margin criteria, instead of cross-entropy. The resulting model
is termed Recurrent SVM. The conventional SVMs need to
predefine a feature space and do not have internal states to
deal with arbitrary long-term dependencies in sequences. The
proposed recurrent SVM uses LSTMs to learn the feature
space and to capture temporal dependencies, while using the
SVM (in the last layer) for sequence classification. The model
is evaluated on the Windows phone task for large vocabulary
continuous speech recognition.

Index Terms— Deep learning, LSTM, SVM, maximum
margin, sequence training

1. INTRODUCTION

Recurrent Neural Networks (RNNs) [1] and Structured SVMs
[2, 3] are two successful models for sequence classification,
such as speech recognition [3,4]. The RNNs are universal
models in the sense that they can approximate any sequence-
to-sequence mapping to arbitrary accuracy [5, 6]. However,
there are three major drawbacks of RNNs. First, the train-
ing usually requires to solve a highly nonlinear optimization
problem which has many local minima. Second, they tend to
overfit given the limited data if training goes on too long [1].
Third, the number of neurons in RNNs is fixed, empirically.
Alternatively, Support Vector Machines (SVMs) supplied
the maximum margin classifier idea [7], has attracted exten-
sive research interests [§—10]. The SVM was originally pro-
posed for binary classification. It can be extended to han-
dle the multiclass classification or sequence recognition. The
modified SVMs for multiclass classification and sequence
recognition are known as the multiclass SVMs [11] and struc-
tured SVMSs [2, 3, 12], respectively. The SVM has serval
prominent features. First, it has been proven that maximiz-
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ing the margin is equivalent to minimising an upper bound of
generalization error [7]. Second, the optimization problem of
SVM is convex, which is guaranteed to have a global optimal
solution. Third, the size of SVM model is determined by the
number of support vectors [7] which is learned from training
data, instead of a fixed design in RNNs. However, SVMs are
shallow architectures, whereas deep architectures of feedfor-
ward and recurrent neural networks have shown state-of-the-
art performances in speech recognition [4, 13—15]. Recently
deep learning using SVMs in combination with CNNs/DNNs
has shown promising results [16, 17]. In this work, a novel
model using SVMs in combination with RNNs is proposed.

Conventional RNNs use the softmax activation function
at the last layer for classification. This work illustrates the ad-
vantage of replacing the softmax layer with SVMs. Two train-
ing algorithms are proposed, at frame and sequence-level, to
jointly learn the parameters of SVM and RNN in the max-
margin criteria. The resulting model is termed Recurrent
SVM. Conventional SVMs use a predefined feature space and
do not have internal states to deal with arbitrary long-term
dependencies. The proposed Recurrent SVM uses RNNs to
learn the feature space and to capture temporal dependencies,
while using the SVM (in the last layer) for classification. Its
decoding process is similar to the RNN-HMM hybrid system
but with frame-level posterior probabilities replaced by scores
from the SVM. We verify its effectiveness on the Windows
phone task for speech recognition.

2. RECURRENT NEURAL NETWORK

Given an input sequence X1.7 = {x1,..., @}, the simple
RNNs compute the hidden vector {hq,..., hr} by iterating
the following equations fromt¢ =1,... T,

hy = H(Wapxe + Whrphe_1 + by,) (D

where W is the weight matrix, e.g., W, is the input-hidden
weight matrix, b is the bias vector, e.g., by, is the hidden bias
vector, and H(-) is the recurrent hidden layer function. De-
note the corresponding state labels as s = {s1,...,sr}, the
state-label posterior for frame ¢ is computed by the softmax

exp (wl by + bs,)
25:1 exp (w;'—t h; + bst)

P(5t|X1:t) = )



where N is the total number of labels, w, is the weight vec-
tor connecting the hidden layer to the output state s.!

H(-) in equation (1) is typically an element-wise sigmoid
function. However, [18] found that using the Long Short-
Term Memory (LSTM) architecture can alleviate the gradient
vanishing/exploding issue. A simple LSTM memory block is
illustrated in Figure 1. In LSTM-RNN, the recurrent hidden
layer function #(+) is implemented by the following compos-
ite functions,

Zt = ta‘nh(wzzxt + thht—l + bz)

it =0 (Wi + Winhi 1 + Wicer 1 +by)
fi=0 Wz + Wyephy 1 + Wyee,q + by)
=10z + fi©Oci

Oy =0 (Wowwt + Wohht—l + Wocct—l + bo)
h; = o, ® tanh(¢;)

3)
where vectors ¢, f;, o; are the activation of the input, output,
and forget gates respectively, W., are the weight matrices
for input «;, W.; are the weight matrices for recurrent input
h;. W.. are the diagonal weight matrices for the peephole
connections. tanh(-), () and © are the hyperbolic tangent,
logistic sigmoid and multiplication, element-wise functions,
respectively.

3. RECURRENT SVM

In LSTM-RNN, the softmax normalization term (Eq. (2)) is a
constant for all labels, thus, it can be ignored during decoding.
For example, given a input sequence X'1.¢, the “most likely”
state label at time ¢ can be inferred by

argmax log P(s|X1.;) = arg max WsTht 4)

For multiclass SVM [11], the classification function is
arg max w/ ¢(x;) Q)]

where ¢(x;) is the predefined feature space of SVM and w
is the weight parameter for class/state s. If RNNs are used
to derive the feature space, e.g., ¢(x;) = hy, decoding of
multiclass SVMs and RNNs are the same. This inspires us to
replace the softmax layer in RNNs with SVM. The resulting
model is named Recurrent SVM. Its architecture is illustrated
in Figure 1.

Note that RNNs can be trained using frame-level cross-
entropy, connectionist temporal classification (CTC) [19] or
sequence-level MMI/sMBR criteria [15,20]. In this work, two
training algorithms at frame-level (Section 3.1) and sequence-
level (Section 3.2), using max-margin criterion, are proposed.
Each algorithm includes two iterative steps. The first step
is to estimate the parameters of SVM in the last layer using
the quadratic programing. The second step is to update the
parameters of RNN in all previous layers using subgradient
approaches.

!For simplicity, the state bias bs, is ignored for the rest of the paper.
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Fig. 1. The architecture of Recurrent SVMs with LSTM units.
The dash arrows illustrate the connection with time lag. The
SVM in the last layer can be Multiclass/Structured SVMs.

3.1. Frame-level training (Recurrent multiclass SVM)

In the frame-level max—mar?n training, given training inputs
and state labels, {(x¢,s¢)},_,, let ¢(x:) = hy as the fea-
ture space derived from RNN recurrent states, the parameters
of the last layer are first estimated using the multiclass SVM
training algorithm [11],

N T
) 1
min =Y w3 +C> & ©6)
woke 2 s=1 t=1
s.t.  for every training frame ¢t =1,..., T,
for every competing states 5; € {1,..., N} :

T T
wg hy —wg hy > 1§,

5t # 8¢

where & > 0 is the slack variable which penalizes the data
points that violate the margin requirement. The equation (6)
basically says that, the score of the correct state label, W;—t h;,
has to be greater than the scores of any other states, wsTt h¢, by
a margin. Substituting &; from the constraints into the objec-
tive function, equation (6) can be reformulated as minimizing

N T
1
Feea(Wa W) =53 [wall3+C) [l—wlht+maxwlht
s=1 t=1

Si#st
)
where h; depends on all the weights W, in previous layers
shown in equation (3). [x]4+ = max(0, ) is a hinge function.
Note the maximum of a set of linear functions is convex, thus
equation (7) is convex w.r.t. wg. The first step of recurrent
SVM training is to optimize w4 by minimizing (7).
The second step of recurrent SVM training is to optimize
the parameters in previous layers, e.g., W;;, in equation (3).
These parameters can be updated by back propagating the
gradients from the top layer.

a]:frm _ d 8]:frm 8ht
OWin t; ( Ohy Wy, ®)

Note Oh;/OW y, is the same as standard RNNs which can be
computed using BPTT algorithm. The key here is to compute
the derivative of F;., w.r.t. the hy. However, equation (7) is




not differentiable because of the max(-). To handle this, the
subgradient method [21] is applied. Given the current SVM
parameters, Wy, in the last layer, the subgradient of objective
function (7) w.r.t. h; can be derived as

a]:frm
Ohy

=2C[1+ w;rtht - W;ht]+ (ws, —ws,)  (9)

where 5; =arg maxgtw;ht is the most competing state label.
After this point, the BPTT algorithm works exactly the same
as the standard RNNs. Note, after SVM training for current
iteration, most of data may be classified correctly and beyond
the margin, i.e., [1 + wl hi—w] h¢] . = O for these frames.
Interestingly, this means, only the data located in the margin
(known as the support vectors) have non-zeros gradients.

3.2. Sequence-level training (Recurrent structured SVM)

In the max-margin sequence training, for simplicity, let’s con-
sider one training utterance (X, s) where X = {x1,..., @7}
is the inputs and s = {s1,...,sr} is reference state labels.
The parameters of the model can be estimated by maximising

. P(s|X) p(X|s)P(s)
s {log P(S|X)} p(XIS)P(S)}

Here the margin is defined as the minimum distance between
the reference state sequence s and competing state sequence
s in the log posterior domain as illustrated in the Fig. 2. Note
that, unlike MMI/sMBR sequence training, the normalization
term ) p(X, s) in posterior probability is cancelled out, as
it appears in both numerator and denominator. For clarity, the
language model probability is not shown here. To generalize
the above objective function, a loss function £(s, ) is intro-
duced to control the size of the margin, a hinge function [-]+
is applied to ignore the data that beyond the margin, and a
prior P(w) is incorporated to further reduce the generaliza-
tion error. Thus the criterion becomes minimizing

= 1 1
i { s

—log P(w) + {m;élx {5(37 5) — log m H i (10)

For recurrent SVMs, log (p(X|s)P(s)) can be computed via
T

Z (W;ht —log P(s¢) + log P(st|st,1)) =w'p(X,s)(11)
=1

where ¢(X, s) is the joint feature [22], which characterizes
the dependencies between two sequences, X and s,

5(825 = 1)ht W1
P = | Ssi=Nh | V=] wy | (2
t=1 log P(s¢) -1

log P(s¢|st—1) +1
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Fig. 2. The sequence-level max-margin criterion. Margin
is defined in the log-posterior domain between the reference
state sequence S and the most competing state sequence s.

where §(+) is the Kronecker delta (indicator) function. Here
the prior, P(w), is assumed to be a Gaussian with a zero mean
and a scaled identity covariance matrix CT, thus log P(w) =
log N(0,CT) f%wTw. Substituting the prior and equa-
tion (11) into criterion (10), the parameters of recurrent SVM

can be estimated by minimizing?
linear

1 9 /—T’%
-Fseq(waw*) :2||W||2+O|:—W (ZS(X,S) (13)
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convex

where ¢(-, -) depends on h; and h; depends on all the weights
‘W, in previous layers shown in equation (3). The first step of
sequence training is to optimize w = {wy,..., Ws,..., Wy}
in the last layer by minimizing (13). Similar to Fpy, the Fseq
is also convex for w. Interestingly, given the feature space ¢,
equation (13) is the same as the training criterion for struc-
tured SVMs [12]. This optimization can be solved using the
cutting plane algorithm [2].

The second step of sequence training is to optimize the
parameters W, in the previous layers, e.g., W;; in equation
(3). These parameters can be updated by back propagating
the gradients from the top layer.

0Fseq s [ 0Fseq Ohy
= 14
oW1, ;( oh, OW,;, (14

Again Oh,/OW, is the same as standard RNNs. The key is
to calculate the subgradient of Fgoq W.r.t. h; for each frame ¢,

0F seq
Ohy

where L is the loss between the reference s and its most com-
peting state sequence 3, and ¢ is short for feature ¢(X, 3).
After this point, the BPTT algorithm works exactly the same
as the standard RNNs. The term [£+w'¢ —w ] in
equation (15) indicates that, only the utterances located in the
margin (support vectors) have non-zeros gradients.

=20 [L+w'p—w'o], (ws, —ws,) (15

2For simplicity, only one training utterance is shown in equation (13).



3.3. Inference

The decoding process is similar to the RNN-HMM hybrid
system but with the log posterior probabilities, log P(s;|x:),
replaced by the scores from recurrent SVM, W;rt h;. Note that
searching the most likely state sequence s during decoding is
essentially the same as search the most competing state se-
quence $ in equation (13), except the loss £(s, s). They can
be solved using the same Viterbi algorithm.

3.4. Practical Issues

An efficient implementation of the algorithm is important for
speech recognition. In this section several design options for
recurrent SVM training are described that have a substantial
influence on computational efficiency.

Form of Prior. Previously a zero-mean Gaussian prior is in-
troduced. However, a proper mean of prior should be the one
can yield LSTM performance, log P(w) = log N (weyy, CT).
Thus the term 3 ||w||3 in (7) and (13) becomes 2 ||w —wguy||3.
Since a better mean is applied, a smaller variation C' can be
used to reduce the training iterations [23].

Lattices. Solving the optimization (13) requires to search the
most competing state sequence s efficiently. The computa-
tional load during training is dominated by this search pro-
cess. To speed up the training, denominator lattices with state
alignments are used to constrain the searching space. Then
a lattice-based forward-backward search [3, 23] is applied to
find the most competing state sequence s.

Caching. To further avoid the computation cost of searching
the s in (13), during training iterations, the five most recently
used state sequences S for each utterance are cached. This
reduces the number of calls to search in the lattices.

4. EXPERIMENTS

The Windows Phone short message diction task is used to
evaluate the effectiveness of the recurrent SVM proposed in
Section 3. The training data consists of 60 hours of tran-
scribed US-English speech. The test set consists of 3 hours of
data and 16k words. All the experiments were implemented
based on the computational network toolkit (CNTK) [24]. 87
dimentional log-filter-bank features are used for LSTM and
recurrent SVM. The feature context window is 11 frames.
The baseline DNN has 5 hidden layers, each layer includes
2048 hidden nodes. All the systems use 1812 tied triphone
states. The baseline LSTM has four layers, each has 1024
hidden nodes and the output size of each layer is reduced to
512 using a linear projection layer [25]. The state label is de-
layed by 5 frames for LSTM as described in [25]. No frame
stacking was applied. During LSTM training, the back prop-
agation though time (BPTT) step is set to 20. The forget gate
bias by in (3) is initialized as 1 according to [26].

The Recurrent SVM is constructed base on the baseline
LSTM (four LSTM layers) in combination with a SVM in

WER %
Model — —
frame-level training \ sequence training
DNN 23.06% (CE) 21.08 % (MMI)
LSTM-RNN 21.14% (CE) 20.40% (MMI)
] Recurrent SVM H 20.69% (MM) \ 19.83% (MM) ‘

Table 1. The results (in word error rate) for DNN, LSTM-
RNN and Recurrent SVM systems, trained using frame-level
and sequence-level criterion. The CE, MMI and MM are short
for cross entropy (CE), maximum mutual information (MMI)
and maximum margin (MM) criterion.

- Recurrent SVM LSTM
Training . .

softmax layer \ + previous layers || baseline

frame-level 21.01 % 20.69% 21.14%

sequence-level 20.19% 19.83% 20.40%

Table 2. The impact of each layer in recurrent SVM using the
frame-level and sequence-level max-margin training.

the last softmax layer. In the frame-level training, the scaled
0/1 loss is used in equation (6) and the CE trained LSTM is
used as a prior. The scalar is tuned using the cross validation
set. In the sequence training, the state loss [15] is applied in
equation (13) and the MMI-trained LSTM is used as a prior.
The results of all systems are shown in Table 1. In frame-level
training, the proposed recurrent SVM improved the LSTM
(CE) by 2.1%, and improved the DNN (CE) by 10.3%. In
sequence-level training, the recurrent SVM outperformed the
LSTM (MMI) by 2.8%, and improved the DNN (MMI) by
6%. Table 2 suggests that in both training criterion, more than
65% of gains in recurrent SVMs are coming from updating
the recurrent layers. Note that although the improvement of
recurrent SVM over LSTM is not big, it does not increase any
latency/computation cost for the runtime decoding.

5. CONCLUSION AND FUTURE WORK

A new type of recurrent model is described in this work. The
traditional RNN uses the softmax activation at the last layer
for classification. The proposed model instead uses a SVM at
the last layer. Two training algorithms are proposed at frame
and sequence-level to learn parameters of the SVM and RNN
jointly in maximum-margin criteria. In frame-level training,
the new model is shown to be related to the multiclass SVM
with RNN features; In sequence-level training, it is related
to the structured SVM with RNN features and state transi-
tion features. The proposed model, named recurrent SVMs,
yields 2.8% improvement over LSTM (MMI trained) on Win-
dows Phone task without increasing any runtime latency. Un-
like the conventional SVMs need predefined feature space,
the proposed recurrent SVM uses LSTMs to learn the feature
space and to capture temporal dependencies, while using the
linear SVM in the last layer for classification. Future work
will investigate recurrent SVMs with non-linear kernels.
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