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Abstract
Spoken language understanding (SLU) is a core component of
a spoken dialogue system. In the traditional architecture of di-
alogue systems, the SLU component treats each utterance inde-
pendent of each other, and then the following components ag-
gregate the multi-turn information in the separate phases. How-
ever, there are two challenges: 1) errors from previous turns
may be propagated and then degrade the performance of the cur-
rent turn; 2) knowledge mentioned in the long history may not
be carried into the current turn. This paper addresses the above
issues by proposing an architecture using end-to-end memory
networks to model knowledge carryover in multi-turn conver-
sations, where utterances encoded with intents and slots can be
stored as embeddings in the memory and the decoding phase ap-
plies an attention model to leverage previously stored semantics
for intent prediction and slot tagging simultaneously. The ex-
periments on Microsoft Cortana conversational data show that
the proposed memory network architecture can effectively ex-
tract salient semantics for modeling knowledge carryover in the
multi-turn conversations and outperform the results using the
state-of-the-art recurrent neural network framework (RNN) de-
signed for single-turn SLU.
Index Terms: spoken language understanding, end-to-end,
memory network, embedding

1. Introduction
In the past decades, goal-oriented spoken dialogue systems
(SDS) are being incorporated in various devices and allow users
to speak to systems in order to finish tasks more efficiently, for
example, the virtual personal assistants Microsoft’s Cortana and
Apple’s Siri. A key component of the understanding system is
an spoken language understanding (SLU) module-it parses user
utterances into semantic frames that capture the core meaning,
where three main tasks of SLU are domain classification, intent
determination, and slot filling [1]. A typical pipeline of SLU is
to first decide the domain given the input utterance, and based
on the domain, to predict the intent and to fill associated slots
corresponding to a domain-specific semantic template. The up-
per block of Figure 1 shows a communication-related user ut-
terance, “just send email to bob about fishing this weekend” and
its semantic frame, send email(contact name=“bob”, sub-
ject=“fishing this weekend”) [2]. Traditionally, domain de-
tection and intent prediction are framed as classification prob-
lems, where several classifiers such as support vector machines
and maximum entropy are employed [3, 4, 5]. Then slot filling
is framed as a sequence tagging task, where the IOB (in-out-
begin) format is applied for representing slot tags as illustrated
in Figure 1, and hidden Markov models (HMM) or conditional
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Figure 1: Example utterances (U) annotated with its domain
(D) and intent (I) and semantic slots in the IOB format (S). The
upper block shows an example for a single-turn utterance, and
the lower block shows similar utterances in the multi-turn sce-
nario.

random fields (CRF) have been employed for tagging [6, 7, 8].
With the advances on deep learning, deep belief networks

(DBNs) with deep neural networks (DNNs) have been applied
to for domain and intent classification [9, 10, 11]. Recently,
Ravuri et al. proposed an RNN architecture for intent determi-
nation [12]. For slot filling, deep learning has been viewed as
a feature generator and the neural architecture can be merged
with CRFs [13]. Yao et al. and Mesnil et al. later em-
ployed RNNs for sequence labeling in order to perform slot
filling [14, 15]. Recently, Hakkani-Tür proposed RNN-based
joint semantic parsing for predicting intents and filling slots in
the mean time [16]. However, above work focuses on SLU for
single-turn interactions, where each utterance is treated inde-
pendently.

The contextual information has been shown useful for SLU
modeling [17, 18, 19, 20]. For example, the lower block of
Figure 1 shows two utterances, where the latter containing the
message content in the email, so it is more likely to estimate
the semantic slot message with the same intent send email if
the contextual knowledge is kept. Bhargava et al. incorporated
the information from previous intra-session utterances into the
SLU tasks on a given utterance by applying SVM-HMMs to
sequence tagging and obtained the improvement [17]. Also,
contextual information has been incorporated into the recurrent
neural network (RNN) for improved domain classification, in-
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Figure 2: The illustration of the proposed end-to-end memory network model for multi-turn SLU.

tent prediction, and slot filling [18, 21]. However, most prior
work exploited information only from the previous turn, ignor-
ing the long-term contexts. Another constraint is that the mod-
els require supervision at each layer of the network, and there is
also no unified architecture that can perform multi-turn SLU in
an end-to-end framework.

Recently there has been a resurgence in computational
models using explicit storage and a notion of attention [22, 23,
24, 25]; manipulating such a storage allows multiple computa-
tional steps and can model long-term dependencies in sequen-
tial utterances. Basically, the storage is endowed with a con-
tinuous representation modeled by neural networks, where the
stored representations can be read and written to encode knowl-
edge. Motivated by the idea, this paper presents a recurrent
neural network (RNN) architecture where the recurrence reads
from a possibly large external memory before tagging the cur-
rent utterance. The model training does not require paired data
for each layer of the network; that is, the proposed model can
be trained end-to-end directly from input-output pairs. To the
best of our knowledge, this is the first attempt of employing an
end-to-end neural network model to model long-term knowl-
edge carryover for multi-turn SLU.

2. End-to-End Memory Networks
For the SLU task, our model takes a discrete set of history ut-
terances {xi} that are stored in the memory, a current utter-
ance c = w1, ..., wT , and outputs corresponding semantic tags
y = y1, ..., yT , where a semantic tag consists intent and slot
information. The proposed model is illustrated in Figure 2 and
detailed below.

2.1. Architecture

The model embeds all utterances into a continuous space and
stores all x’s embedding to the memory. The representation of
the current utterance is then compared with memory representa-
tions to encode carried knowledge via an attention mechanism.
Then the encoded knowledge is taken together with the word se-
quence for estimating the semantic tags. Four main procedures
are described below.

Memory Representation: To store the knowledge in the pre-
vious turns, we convert each utterance from previous turns, xi,
into a memory vectors mi with dimension d by embedding the
utterances in a continuous space through an RNN. The current

utterance c is also embedded to a vector u with the same dimen-
sion.

mi = RNNmem(xi), (1)

u = RNNin(c), (2)

where RNNmem and RNNin are tied together for encoding con-
texts and the current utterance consistently. Therefore, the se-
quential information can be kept for better representations [16].

Knowledge Attention Distribution: In the embedding space,
we compute the match between the current utterance u and each
memory vector mi by taking the inner product followed by a
softmax.

pi = softmax(uTmi), (3)

where softmax(zi) = ezi/
∑

j e
zj and pi can be viewed as at-

tention distribution for modeling knowledge carryover in order
to understand the current utterance.

Knowledge Encoding Representation: In order to encode the
knowledge from history, a history vector h is a sum over the
memory embeddings weighted by the attention distribution.

h =
∑
i

pimi. (4)

Because the function from input to output is smooth, we can
easily compute gradients and back propagate through it. Then
the sum of the memory vector h and the current input embed-
ding u are then passed through a weight matrix Wkg to generate
an output knowledge encoding vector o,

o =Wkg(h+ u), (5)

where Wkg is a fully-connected neural network for encoding
carried knowledge.

Sequence Tagging: Different from the classification task most
of work focused on [25], our memory architecture is to pro-
vide additional knowledge for improving tagging performance.
Therefore, to estimate the tag sequence y corresponding to an
input word sequence c, we use an RNN module for training a
slot tagger, where the encoded knowledge o is fed into the input
of the model in order to model knowledge carryover:

y = RNN(o, c). (6)
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Figure 3: The RNN model architecture for tagging. The dotted
red lines show the encoded knowledge from history in the multi-
turn interactions.

2.2. Recurrent Neural Network (RNN) Tagger

The goal of the SLU model is to assign a semantic tag for each
word in the current utterance. That is, given c = w1, ..., wn, the
model is to predict y = y1, ..., yn where each tag yi is aligned
with the wordwi. We use the Elman RNN architecture, consist-
ing of an input layer, a hidden layer, and an output layer [26].
The input, hidden and output layers consist of a set of neurons
representing the input, hidden and output at each time step t
(wt, ht, and yt) respectively. The solid black part in the Fig-
ure 3 illustrates the architecture of the vanilla RNN model.

ht = φ(Wwt + Uht−1), (7)
ŷt = softmax(V ht), (8)

where φ is a smooth bounded function such as tanh, and ŷt is the
probability distribution over of semantic tags given the current
hidden state ht. The sequence probability can be formulated as

p(y | c) = p(y | w1, ..., wT ) =
∏
i

p(yi | w1, ..., wi). (9)

The model can be trained using backpropagation to maximize
the conditional likelihood of the training set labels.

To overcome the frequent gradient vanishing issue when
modeling long-term dependencies, gated RNN was designed to
use a more sophisticated activation function than a usual acti-
vation function, consisting of affine transformation followed by
a simple element-wise nonlinearity by using gating units [27],
such as long short-term memory (LSTM) and gated recurrent
unit (GRU) [28, 29]. RNNs employing either of these recurrent
units have been shown to perform well in tasks that require cap-
turing long-term dependencies [15, 30, 31, 32]. In this paper,
we use RNN with GRUs to allow each recurrent unit to adap-
tively capture dependencies of different time scales.

2.2.1. Gated Recurrent Units (GRU)

A GRU has two gates, a reset gate r, and an update gate z [29,
27]. The reset gate determines the combination between the
new input and the previous memory, and the update gate decides
how much the unit updates its activation, or content.

r = σ(W rwt + Urht−1), (10)
z = σ(W zwt + Uzht−1), (11)

where σ is a logistic sigmoid function.
Then the final activation of the GRU at time t, ht, is a lin-

ear interpolation between the previous activation ht−1 and the
candidate activation h̃t:

ht = (1− z)� h̃t + z � ht−1, (12)

h̃t = φ(Whwt + Uh(ht−1 � r))), (13)

෨ℎℎ

z

r
IN

OUT

Figure 4: The illustration of a GRU cell as depicted in [27].

where� is an element-wise multiplication. When the reset gate
off, it effectively makes the unit act as if it is reading the first
symbol of an input sequence, allowing it to forget the previ-
ously computed state. Figure 4 shows the gating mechanism of
a GRU cell. RNN-GRU can yield comparable performance as
RNN-LSTM with need of fewer parameters and less data for
generalization [27, 33]. Therefore, this paper employs GRUs
for all RNN models in the experiments.

2.2.2. Knowledge Carryover

In order to model the encoded knowledge from previous turns,
for each time step t, the knowledge encoding vector o in (5) is
fed into the RNN model together with the word wt. Therefore,
the hidden layer in the RNN model can be formulated as

ht = φ(Mo+Wwt + Uht−1) (14)

to replace (7) as illustrated in Figure 3, where the dotted red
lines indicate the carried knowledge. RNN-GRU can incor-
porate the encoded knowledge in the similar way, where Mo
can be added into (10), (11) and (12) for modeling contextual
knowledge similarly.

2.3. Model Training

To train the RNN-GRU with knowledge carryover, the weights
of M , W , and U for both gates and the weights of RNNmem,
RNNin, and Wkg can be jointly updated via backpropagation
from the RNN tagger.

3. Experiments
3.1. Dataset

The data is collected from Microsoft Cortana, where we extract
multi-turn interactions (#turn ≥ 5) in the communication do-
main for experiments. There are 32 semantic tags (the concate-
nation of intents and slots). The number of multi-turn utterances
for training is 1,005, one for testing is 1,001, and one for devel-
opment is 207. There are 13,779 single-turn utterances, which
are used to train the baseline SLU model for comparison.

3.2. Implementation Setting

For training models, we use mini-batch stochastic gradient de-
scent with batch size 50 and the adam optimizer with default
parameters (a fixed learning rate 0.001, β1 = 0.9, β2 = 0.999,
ε = 1e−08) [34]. The number of iterations per batch is set to
be 50 in the experiments. The dimension of word and mem-
ory embeddings is set as 150 and the size of the hidden layer in
the RNN is set as 100. The memory size is 20 to store carried
knowledge from previous 20 turns. The dropout rate is set to be
0.5 to avoid overfitting.



Table 1: The performance of multi-turn SLU in terms of first turn only, other turns, and overall results (%).

Model Training Knowledge Encoding First Turn Other Turns Overall
P R F1 P R F1 P R F1

(a) RNN Tagger single-turn 7 53.6 69.8 60.6 14.3 18.8 16.2 22.5 29.5 25.5
(b) multi-turn 7 70.4 46.3 55.8 41.5 50.8 45.7 45.1 49.9 47.4
(c) Encoder-Tagger multi-turn current utterance (c) 74.5 47.0 57.6 54.8 57.3 56.0 57.5 55.1 56.3
(d) multi-turn history + current (x, c) 78.3 63.1 69.9 60.3 61.2 60.8 63.5 61.6 62.5
(e) Memory Network multi-turn history + current (x, c) 79.5 67.8 73.2 65.1 66.2 65.7 67.8 66.5 67.1

Table 2: The performance of multi-turn SLU in terms of intent
and slot results (%).

Model Intent Slot
P R F1 P R F1

(a) 34.0 31.1 32.5 29.2 38.3 33.1
(b) 84.1 82.8 83.4 63.7 66.5 65.1
(c) 78.3 74.0 76.1 68.5 62.0 65.1
(d) 91.5 86.7 89.0 68.7 66.0 67.3
(e) 87.6 87.3 87.5 73.7 70.8 72.2

3.3. Results

In order to evaluate the proposed model for multi-turn SLU, we
compare the performance of following model architectures in
Table 1 and Table 2.

• RNN Tagger treats each test utterance independently
and performs sequence tagging via RNN-GRUs, where
the training set comes from single-turn interactions (row
(a)) or multi-turn interactions (row (b)).

• Encoder-Tagger encodes the knowledge before predic-
tion using RNN-GRUs, and then estimates each tag by
considering not only the current input word but also the
encoded information via another RNN-GRUs, where we
encode knowledge using the current utterance only (row
(c)) or entire history together with the current utterance
(row (d)). Note that there is no attention and memory
mechanisms in this model. The entire history is concate-
nated together for modeling the knowledge.

• Memory Network takes history and current utterances
into account for encoding knowledge with attention and
memory mechanisms in an end-to-end fashion, and then
performs sequence tagging using RNN-GRUs as de-
scribed in Section 2 (row (e)).

The evaluation metrics are precision (P), recall (R) and F-
measure (F1) for semantic tags, where each tagging result is
considered correct if the word-beginning and the word-inside
and the word-outside predictions are all correct (including both
intents and slots). For the evaluation results, we show the per-
formance of the testing set in terms of (1) first turn only, (2)
other turns, and (3) all turns from a full dialogue in Table 1. Fur-
thermore, we show the performance of evaluating intents and
slots separately in Table 2.

3.3.1. Comparing between Single-Turn and Multi-Turn Data

For the rows (a) and (b) in Table 1, training on single-turn data
may work well when testing the first-turn utterances, achiev-
ing 60.6% on F1. However, for other turns, its performance is
much worse due to lack of modeling contextual knowledge in
the multi-turn interactions and mismatch between training and
testing data. Treating each utterance from multi-turn interac-
tions independently performs 55.8% on F1 for the first-turn ut-

terances, even though the size of training data is smaller. The
reason is probably that there is no mismatch between training
and testing.

3.3.2. Comparing between Encoded Knowledge

For employing encoder-tagger models (rows (c) and (d)), ad-
ditionally encoding the history utterances improves the tag-
ging results for both first-turn and following turns. Also,
the encoder-tagger significantly outperform the RNN tagger
(47.4% to 62.5%), showing that encoder-tagger is able to cap-
ture clues from long-term dependencies.

3.3.3. Effectiveness of the Proposed Model

From Table 1, we find that the best overall performance comes
from the proposed memory networks (row (e)), which achieves
67.1% on the overall F1 score and shows the effectiveness of
modeling long-term knowledge for SLU. The proposed model
works well when tagging the turns with previous contexts,
where the F1 score of SLU is about 65.7%. Interestingly, the
performance of first-turn utterances is also better than all base-
lines, probably because the capability of modeling following
turns can benefit the performance of first-turn utterances. Com-
paring with the row (d), memory network is able to effectively
capture salient knowledge for better tagging. Also, in terms of
efficiency, the proposed model is more than 10x faster than the
encoder-tagger model, because each utterance is modeled sepa-
rately and stored in the memory for later reuse.

3.3.4. Analysis of Intent and Slot Performance

Table 2 presents intent-only and slot-only performance of the
same set of models. For both intent and slot performance, the
model trained on single-turn utterances performs worst. For
intent performance, encoder-tagger with history (row (d)) and
memory network (row (e)) significantly outperform others. The
difference between the rows (d) and (e) may not be significant.
On the other hand, in terms of slot performance, the best re-
sult is from the memory network, demonstrating that knowledge
carryover modeled by the proposed model can benefit inference
of semantic intents and slots in the multi-turn scenario.

4. Conclusions
This paper proposes end-to-end memory networks to store con-
textual knowledge, which can be exploited dynamically during
testing for manipulating knowledge carryover in order to model
long-term knowledge for multi-turn understanding. The model
embeds history utterances into a continuous space and store
them in the memory. The decoding phase applies an attention
model to encode the carried knowledge and then perform multi-
turn SLU. The experiments show the feasibility and robustness
of modeling knowledge carryover through memory networks.
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