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ABSTRACT

In this paper, we propose a scalable adaptation technique that adapts
the deep neural network (DNN) model through the low-rank plus
diagonal (LRPD) decomposition. It is desired that an adaptation
method can properly accommodate the available development data
with a variable amount of adaptation parameters. Thus, the resulting
models neither over-fit nor under-fit as the development data vary in
size for different speakers. The technique developed in this paper
is inspired by observing that adaptation matrices are very close to
an identity matrix or diagonally dominant. The LRPD restructures
the adaptation matrix as a superposition of a diagonal matrix and a
low-rank matrix. By varying the low-rank values, the LRPD con-
tains the full and the diagonal adaptation matrix as its special cases.
Experimental results demonstrated that the LRPD adaptation of the
full-size DNN obtains improved accuracy over the standard linear
adaptation. The LRPD bottleneck adaptation can reduce the speaker-
specific footprint by 82% over an already very compact SVD bottle-
neck adaptation, at an expense of 1% relative WER increase.
Index Terms: automatic speech recognition, deep neural network,
speaker adaptation

1. INTRODUCTION

The discovery of the strong modeling capabilities of deep neural
networks (DNNs) [1], [2], [3], [4] and the availability of high-speed
hardware has made it feasible to train large networks with tens of
millions of parameters. In the framework of context-dependent
DNN hidden-Markov-models (CD-DNN-HMMs) [1], the conven-
tional Gaussian Mixture Model (GMM) is replaced by a DNN to
evaluate the senone log-likelihood.

Despite its outstanding performance, CD-DNN-HMMs may still
suffer from the accuracy degradation due to the potential acoustic
mismatch between the training and test conditions. A simple and
popular approach to combat the mismatch problem is to adapt the
DNN model by applying a linear transformation on either input fea-
tures, hidden layers, or the input to the softmax layer [5, 6, 7, 8, 9].
One issue is that, due to the high dimensionality of the DNN lay-
ers, the transformation matrix in a full form would result in a large
speaker-dependent parameter set. When the amount of adaptation
data is limited, overfitting becomes a severe issue.

To address this issue, [10] adds Kullback-Leibler divergence
(KLD) regularization to the training criterion to prevent the adapted
model from straying too far from the speaker independent (SI)
model. Many other methods have been proposed as low-footprint
adaptation techniques, which require a small number of speaker-
dependent parameters. Feature discriminative linear regression
(fDLR) [9] transforms the input features by sharing the same trans-
form between each of the input frames. This amounts to replace
the full transformation matrix with a tied block-diagonal matrix.
In [11], the original large full-size DNN model is converted to a
much smaller low-rank DNN model by using singular value de-
composition (SVD). Then, SVD bottleneck adaptation is done by
applying the linear transform to the bottleneck layer. Thus, only a

few matrices of much lower dimension need to be updated for each
speaker.

Furthermore, we can, instead of adapting the whole matrix, only
adapt the diagonal matrix, when the adaptation data is limited [9, 12].
A DNN has been adapted by adjusting amplitude, bias and slopes in
the node activation functions, such as learning hidden unit contri-
bution (LHUC) [13] and sigmoid adaptation [14]. Likewise, this is
equivalent to adding a linear layer with diagonal transform after or
before the activation functions . The LHUC and sigmoide adapta-
tion have much smaller number of parameters to adapt comparing
to the SVD adaptation, while they may not yield similar accuracy
improvement along with the increase of the adaptation data.

In an extreme case, the adaptation matrix can be fixed to an
identity matrix and only bias vectors are adjusted. Interestingly, a
family of adaptation methods using auxiliary features falls into this
category. The speaker-specific auxiliary features can be derived in
many different ways, such as i-vector [15, 16, 17] and speaker code
[18, 19, 20], and then are concatenated with the standard acoustic
feature vectors. Because i-vectors or speaker codes are of low di-
mension, this method works well for rapid speaker adaptation with a
limited number of utterances. After simple algebraic manipulation,
it can be shown that the augmentation of auxiliary features can be
regarded as adjusting the bias vector on the first hidden layer [21].

It is remarkable that the employed adaptation methods highly
relies on the topology of the underlying SI DNN model. When a
full-size DNN is used, a full transformation matrix is prone to over-
fitting the limited adaptation data, and a diagonal matrix, or just bias
vector, is preferred. However, the use of the diagonal matrix may
sacrifice the adaptation gain, especially when adaptation data be-
come sufficient. To make the model scalable, it is desired that the
model footprint can be adjusted according to the amount of avail-
able adaptation data.

In this paper, we first examine adaptation matrices and discover
that they are very close to an identity matrix or diagonally dominant.
Therefore, we decompose the adaptation matrix into two parts, one is
a diagonal matrix and the other is a low-rank matrix which is further
decomposed into two smaller matrices by SVD. This method can
be applied to adapt either the full-size or the SVD SI DNN model.
The latter leads to a combination of the SVD bottleneck and the
LRPD adaptation. The rest of this paper is organized as follows. We
will first briefly introduce the SVD-based DNN adaptation in Sec-
tion 2. In Section 3, we propose the low-rank plus diagonal method
for DNN adaptation. Then, we evaluate our proposed method and
compare it with the existing adaptation methods in Section 4, and
conclude the study in Section 5.

2. SVD-BASED DNN ADAPTATION

A DNN can be considered as a conventional multi-layer perceptron
(MLP) with many hidden layers, where the input feature is concate-
nated from multiple consecutive frames and the output predicts the
posterior probabilities of thousands of senones. Given a DNN with
L hidden layers, the activation output at the l-th hidden layer, hl, is
recursively defined as the nonlinear transformation of the (l − 1)-th



(a) General linear adaptation

(b) SVD bottleneck adaptation

(c) LRPD adaptation
Fig. 1: Illustration of network structures of different adaptation
methods. Shaded nodes denote nonlinear units, unshaded nodes for
linear units. Red dashed links indicate the transformations that are
introduced during adaptation.

layer:

hl = σ(W lhl−1 + bl) (1)

where W l is the weight matrix, bl is the bias vector, and σ(·) is
an element-wise sigmoid activation function. h0 = x is the input
observation vector. For CD-DNN-HMMs [1], the output layer is nor-
malized by the softmax function to produce the posterior probability
of senone id s, p(s|x).

Many DNN adaptation techniques have been developed in the
past. The most popular approach for adapting DNNs is applying
a linear transformation to a certain DNN layer to account for the
mismatch between the training and test conditions. The adaptation
parameters consist of a speaker-specific transformation matrix W s

and a bias vector bs. The basic idea of this model is illustrated in
Fig. 1a. Note that the parameters corresponding to the red dashed
links are trained using the adaptation set, while other weights of the
model are fixed during adaptation. One main issue in these adapta-
tion techniques is that they typically need to update and store a large
amount of adaptation parameters due to the high dimensionality of
the DNN layers.

2.1. SVD bottleneck adaptation

We recently presented a SVD-based method in [22] to restructure
the DNN model in a significantly small size while maintaining the
recognition accuracy. Given an m× n weight matrix W in a DNN,
we approximate it as the product of two low-rank matrices by apply-

ing SVD

Wm×n ≈ Um×kV k×n (2)

where k is the number of retained singular values. Since k �
min(m,n), the number of parameters is significantly reduced from
mn to (m+n)k. Applying this decomposition to the weight matrix,
it acts as if inserting a linear bottleneck layer of fewer units between
the original nonlinear layers. After the SVD decomposition, it is also
possible to finetune U and V to recover the accuracy loss.

One important application of the SVD DNN is to allow efficient
adaptation by applying the linear transformation on the bottleneck
layers [11], as illustrated in Fig. 1b. We have

W s,m×n = Um×kSs,k×kV k×n (3)

where Ss,k×k is the adaptation matrix for speaker s and is initialized
to be an identity matrix Ik×k. The advantage of this approach is that
only a couple of small matrices need to be updated for each speaker.
Consider k = 256 and m = n = 2048 as an instance. Directly
adapting the initial matrix W needs to update 2048 × 2048 = 4M
parameters, while adapting S only updates 256 × 256 = 64K pa-
rameters, reducing the footprint to 1.6%. This dramatically reduces
the deployment cost for speaker personalization while producing
more reliable estimate of the adaptation model [11].

3. LOW-RANK PLUS DIAGONAL (LRPD) ADAPTATION
FOR DEEP NEURAL NETWORKS

To make the model scalable, it is desired that the model footprint can
be adjusted according to the amount of available adaptation data. In
this section, we propose the LRPD adaptation method to control the
number of adaptation parameters in a flexible way while maintaining
the same accuracy. The LRPD can be applied on either full-size or
SVD DNNs.

3.1. Properties of adaptation matrix
One simple heuristic is to re-apply the SVD to decompose the adap-
tation matrix W s. However, such decomposition would not yield
expected performance.

Fig. 2a shows an example of 224 × 224 adaptation matrix,
trained using 50 speaker-specific utterances starting from an SVD
DNN. Clearly, the matrix is very close to an identity matrix and of
full rank. This is indeed reasonable as the adapted model should not
deviate too far from the SI model given the limited number of adap-
tation data. Even if the adaptation data are sufficient, there should
exist a one-to-one correspondence between the speaker-dependent
excitation/activation and that of the average speaker in the SI model.
Thus the adaptation matrix should be diagonally dominant. It is
found that after subtracting an identify matrix from the adaptation
matrix, the magnitudes of all the elements are below 0.2, and 99%
below 0.05.

Fig. 2b compares the singular values between an adaptation ma-
trix W s and the one minus an identity matrix (W s − I). Be-
cause W s is close to an identity matrix, singular values of W s cen-
ter around 1 and decrease slowly. We cannot effectively compress
such a high-rank matrix by SVD. In contrast, the singular values
of (W s − I) steadily decrease approaching zero. Around 17% of
singular values contribute 50% of total values, and around 40% con-
tribute 80% of total values. This indicates that we should be able to
apply SVD to (W s − I) to reduce the speaker-dependent footprint.

3.2. LRPD adaptation
In the following, we describe in detail the proposed low-rank plus
diagonal (LRPD) adaptation method. Given an adaptation matrix



(a) An adaptation matrix

(b) Singular values of the adaptation matrix and the one after sub-
tracting an identity matrix from it.

Fig. 2: Illustration of an adaptation matrix and its corresponding
singular values.

W s,k×k, which can be Ss,k×k in the SVD bottleneck adaptation,
we approximate it as a superposition of a diagonal matrix Ds,k×k

and a low-rank matrix Ls,k×k as

W s,k×k ≈Ds,k×k +Ls,k×k (4)

The low-rank matrix Ls,k×k can be represented as a product of two
smaller matrices P s,k×c and Qs,c×k. Hence

W s,k×k ≈Ds,k×k + P s,k×cQs,c×k (5)

The number of elements in the LRPD decomposition is k(2c + 1),
while the original W s has k2 elements. If c � k , this can signifi-
cantly reduce the adaptation model footprint.

We can see that adaptation in an LRPD form amounts to in-
serting two linear layers above the layer being adapted, as shown
in Fig. 1c. The first layer has c units with weight matrix Qs and
the second one has k units with weight matrix P s. The one-to-one
skip-layer connections correspond to the diagonal component Ds.

Note that the LRPD adaptation can not only be applied to a
full-size DNN, but also be applied to the bottleneck layer of a SVD
DNN, leading to a combination of the SVD bottleneck adaptation
and LRPD adaptation. This essentially forms a cascade of two
low-rank models for different purposes. The SVD decomposition
is aimed to restructure the SI DNN model, whereas the LRPD
decomposition is to restructure the speaker-specific components.

The LRPD bridges the gap between the full and diagonal trans-
formation matrices. When c = 0, the LRPD is reduced to adaptation
with diagonal matrix. Specifically, if we apply the diagonal trans-
forms before or after all non-linear layers, we may achieve the sig-
moid [14] or LHUC [13] adaptation. On the other hand, if we fix the
diagonal components Ds to an identity matrix, we achieve a form
of low-rank plus identity (LRPI). Further setting c = 0 leads to the
adaptation of only bias vectors.

3.3. Training procedure
The parameters of the LRPD adaptation can be estimated using the
error backpropagation (BP) algorithm [23]. One issue is how to ini-
tialize the LRPD model. The first approach is to apply the SVD de-
composition to a well trained full adaptation matrix minus an iden-
tity matrix, as we have illustrated in Section 3.1. Then we may keep
a portion, either in percentage η or absolute number c, of largest
singular values, and retrain the model to recover the accuracy loss.
Alternatively, we can simply initialize the model by setting Ds to
an identity matrix, bias to zero, and low-rank P s and Qs randomly
with a uniform distribution. This method requires less training itera-
tions. One limitation is that the low-rank value c is not automatically
determined from the characteristic of the adaptation data.

4. EXPERIMENTS AND RESULTS
4.1. Experimental setup
The proposed adaptation method was evaluated using a Microsoft
internal Windows Phone short message dictation (SMD) task. The
Computational Network Toolkit (CNTK) [24] is used for neural net-
work training. The baseline SI models were trained with 300hr voice
search (VS) and SMD data. The experiments were conducted on data
from 7 speakers. The total number of test set words is 20,203. There
is no overlap among the development and test data.

The SI GMM-HMM acoustic model has approximately 288K
Gaussian components and 5976 senones trained with the MLE pro-
cedure, followed by fMPE and BMMI. The baseline SI CD-DNN-
HMM system takes as input a 22-dimension mean-normalized log-
filter bank feature with up to second-order derivatives and a context
window of 11 frames, forming a vector of 726-dimension (66× 11)
input. On top of the input layer there are 5 hidden layers with 2,048
units for each. The output layer has a dimension of 5,976. We con-
vert the full-size DNN model to the SVD DNN model by doing SVD
on all the matrices except the one between the input and the first hid-
den layer, and keep 40% of total singular values. The numbers of
units on the linear layers after SVD are 256, 272, 224, 256, and 368,
from bottom to top. We then retrained the SVD model and obtained
comparable accuracy to the full-size model. The baseline SI full-size
DNN and SVD DNN systems achieved 21.48% and 21.43% WER,
respectively, on the 7-speaker test set. More details of SVD-based
DNN model training can be found in [22].

The DNN models are adapted in a supervised way, where the SI
model is used to align the development data. We varied the number
of adaptation utterances from 5 (32 seconds) to 100 (11 minutes) for
each speaker.

4.2. Adaptation of full-size DNN
The first experiment is conducted to adapt the excitation to the fourth
hidden layer of the full-size DNN, as it is shown in [25] that adapting
intermediate layer provides more benefits than adapting boundary
layers or all hidden layers. The KLD regularization [10] is applied to
prevent the adapted model from straying too far from the SI model,
since the adaptation data is scarce compared with the scale of the
adaptation model. The regularization weight ρ is empirically set and
varies with tasks.

Fig. 3 shows the recognition performance (in WER%) for the
linear and LRPD adaptation. The standard linear adaption employs
a full transformation matrix with 2048×2048 = 4M parameters. In
contrast, the LRPD adaptation with c = 10 reduces the transforma-
tion to 2K × 21 = 42K parameters, 10% footprint of the standard
linear adaption. If we set c = 0, only diagonal and bias components
are adapted. This is equivalent to the sigmoid adaptation except that
one hidden layer, instead of all 5 layers, is updated.



Fig. 3: WERs (%) against the number of adaptation utterances for
linear and LRPD adaptation of the full-size DNN model. The dashed
level line is the SI DNN baseline.

It is observed that the LRPD (c = 10, ρ = 0.2) produces 4.1-
21.0% relative WER reduction (WERR) with 5-100 adaptation utter-
ances, which outperforms the corresponding linear adaptation (-5.9-
20.3% WERR). Second, the regularization weight ρ has an observ-
able impact on the adaptation performance [10], especially for the
standard linear adaptation. Without regularization, the linear adap-
tation shows gains with at least 50 adaptation utterances, and LRPD
with 20 utterance. Third, the sigmoid (c = 0, ρ = 0.2) adaption
yields the similar WER to the LRPD (c = 10, ρ = 0.2) adapta-
tion with 5-20 adaptation utterances, and then become worse when
more adaptation data is available. These observations indicate that
the LRPD adaption is capable to scale according to the adaptation
data, even if the underlying SI mode does not expose an amenable
structure for adaptation.

Table 1: Footprints and WERs (in %) for the LRPD adaptation of the
SVD DNN model, trained by starting from random initial conditions.

# Adapt. # Adapt. utts.
Model params. 5 20 100 Avg.
Linear 50.4K 19.80 18.26 16.22 17.69
LRPD, c=0 0.4K 20.92 20.12 18.75 19.69
LRPD, c=5 2.6K 20.26 18.64 17.47 18.46
LRPD, c=10 4.8K 20.09 18.43 16.92 18.18
LRPD, c=20 9.2K 19.89 18.13 16.91 17.97
LRPD, c=50 22.3K 19.37 18.28 16.67 17.83
LRPI, c=0 0.2K 21.01 20.09 19.01 19.80
LRPI, c=20 9.0K 19.94 18.20 16.97 18.01

4.3. Adaptation of SVD DNN
The second experiment was conducted to adapt a bottleneck layer of
the SVD DNN models. The goal is to see whether the LRPD model
can further improve beyond an already very compact SVD bottle-
neck adaptation. The third bottleneck layer is chosen for adaptation.
Initially, the LRPD is trained by choosing a low-rank value c and
randomly initializing the low-rank matrices with a uniform distribu-
tion. LRPD with c = 0 is equivalent to only adjusting the scaling
factor on the SVD bottleneck layer. The regularization weight ρ is
set to 0, at which all adaptation methods are found to achieve the
best performance.

Table 1 compares the speaker-specific footprints and WERs for
the standard bottleneck (denoted as linear) and LRPD bottleneck

adaptation of different configurations. WERs are selectively shown
at 5, 20, and 100 adaptation utterances, and averaged over 5, 10, 20,
50, and 100 utterances.

First, we observed that the adaptation on the SVD bottleneck
layer produces more robust model and obtains improved accuracy
over the adaptation on the layer of the full-size DNN. The bottle-
neck adaptation does not exhibit accuracy degradation, even with-
out imposing the KLD regularization. The LRPD (c = 20) bottle-
neck adaptation decreases WER of the SI model by 7.2-24.3% rel-
ative with 5-100 adaptation utterances, which is better than LRPD
(c = 20) for the full-size DNN with 1.9-20.9% relative. This is
1.6% relatively worse (18.18% vs. 17.69% WER) in average than
the standard SVD bottleneck adaptation, while reducing the adapta-
tion footprint by 82%. Second, the LRPD adaptation progressively
improves performance as the low-rank value c increases from 0 to
20, and then flattens after 20. Finally, comparing the results of LRPD
and LRPI shows that finetuning the diagonal components is not es-
sential, only producing marginal WER improvement.

Table 2: Footprints and WERs (in %) for the LRPD adaptation of
the SVD DNN model, trained by decomposing a well trained full
adaptation matrix as the seed model.

Singular # Adapt. # Adapt. utts.
value ratio params. 5 20 100 Avg.
η = 0.1 3.9K 19.53 18.34 17.19 18.11
η = 0.2 5.9K 19.53 18.43 16.97 17.97
η = 0.3 8.9K 19.56 18.25 16.75 17.85
η = 0.4 12.3K 19.52 18.10 16.64 17.75

The LRPD adaptation in the previous experiments, which starts
from a random initial condition with the same low-rank value for dif-
ferent amounts of adaptation data, may not be the best way to gener-
ate the model. In the following experiment, we generate the LRPD
model by decomposing a well trained full adaptation matrix as de-
scribed in Section 3.3. The same third bottleneck layer is adapted.
Taking the adapted bottleneck model in line 1, Table 1 as the seed
model, we keep a portion (η) of the total of the singular values and
then finetune the LRPD model. Since we start from a decent seed
model, a relatively small learning rate is used in the model finetune
stage. Results are summarized in Table 2. It is shown that the model
keeping 30% of total singular values only incurs 1% relative WER
increase (17.85% vs. 17.69% WER) in average than the standard
bottleneck adaptation, while reducing the speaker-specific footprint
by 82% (8.9K vs. 50.4K parameters).

5. CONCLUSION

In this paper, we presented a scalable adaptation technique that
adapts the DNN model through the LRPD decomposition. The pro-
posal is inspired by observing that adaptation matrices are very close
to an identity matrix or diagonally dominant. The LRPD restructures
the adaptation matrix as a superposition of a diagonal matrix and a
low-rank matrix. By varying the low-rank values, the LPRD con-
tains the full and the diagonal adaptation matrix as its special cases.
Thus it is capable to yield a compact model that makes full use
of the amount of available development data. Experimental results
demonstrated that the LRPD adaptation of the full-size DNN obtains
improved accuracy over the standard liner adaptation. The LRPD
bottleneck adaptation can reduce the speaker-specific footprint by
82% over an already very compact SVD bottleneck adaptation, at an
expense of 1% relative WER increase.
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