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ABSTRACT
Social networks are the most engaging applications on mo-
bile devices, and they are becoming the main sources for
users to consume content. However, content retrieval, espe-
cially for embedded links and multimedia, can often be too
slow, too energy hungry or too expensive for on-the-go mo-
bile users. To address these issues, we collect and analyze
a large set of traces from over 6000 real-life users of a pop-
ular mobile Twitter client. Based on the unique challenges
identified from our dataset, we present inference-based so-
cial network content prefetcher, EarlyBird. It uses the spe-
cific signals unique to social data in order to retrieve news
feeds and associated links and multimedia ahead of users’ us-
age. Our regression-based content prediction model is able
to estimate a user’s likely content interests 55% of the time.
Second, we develop a prefetch scheduling scheme to maxi-
mize delay reduction under users’ resource constraints. For
validation, we apply Earlybird to our collected dataset. We
show that on average users can reduce their delays by 62 %
at the cost of no more than 3% battery and 40MB/month
cellular data.

Categories and Subject Descriptors
C.2.1 [Computer Communications Networks]: Net-
work Architecture and Design—Wireless communication ;

H.2.8 [Database Management]: Database Applications—
Data mining

General Terms
Performance

Keywords
Mobile prefetching; social network; user behavior

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MobiHoc’15, June 22–25, 2015, Hangzhou, China.
Copyright c© 2015 ACM 978-1-4503-3489-1/15/06 ...$15.00.
http://dx.doi.org/10.1145/2746285.2746312.

1. INTRODUCTION
Mobile users spend an increasingly large amount of time

on social applications. It is reported that 1/3 of mobile
minutes are spent on Facebook and Twitter [2], and the time
spent has been increasing 63% year-over-year [6]. Currently
55% of social networking consumption occurs on a mobile
device [1].

Social posts have already become a mainstream channel
for content consumption. Over 52% and 47% of the users get
news from Twitter and Facebook respectively [3]. Whereas
each post’s text content is small (e.g. limited to 140 charac-
ters for Twitter and Weibo), embedded content — photos,
videos and URL links — is often much larger. Addition-
ally, emerging social networks such as Instagram (sharing
photos) and Vine (sharing video cliplets) are placing greater
emphasis on both mobile and multimedia. The increasing
popularity and ubiquity of such content consumption calls
for exceptional support from mobile devices.

However, the current experience of content consumption
is far from satisfactory in terms of access delay and network
availability. First, cellular network connection establishment
and roundtrip times – at least 3 seconds [4] and often 10 sec-
onds or more [13] – are excessive taxes to fluid and engaging
social interaction, especially when users try to retrieve mul-
timedia content from embedded URLs in social posts. Using
a popular Android device and stable Wi-Fi connection, we
crawled over 150000 links that mobile Twitter users clicked
on. The average load time (not including rendering time)
of a link is 16.71 seconds, and the median is 7.5 seconds.
Compounding access latencies, mobile users often “snack”
on social media in gap times such as while in elevators, on
public transit, and in large gatherings (e.g., conferences, par-
ties, and sporting events). Such scenarios often correlate to
challenging network environments with weaker signals, con-
gested networks, and moving devices. Lastly, the bandwidth
cost of multimedia content, especially video, is high and in-
tolerable for many cost-sensitive users on pay-per-bit data
plans.

Unique features of mobile social content prefetching
Existing work has carefully and extensively studied how to
model, predict, and explore favorable network conditions for
prefetching. However, social mobile content has its unique
features. Consider the Twitter usage of a real-life user from
our dataset, shown in Fig. 1. The bars show the numbers
of tweets (we only concern about tweets with URL links)
the user subscribed to, downloaded, and clicked during each
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hour of the day, averaged over 30 days. We observe that a
user only download a subset of the tweets she subscribes to
(about 40% on average in our dataset, see §User Behavior),
and time of the day clearly matters. Among the downloaded
tweets with URL links, a user clicks only a subset of the links
(about 11% on average). Moreover, although not shown in
the figure, freshness is critical - 70% of content consumed is
within one hour of generation (in our dataset). Therefore,
when and what to prefetch are tightly coupled difficult
questions. Specifically, a user does not value his subscribed
content equally and thus we need to judiciously decide what
to prefetch. In addition, when not only includes the classic
network-condition-driven prefetching issue, but also user’s
access pattern. Last, when will also affect what due to the
time-sensitive nature of social content.

One might think that prefetch on WiFi and prefetch at
application launch should work well. However when we take
a look at representative Twitter users, we see that fresh con-
tent attracts most attention, and is largely missed by sparse
WiFi connections. Simulation with real-life trace shows that
WiFi-only approach can only reduce delay by 5% on aver-
age. Therefore, simply prefetch on WiFi does not work well.
Also, notice that since WiFi is often not available when our
users launch Twitter, prefetch at application launch can be
costly in terms of data and battery usage. Therefore, simply
prefetch at launch does not work as well.
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Figure 1: Twitter usage of a real-life user.
Earlybird To address such challenges, we present Early-
Bird, a social network content prefetch system. Earlybird
estimates user’s potential interest in individual links base
on history clicks. Such estimation, user access pattern, and
dynamic network condition, will jointly decide when and
how aggressively the content is prefetched.

First, we build a content access model to estimate a user’s
interests among the links she downloads. We employ a com-
bination of content metadata, sender metadata, and receiver
metadata in order to identify salient features that can be
used in a prediction model. Real-life twitter click-through
traces from 200 users show 55% accuracy of our prediction
model.

Then, Earlybird jointly consider user’s interests, access
pattern, and dynamic network conditions to decide when
and how aggressively the content is prefetched. Please note
that, because a user on average only downloads 40% of the
subscribed tweets, only using content prediction may result
in high false positive, e.g., 2 a.m. to 9 a.m. for the user shown
in Fig. 1.

Although prefetch-at-launch and prefetch-on-wifi do not
perform well by themselves, integrating them with user’s
content preference, access pattern, and dynamic network
condition, by leveraging the complementary the nature of

the two, we can perform effective prefetch that adapt to
users’ diverse cellular data usage and battery consumption
budgets.

Prefetch-at-launch caches URL content right after user
launches the Twitter application. Tweets with high likeli-
hood of click-through are prefetched in the reversed chrono-
logical order, from new to old. Prefetching at launch time
helps filter out the unread tweets and increase the prefetch-
ing accuracy, but results in increased cellular data and en-
ergy usage. In particular, users tend to snack on social ap-
plications on public transport or elevators where network
connection is poor or even disconnected.

To alleviate these issues, prefetch-on-wifi caches social
content when the prefetching cost is low while taking into ac-
count user access pattern. In this regard, we can fully lever-
age the existing work on network-condition-based prefetch-
ing, using techniques including predicting favorable network
conditions, using WiFi hotspots, and piggy-backing with
other transmissions, etc [9, 27, 21].

By intelligently integrating these two approaches, we can
optimize user experience (delay reduction) while accommo-
dating users’ different resource constraints, in terms of cel-
lular data usage and battery consumption.

Data and Evaluation As a case study of EarlyBird, we col-
lect user traces from Twidere [8], an Android Twitter client
which has over 100,000 downloads and over 6,000 users hav-
ing consented to reporting usage data to us (§Data Collec-
tion and Statistics). We then crawled over 30 million tweets
in the data set using Twitter API. This provides a realis-
tic evaluation of the practicality of the proposed approach
and its corresponding challenges (§Evaluation). We show
that, for example, on average users can reduce their delays
by at least 62% at the cost of no more than 3% battery
and 40MB/month cellular data consumption; or with 6% of
battery and no extra cellular data consumption, which is a
significant improvement over WiFi only approaches.

Contributions In this paper, we identify unique features
in mobile social content prefetching, and develop a multi-
dimensional approach, Earlybird, that leverages content
preference, usage pattern, and dynamic network conditions
to improve user experience, under their specific data and
energy budgets.

• We build a regression-based content prediction model
to estimate a user’s potential interest in embedded mo-
bile content.

• We develop a prefetch scheduling scheme that effec-
tively integrates two complementary prefetching mech-
anisms to maximize delay reduction under users’ re-
source constraints.

• We collect a large set of real-life mobile Twitter traces
from over 6000 users, including Twitter application us-
age, link click, and network availability.

• We analyze the real-life user traces to identify the
unique characteristics of Twitter user behavior on mo-
bile devices, and their impact on prefetching.

• As a case study of EarlyBird, we comprehensively eval-
uate the performance of Earlybird using trace-driven
emulations and simulations.

In this work, we use Twitter as a case study, however the
techniques can be applied to other social network as well.
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For example, Earlybird could benefit Weibo [5], a microblog-
ging service similar to Twitter with 503 million registered
users, with little changes. Using the same resource budget,
multiple social networks would provide a larger pool of links
to choose from, thus increase the prefetching performance of
Earlybird.

2. PREFETCH ARCHITECTURE
Fig. 2 illustrates the architecture of EarlyBird. Prefetch-

ing is coordinated by a prefetch server, which retrieves all
tweets for the given user as they are posted using the Twit-
ter streaming API [7], and determines what embedded links
in tweets and when should be prefetched at the user’s mobile
device.

The two primary components in EarlyBird architecture
are content prediction and prefetch scheduling. Both com-
ponents rely on the user profile that contains the historical
social content accessed and network conditions encountered.
Such information is collected and stored on the mobile de-
vice by the data collector, and is uploaded (daily) to the
server only when the mobile device is both charging and on
WiFi.

Based on the user profile, the content prediction model is
trained to predict the likelihood the user will click the URL
in a posted tweet if it is downloaded. Tweets are fed to the
corresponding user’s content prediction model to calculate
the likelihood of click-through and are stored in the prefetch
queue. Then, the scheduling model decides when to prefetch
and which ones to prefetch from the queue, based on esti-
mates regarding future network conditions, battery condi-
tions, underlying network traffic pattern, and when the user
will access social content. In addition, priority-based mech-
anisms, such as TCP-LP [19], can also be set up between
the proxy and the mobile device to minimize the impact on
other network traffic.

Figure 2: EarlyBird prefetch architecture.

3. DATA COLLECTION AND STATISTICS
To study the real life usage of social media on mobile

devices, it is crucial to collect enough usage data from the
general public. Although Twitter’s tweets are publicly avail-
able, when and how users access Twitter is not. Therefore,
we collected a large set of usage data from Twidere1 users
who agreed to provide this information to us. With the

1Twidere is an Android Twitter client which has over
100,000 downloads[8].

Data Format
Launch Client Timestamp

Download Tweets Timestamp, Tweets ID list
Link Click Timestamp, Tweet ID, Link URL

Image View Timestamp, Tweet ID, Image URL
WiFi Connectivity Timestamp, WiFi connection
Coarse Location Timestamp, coordinates

Table 1: Data Collected

users’ consent2, we collect usage pattern, link click-through,
and network availability. Because existing work has carefully
studied the network-condition-based prefetching scheduling
using fine-grained traces [27, 21], we focus our work and the
corresponding data collection on the complementary com-
ponents. Therefore, to limit the collection overhead and to
avoid user burn out, we decide not to collect detailed net-
work trace in a fine-grain manner, but only log the WiFi
availability, which is a major leverage for prefetching. We
note that existing traces and techniques for predicting and
utilizing favorable network conditions apply here if needed
when traces are available.

Table 1 lists the items collected. To minimize overhead,
we only record the tweet IDs that users download and URLs
clicked. We then download all the tweet content including
links, which is publicly available, from Twitter API [7].

3.1 Data Statistics
In three months, we have collected data from over 6,000

users from all over the world with a diverse demographic
composition. The users downloaded 300 million tweets writ-
ten in 71 languages. The volume and diversity of data reflect
the real-life behavior of the mobile social app users. Such
realism in data is crucial for understanding and predicting
mobile social application network traffic.

Tweets contain URL On average, 29.36% of tweets con-
tain URL links. The percentage of links in tweets varies
greatly among users due to their different followings on
Twitter. In our prediction algorithm, we are primarily inter-
ested in tweets with links because tweets by themselves are
simply short character strings. Therefore, unless otherwise
specified, we only consider tweets with embedded links, and
only prefetch those links.

3.2 User Behavior
Twitter access session Users access twitter frequently,
but briefly. On average, users spend 17 minutes each time
on twitter. However the median access session is only 16
seconds long.

Twitter inter-access time The Twitter inter-access time
is the time between two adjacent Twitter accesses. The aver-
age inter-access time is more than 6 hours, while the median
inter-access time is only 40 seconds. In such bursty accesses
where users only access a small amount of content, the net-
work setup and round trip time become a significant over-
head. The long average inter-access time also means that

2During the installation and update, the app discloses the
information collected and we collect data only if the users
choose to opt in. There are less than 15% of users choose
to opt in, which indicates user privacy-awareness and the
effectiveness of the privacy disclosure. In addition, we only
keep a hashed user ID, which is not recoverable through a
one-way hash function. Last, twitter contents and social
graph are publicly available information.
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a user will likely only access a portion of his subscriptions,
i.e. tweets generated early during the inter-access time are
likely ignored, which needs to be considered in prefetching.

Selective Content Consumption Users exhibit different
behavior in terms of how many tweets they read as well as
how many links they click on. On average a user down-
loads 829 tweets with a median of 278. On average, Twitter
users only download about 40% of the tweets they subscribe
to. Furthermore, users click 11% of the links in the tweet
they download from their twitter stream on average, with
a median of 6% and a standard deviation of 12.7%. Such
selectivity brings challenges to what to prefetch.

Time-sensitivity Popular tweets attract interests quickly,
then fade away just as fast. The life-span of links on social
networks are less than three hours [12]. our data also vali-
dates this phenomena on Twitter. The time between posting
and clicking of an URL link on Twitter is under one hour
70% of the time, and under 10 minutes 40% of the time. In
another word, if prefetching is done one hour before the ac-
tual Twitter launch, it will miss at least 70% of the clicked
links since they have not been posted yet at that time. Such
time-sensitivity of content consumption along with its selec-
tive nature introduces great challenges in deciding when and
what to prefetch.

Diurnal access pattern A subset of users show clear diur-
nal patterns, e.g., the user as shown in Fig. 1. Such diurnal
patterns, significant in about 20% of users, can be leveraged
to integrate when and what to prefetch.

4. SOCIAL CONTENT PREDICTION
In this section, we focus on the what component of

prefetching. In the case of Twitter, the social content is
embedded in the tweets as URL links, and we are interested
in predicting whether a user will click the URL link assum-
ing the tweet is downloaded (i.e., the black in the gray bar
in Fig. 1). We build a personalized regression-based model
to achieve the goal. First, we select a set of features to
represent tweets with embedded links. Then, we use linear
regression to build a social content model for each user to
predict the likelihood of link click-through of the user’s fu-
ture links. This information is used in combination with the
when component (§Scheduling Prefetching) for all possible
prefetching.

We have tried several different machine learning algo-
rithms. Regression-based methods are most suitable in our
context because SVM methods are sensitive to kernel selec-
tion and decision trees are prone to overfitting. For regres-
sion based algorithms, linear regression slightly outperforms
logistic regression (Fig. 3).

4.1 Initial Feature Set
The number of available features is relatively small in

Twitter due to its short style. Therefore, we consider as
many features as possible. The features we selected are from
simple-to-extract metadata fields of a tweet, summarized in
Table 2. There are two natural groups of features, one re-
flects the properties of a tweet, and the other reflects that
of the author.

4.2 Regression-based Prediction
Given a set of k features, each tweet i with link is rep-

resented as a k-component feature vector fi. We denote

Message Features Author Features
Hashtags contained Name

Other users mentioned Ghostwriters allowed
Media embedded Avatar customized

Link position within tweet Liked tweets count
Geocoordinates if specified Follower count

Recipient if specified Following count
Adult maturity rating Presence in public lists, if any

Retweet count Total number of tweets
Message length Verified account status

Table 2: Features selected for click-through predic-
tion

the binary target variable ci as whether the user clicked the
link in tweet i. We observe that ci exhibits a coarse linear
relationship with the feature vector fi:

ci = fi ×W + e (1)
where W is the linear coefficient vector, and e is the noise
vector.

Model Training W is derived using linear regression of
the feature vectors of the historical tweets against the ob-
served user clicks during model training. Specifically, we use
an L1-norm regularized L2-norm minimization algorithm to
calculate the feature coefficients using n historical tweets.
Formally, we have:

minimize
W

||FW − C||22 + ||W ||1 (2)

where L1-norm regularization, i.e., ||W ||1, is used to prevent
over-fitting. Each row of the feature matrix Fn×k is the
feature vector of a historical tweet. Cn×1 is the click-through
vector. The values of C(i,1) is 1 if the corresponding history
tweet is clicked, and 0 otherwise. The coefficient vector for
all features is denoted as W 1×k. Solving Eq. (2) will give us
the coefficient vector W .

Model Inference The product of feature vector f and co-
efficient vector W is a scalar value called click-through score
S:

S = f ×W. (3)

Ideally, S should be 1 for clicked tweet links and 0 otherwise.
In practice, S is a real value roughly in the range of [0, 1], and
is proportional to the likelihood of click-through. The click-
through score is a critical component in deciding whether
a link will be prefetched. It is compared to a threshold
value that depends on the when component based on access
pattern, the time of prefetching, and the cellular data and
battery budget. The details will be discussed in §Scheduling
Prefetching.

4.3 Sequential Forward Feature Selection
We select as many as possible features in the initial set to

be comprehensive. However, for each individual user, fea-
tures without good distinguish power introduce noise in the
prediction. Because users are different, we need to select a
personalized set of efficient features for each user. We em-
ploy a greedy Sequential Forward Selection (SFS) algorithm
to select the efficient feature set.

SFS is an iterative algorithm for picking an efficient subset
from our initial feature set. SFS starts with an empty set
F . In every iteration, for each feature x that is not already
in F , we evaluate the prediction performance of feature set
{x} ∪ F using the regression-based algorithm we proposed
in §Regression-based Prediction based on balanced accuracy.
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Balanced accuracy is a wildly used metric in the data mining
community [11], defined as the average of sensitivity (the
percentage of correctly predicted tweets that are clicked),
and specificity (the percentage of correctly predicted tweets
that are not clicked). SFS selects the feature set {x} ∪ F
that maximizes the balanced accuracy, and then adds x to F
before starting the next iteration. The SFS algorithm stops
iterating when the balanced accuracy stops to increase.

4.4 Performance Evaluation
In Table 3, we list the selected features of users using the

sequential forward feature selection algorithm. A first look
at the popular feature set may be somewhat surprising, e.g.,
why is Avatar a feature and author not. This highlights the
importance of data-driven approach; i.e., such features are
supported by data instead of assumptions on what should be
important. A more careful look also suggests sophistication
among features. For example, having a customized avatar
attracts user attention, and clearly distinguish the account
from new users and bots.

Top Features User Selected

Media embedded 92%
Geocoordinates if specified 69%

Ghostwriters allowed 56%
Avatar customized 53%

Adult maturity rating 47%
Verified account status 35%

Hashtags contained 34%
Recipient if specified 33%

Table 3: Top features selected by SFS

Fig. 3 shows the overall balanced accuracy of the linear
regression prediction algorithm using the efficient feature set
selected by SFS for each user. We also implement the same
prediction algorithm using the logistic regression for compar-
ison, and find that linear regression achieves slightly better
performance.
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Figure 3: Balanced accuracy of linear regression and
logistic regression.

5. SCHEDULING PREFETCHING
The unique features of social mobile content consumption

brings interesting and challenging new dimensions in deter-
mining prefetch schedules. In particular, real trace analysis
(§Data Collection and Statistics) suggests that social content
consumption has 1) high selectiveness (partially addressed
in §Social Content Prediction); 2) time-sensitivity; and 3)

diverse access pattern. To address these issues, we present
a systematic framework that integrates two complementary
prefetching components, prefetch-at-launch and prefetch-on-
wifi that best leverage content freshness and channel condi-
tions. We adjust the two components to fit to user-specific
cellular data usage and battery consumption budgets, as dis-
cussed in detail next.

Prefetch-at-launch The time-sensitivity of social mobile
content suggests prefetch-at-launch, i.e., prefetch right after
a user launches the Twitter application. This is the best
time to fetch fresh content with high accuracy. However,
prefetch-at-launch can be costly as it consumes additional
cellular data and energy, and thus needs to be used judi-
ciously. We achieve this goal by selecting an appropriate
threshold and time-window. In particular, only links with a
click-through score higher than the threshold (based on bud-
get §Tuning the Thresholds) will be prefetched. In addition,
we only prefetch links in posts within one hour. This time
window is suggested by the data analysis in §Data Collection
and Statistics, as 70% of click-through are generated within
one hour. One can adjust these parameters if desired, for ex-
ample, using different thresholds for different signal strength
and using a different time-window. In this paper, we opt
for the current simpler design. In addition to data and en-
ergy consumption, another challenge that prefetch-at-launch
faces is channel condition. Users tend to snack on social
applications on public transport or elevators where network
connection is poor or even disconnected. This greatly deteri-
orates user experiences. To address these issues, we consider
the following complementary component.

Prefetch-on-wifi Existing work has extensively studied
network-condition-aware transmission/prefetching, based on
techniques such as predicting and leveraging favorable net-
work conditions, using WiFi hotspots, piggy-backing with
other transmissions, and batching, e.g., in [22, 17, 31, 14,
24]. On the regard, we can fully leverage the existing re-
sults. In particular, based on earlier studies, we adopt two
simple yet effective mechanisms: opportunistic prefetching
on WiFi and piggy-backing/batching with existing trans-
missions. We choose these two for their effectiveness and
low overhead, and note that other schemes can be equally
adopted.

The main improvement on prefetch-on-wifi we make is to
consider the user access pattern. In particular, we define Pt

as the probability of a user accesses twitter at time (hour)
t. Note that Pt varies significantly over time and across
users, illustrated as in Fig. 1. We adjust how aggressive the
prefetcher works based on the access probability: the click-
through score for each tweet generated by content predictor
(§Social Content Prediction) is weighted using Pt so that
we prefetch more aggressively during active hours and vice
versa.

Specifically, prefetch-on-wifi runs only when a WiFi net-
work is available. It wakes up periodically (30 minutes in
our setting) and waits for the next piggy-backing oppor-
tunity; i.e., transmissions initiated by other applications.
Upon detecting such a transmission, the prefetcher checks-
in with the prefetch server. The user device notifies the
prefetch server with the links accessed by the user since the
last check-in which are then removed from the user’s queue.
The click-through score of each tweet with links in the queue
is weighted by S′ = S × Pt. The tweets with weighted
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click-through score S′ higher than a threshold are then com-
pressed and sent to the user device in one batch. Again, the
threshold depends on energy budget, and is coupled with
the threshold of prefetch-at-launch, which are determined
in §Tuning the Thresholds.

Fig. 4 illustrates how Earlybird operates. The first time-
line shows when the tweets with links (A to K) are posted.
The second shows the Earlybird operations: an prefetch-
on-wifi operation during WiFi and a prefetch-at-launch one
when the user launches the app. Links in tweets C,F and I,J
are prefetched by these two mechanisms respectively, with
respect to their corresponding thresholds. The third time-
line shows the user activity, where prefetched contents in
tweets F and I are consumed.

Figure 4: Earlybird operation.

5.1 Tuning the Thresholds
The two components of prefetching have complementary

characteristics. Prefetch-at-launch consumes extra cellular
data and battery; and prefetch-on-wifi reduces cellular data
consumption, and may reduce or increase battery consump-
tion depending on the accuracy of prefetching. Both cellular
data and battery are precious resources on mobile devices,
and thus must be considered in prefetching. Tuning the
thresholds for the two components can adapt the prefetch-
ing to the user preference.

Threholds for fixed budget Our objective is to maximize
the access delay reduction for each user under its specific
cellular data budget and battery consumption constraints.
Such constraints are set according to user preferences. In
this paper, we take a data-driven approach to solve the above
optimization problem. In particular, for each user, for each
set of thresholds, we simulate Earlybird on the replay of the
training data set. Based on the replay, we obtain the corre-
sponding usage of energy and data, and the delay reduction.
We then choose the appropriate threshold values based on
the budgets. We note that this computation only needs to
run once every few days, and can be done offline in a server,
and thus do not impose heavy burdens on mobile.

Thresholds to maximize prefetching accuracy The
above approach assumes that a user sets a cellular data and
energy budget. Many users may not want to or know how
to set such values. Therefore, an alternative way is for the
system to select an appropriate threshold, e.g., a threshold
that maximize the balanced accuracy in prefetching predic-
tion, and report the cellular/energy consumption to users.
As long as such consumptions are acceptable, the user does

not need to do anything. We will present evaluation results
on both in §Evaluation.

6. EVALUATION
In this section, we perform both emulation and simulation

evaluations. Emulation evaluations allow us to study the be-
havior and randomness of users, networks, and batteries in
a more realistic setting, including the current limited imple-
mentation of caching mechanisms. Trace-driven simulations
allow us to evaluate a large variety of parameters and set-
tings, and thus provide a more thorough understanding.

Emulation To realistically evaluate how Earlybird performs
on an actual device and network, we run an emulation on an
Android Nexus 5 for 60 long-term users from our dataset,
each with at least 30 days of traces. They are also users who
consumes URL links on Twitter, i.e. access more than 10%
of the links in their Twitter streams. We choose these users
because they have provided us with long and continuous
traces to run statistically meaningful emulations.

We built the emulator as an Android application. The
emulator runs on a Nexus 5 Android phone connected to
T-Mobile 4G cellular network and also has access to a cam-
pus WiFi network. The emulator reads and replays the us-
age events collected from real-life users, including connecting
to or disconnecting from WiFi networks, accessing Twitter,
and opening URL links in Tweets. We run three emulations
for each user, Earlybird, WiFi-Only, and On-Launch. In
each emulation, the same user events are replayed, with the
only difference of the caching strategies used. In Earlybird
emulation, URL links are prefetched using the Earlybird al-
gorithm. The threshold parameter used in the Earlybird
algorithm is set to maximize the prefetching accuracy. In
the WiFi-Only emulation, URL links are prefetched only
when the phone is on WiFi. In the On-Launch emulation,
the most recent 20 URL links are prefetched whenever the
Twitter application is launched. The emulator opens URL
links using the WebView provided by the Android frame-
work. The WebView provides a notification when the web
page has finished loading which is used by the emulator to
calculate the loading delay of an URL link. We have ob-
served that this notification is not precise, especially when
there is dynamic content loaded using javascript in a web
page. In most cases, the notification is delivered prematurely
which leads to a conservative estimate of the loading delay.
The emulator also relies on the Android WebView’s caching
mechanism to prefetch URL links. When prefetching a link,
the emulator simply opens the link so that the content from
the links can be cached by the WebView. We note that
the implementation of WebView caching mechanism is lim-
ited. Ideally, when a user accesses the cached content is
cached, the network traffic and network delay should reduce
to zero. However, in the current implementation of Web-
View, we observe that 54.7% of network traffic for cached
content. Therefore, when caching implementation improves,
the benefit of prefetching would further increase.

Fig. 5 shows the delay reduction and total cellular data
usage of each emulation. Without caching mechanism, users
on average consume 1.1 MB per day on content. Earlybird
reduces delay by 63.6 seconds per day and uses 1.25 MB
per day on average, including both the necessary content
network consumption and prefetch overhead. On-Launch
reduces 84.3 seconds delay per day and uses 3.21 MB per
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day. WiFi-Only emulation reduces delay by 7 seconds by
day, but due to its low prefetching accuracy, it still uses
0.7 MB data per day, which is 0.4 MB smaller than that
without prefetching. Fig. 6 shows the prefetching accuracy,
volume, and effectiveness. Earlybird has a significantly bet-
ter prefetch hit ratio, 48.9% on average, WiFi-Only has only
6%, and On-Launch has 24%. One limitation of the Android
platform is that it only provides battery usage at percentage
level. It’s difficult to account for the energy consumption of
each user and link. Therefore, we report the aggregated be-
havior here. For all of the users in the emulations, Earlybird
uses 4.2 times of the total battery of Nexus 5, WiFi-Only
uses 2.1 times, and On-Launch uses 6.1 times.

Trace-driven Simulation To evaluate the algorithm on a
larger data set, and under multiple budget constraints, we
run a trace-driven evaluation for 224 long-term users from
our dataset, each with at least 30 days of traces.

The network trace only shows network availability, i.e.,
WiFi or cellular. We measured the load time and total size of
each link in the dataset using an Android crawler we wrote.
We measured on both 3G and WiFi networks in our lab.
The average load time (not including rendering time) for
links is 16.71 second, and the median is 7.5 second.

We use the energy model presented in previous work [10]
to calculate the energy consumption of prefetching each link
base on the link size.

Baselines For comparison, we also consider three prefetch-
ing benchmarks: 1) WiFi-only: every 30 minutes if on WiFi
is available; 2) On-launch: when the app launches. (This is
the most aggressive version of prefetching, as done in many
current app implementations, as well as the content prefetch-
ing part of [23, 25]); and 3) 30-min: every 30 minutes re-
gardless of network (this is to emulate default settings in
some email/news applications). We note that 1) and 2) can
also be considered as special cases of EarlyBird where we set
the thresholds to (0,∞) and (∞,0), respectively.

Under Budget Constraints We first evaluate the perfor-
mance of Earlybird under three different budget constraints:
(0.5%, 600MB), (3%, 300MB), (6%, 0MB), where the former
is the percentage of battery allowed per day and the latter
is the total cellular budget per month. These three sets of
constraints represent different user preference on energy and
cellular data consumption. We also compare with the three
baseline schemes.

In Fig. 7, we show the CDFs of users in terms of delay re-
duction (per day), data usage (per month), and battery con-
sumption (per day). Overall, Earlybird under (3%,300MB)
and (6%,0MB) shows very good delay reduction, while oper-
ating within their corresponding resource budgets. The re-
sults of (6%,0MB) might be surprising at the first glance as
it shows significant delay reduction. We note that this high-
lights the complementary nature of prefetch-at-launch and
prefetch-on-wifi. Although the total data budget is zero, be-
cause prefetch-on-wifi reduces cellular reduction, which can
be used for prefetch-at-launch, and thus jointly significantly
reduce the access delay for many users. On the other hand,
(0.5%,600MB) shows rather limited improvement - primarily
due to the tight energy budget. The time between posting
and clicking of an URL link on Twitter is under one hour
70% of the time, and under 10 minutes 40% of the time.
WiFi-only scheme often misses the window of opportunity
since it is restricted by when the device connects to WiFi.

In Fig. 8, we show the details of the prefetching algo-
rithms. Clearly, on-launch shows the best prefetch hit ratio
and effectiveness, as its timing is perfect. WiFi-only shows
the lowest effectiveness, which explains its limited perfor-
mance in delay reduction. We also note that (0.5%,600MB)
caches a much smaller number of links per day due to its
tight energy budget, and thus its limited delay reduction.

The impact of thresholds Next, we carefully evaluate
the impact of prefetching threshold used in Earlybird. We
do not include baselines here as they do not use thresh-
olds. To show the tradeoff between energy, data, and delay,
we compare the following click-through threshold: (0.1,0.1),
(0.5,0.5), (0.9,0.9). Intuitively, a lower threshold allows the
user device to prefetch more content. Fig. 9(a) shows the
number of tweets prefetched, where each curve represents
a different threshold. On average, we prefetch 89 links per
day for each user. Fig. 9(b) shows the prefetch hit ratio,
which is the percentage of the prefetched tweets that are
actually clicked by the user. The prefetch hit ratio is 12.5%
on average. Fig. 9(c) shows the percentage of link clicks
that are prefetched. Clearly, a lower threshold allows more
content to be prefetched and thus increases the percentage
of link clicks that are prefetched, at the cost of lower hit ra-
tio. This figure clearly demonstrates the trade-off between
unprefetched ratio and hit ratio.

The corresponding effects on user experience are shown
in Fig. 10. Fig. 10(a) shows the delay reduction per day
enabled by prefetching. Fig. 10(b) shows the cellular data
usage of different thresholds. At (0.5,0.5), prefetching only
uses 43 MB cellular data every month on average for each
user, where the average total data volume is 890 MB for all
the links each user clicked. Last, Fig. 10(c) shows the ad-
ditional battery used by prefetching. The average battery
consumption ranges from 0.7% to 4.3%, corresponding to
threshold (0.9, 0.9) to (0.1, 0.1). Clearly, a lower threshold
more effectively reduces access delay and cellular data us-
age, at the cost of slightly higher energy consumption. It
worths highlighting that the energy consumption is low in
our scheme - this illustrates the importance of piggy-backing
and leveraging better network conditions (i.e., WiFi in this
evaluation) in conjunction with content prediction.

Earlybird
(0.5, 0.5)

on-wifi at-launch

Delay Reduction
(Seconds) 78.04 34.81 72.58

Delay Reduction
(%) 62.04 30.21 59.11

Battery Used (%) 2.59 2.1 2.41
Extra Data (MB) 43.81 -2.71 57.99

Hit Ratio (%) 12.54 8.49 12.39
Prefetched Ratio
(%) 39.77 15.65 37.04

Table 4: Effect of prefetch-on-wifi and prefetch-at-
launch.

Interaction between prefetch-on-wifi and prefetch-
at-launch The results summarized in Tab. 4 highlight the
complementary nature of prefetch-at-launch and prefetch-
on-wifi. We compare the average performance of Earlybird
(0.5, 0.5) with that of prefetch-on-wifi only with thresh-
old 0.5 (equivalent to Earlybird (0.5, ∞)), and prefetch-at-
launch only with threshold 0.5 (equivalent to Earlybird (∞,
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Figure 5: Prefetch emulation cost and benefit: delay reduction, cellular data usage.
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Figure 6: Prefetch emulation accuracy: efficiency, volume, and effectiveness.

0.5)) The combination of the two has higher hit ratio and
prefetched ratio, and at the same time uses less data at the
same time, comparing to either approach alone.

Impact of Training Set
In simulation, we use a subset of each user’s data as the

training set to build the prediction model and the scheduling
policy, then use the others for performance evaluation.

First, we try several fixed sizes for the training set. Users
download different amount of links per day, and only click
a small portion of them. To avoid building a biased model,
we make sure that the training set contains enough number
of clicked links, and use the number of clicked links as the
size of th training set. We tried the following training set
sizes: 10, 50, 90, 130, 170.

We then compare the fixed training set with a rolling
training set. For a rolling training set, the first training
set contains 50 clicks is used in the beginning. The resulting
model is used to predict the click-through of the following
tweets, which is the test set, until we see 50 clicks in the test
set. Then the previous model is discarded, and we use the
test set, which also contains 50 clicks, to train a new model.
This process is repeated until we processed all the tweets.

The average balanced accuracy increases from 71.9% to
77.4% as the training set size increase from 10 to 170. How-
ever, using a rolling training set of size 50, the average
balanced accuracy is 80.8% which is higher than any fixed
training set. The result indicated that user preferences do
changes over time, using recent history data as training set
yields higher training accuracy.

7. RELATED WORK
Prefetching on Mobile Systems In [15], the authors
present an architecture for mobile prefetching where IMP
(Informed Mobile Prefetching) is structured as a library
to which any mobile application may link to. In IMP, it
assumes that applications provide precise information on
“what” to prefetch. We focus on the unique features of mo-

bile social content, to address “what” and the interaction of
“what” and “when”. In [25], the authors show that inappro-
priate prefetching can be costly to users. They implement
and evaluate Procastinator that decides prefetching based
on a few factors including whether the user is on WiFi or cel-
lular network, the status of the user’s data plan, and whether
the object is needed at the present time. The implementa-
tion achieves“zero-effort”, i.e., it requires no developer effort,
no source code, and no OS changes. The technique devel-
oped can be leveraged to in the implementation of Earlybird.
In [23], the authors proposed an app prefetching algorithm,
which predicts when and what application will be launched
on mobile phone and prefetch applications accordingly. The
content prefetching algorithm is similar to the prefetch-at-
launch in this work, which is compared in §Evaluation.

Recently, CDN-based approaches have been proposed by
researchers to increase QoE for web services, e.g. in [29,
26]. The authors propose to use social network relation-
ships, read access patterns to efficiently distribute content
geographically to lower bandwidth costs and increase QoE.
Typically, CDN-based solutions do not deal with challenges
that are special to wireless networks and personalized usage
patterns.

Also relevant to our work is user profile and and how to
leverage them for efficient transmission such as prefetching.
Both Wiffler [9] and Bartendr [27] consider the setting of
vehicular systems to offload cellular data traffic to either
WiFi networks or to time-instants when signal strength is
stronger. Breadcrumb [21] and smarttransfer [30] address
the issue of predicting future network condition and user
profile. We build upon such network-aware techniques while
focusing on the unique properties of mobile social content.

Prefetching in general is well-studied under different con-
text. In [22, 17], the authors explored user access prediction
and prefetching for file systems and databases. [31, 14, 24]
addressed the theoretical problem in prefetching such as cost
benefit analysis.
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Figure 7: Prefetch cost and benefit: delay reduction, cellular data usage, and energy consumption.
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Figure 8: Prefetch accuracy: efficiency, volume, and effectiveness.

Twitter studies In [16, 20], the authors study the basic
social graph such as following relationship, and statistics
of Twitter, including number of user, posting and retweet.
Factors that impact retweeting is also explored. Suh, et
al. discussed the factors that affected the retweeting or
retweetability of a tweet using PCA and generalized linear
model [28]. Kunegis et al. also studied the likelihood of
retweeting [18] based on content features. They only used
7 features to start with, and the effective features selected
are quite different from us, showing that retweet and con-
tent access have very different models. We are the first to
use the click-through dataset and build a content-prediction
model for mobile networking.

8. CONCLUSION
Mobile users are consuming increasingly large amount of

embedded content through social applications. Social con-
tent prefetching is a promising technique for improving user
experience on mobile devices. By identifying the unique
features of mobile social applications, we propose a unified
mobile social prefetching framework, Earlybird, that jointly
optimizes the what and when in prefetching, leveraging con-
tent preference, user behavior pattern, and dynamic net-
work conditions. The proposed scheme can adapt to user-
specific budget constraints in terms of (extra) energy and
cellular data, with the objective of maximizing delay reduc-
tion. We use a data-driven approach to develop personalized
content model and control variables (prefetching thresholds)
to achieve this goal. Evaluation using real-life Twitter traces
show promising performance of Earlybird. In addition to
EarlyBird’s immediate utility for Twitter users, we specu-
late that our approach of unifying social and network access
patterns can be generalized to other social networks as well.
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