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Abstract
In this paper, we propose a deep convolutional neural network
(CNN) with layer-wise context expansion and location-based
attention, for large vocabulary speech recognition. In our model
each higher layer uses information from broader contexts, along
both the time and frequency dimensions, than its immediate
lower layer. We show that both the layer-wise context expan-
sion and the location-based attention can be implemented using
the element-wise matrix product and the convolution operation.
For this reason, contrary to other CNNs, no pooling operation
is used in our model. Experiments on the 309hr Switchboard
task and the 375hr short message dictation task indicates that
our model outperforms both the DNN and LSTM significantly.
Index Terms: speech recognition, convolutional neural net-
work, attention, very deep networks.

1. Introduction
Since 2010, the year in which deep neural networks (DNNs)
were successfully applied to the large vocabulary speech recog-
nition (LVSR) [1, 2, 3] tasks and led to significant recognition
accuracy improvement over the then state of the art, various
deep learning models have been developed to further improve
the performance of speech recognition systems. The majority
of these new models are variations and/or combinations of the
recurrent neural networks (RNNs) and convolution neural net-
works (CNNs) [4].

In this paper, we propose a new CNN architecture for
LVSR. CNNs were designed to exploit the translational invari-
ance in signals. A typical CNN system consists of one or more
pairs of convolution and pooling layers. In the convolution
layer, a set of filters are shifted and repeatedly applied to the
input1. A max-pooling or average-pooling layer is used to gen-
erate a lower resolution version of the convolution layer activa-
tions. The pooling layer is often important to tolerate transla-
tional variances.

CNNs are critical to image recognition tasks. All ImageNet
winning systems use CNNs. Recently, the 152-layer ResNet
(residual network [5]) drove the ImageNet classification error
rate down to 3.52% and became the new state of the art.

For speech recognition, CNNs have also been demonstrated
as promising [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24]. Originally, CNNs were applied along the
frequency dimension [6, 7, 8, 10] to reduce variations caused
by vocal tract length differences between speakers. Later, they

1If we consider the whole utterance as a single image, the feed-
forward DNN can also be considered as a special CNN architecture that
applies the same filter repeatedly to patches of the input.

were applied to the time dimension [17, 22] to account for
speaking rate variation. In these early works, only one to two
CNN layers were typically used and they were used to model
either the spectral or the temporal variations.

However, spectrograms are images with special patterns.
Experienced people can tell what has been said by inspecting
only the spectrogram. For this reason, we believe CNNs, which
can model temporal and spectral local correlations and gain
translational invariance, should be applied to both the frequency
and time dimensions. In fact, successful attempts along this line
has been reported very recently [23, 24].

In this paper, we propose a deep CNN that operates in both
frequency and time dimensions. Unlike prior art, our model
incorporates layer-wise context expansion with location-based
attention mechanism and employs a jump connection between
layers, similar to the linearly augmented DNN (LADNN) [25]
and ResNet [5]. We show that the layer-wise context expansion
and attention can be implemented using the element-wise ma-
trix product and convolution operations. For this reason, neither
max-pooling nor average-pooling is used in our model. Exper-
iments show that our model can reduce word error rate from
14.9% (DNN) and 12.6% (LSTM) to 11.0% on the 309hr SWB
task, and from 16.1% (DNN) and 14.4% (LSTM) to 13.0% on
the 375hr short message dictation task, all without model adap-
tation and sequence discriminative training.

The rest of the paper is organized as follows. In Section 2
we first revisit the convolution operation and point out that the
convolution operation essentially computes weighted sums and
as such average pooling can be implemented using the convolu-
tion operation directly. We then describe the key concepts and
detailed components in our proposed model. We discuss related
works in Section 3 and report experimental results on both the
Switchboard (SWB) and the Short Message Dictation (SMD)
tasks in Section 4. We conclude the paper in Section 5.

2. Deep CNNs with Layer-wise Context
Expansion and Attention

2.1. Revisit Convolution Operation

An image (or spectrogram) can be represented as a three-
dimensional tensor (row, column, channel). Each channel is a
view of the same data. All channels have the same size (height,
width). The convolution operation applies kernels of a four-
dimensional tensor (kernel height, kernel width, input channel,
output channel) to local regions (receptive fields) of multiple
channels in an input image. For each output channel ` and input
slice (i, j) (the i-th step along the vertical direction and j-th step
along the horizontal direction), the value after the convolution



operation is

υij` (K,X) =
∑
n

vec (Kn`) · vec (Xijn) , (1)

where Kn` of size (Hk,Wk) is a kernel matrix associated with
input channel n and output channel ` and has the same size
as the input image patch Xijn of channel n, vec()̇ is the vec-
tor formed by stacking all the columns of the matrix, and · is
the inner product of two vectors. The total number of kernels
equals the product of the number of input channels Cx and that
of output channelsCv . The kernel moves along (and thus shared
across) the input image with strides (or subsampling rate) Sr

and Sc at the vertical and horizontal direction, respectively.
By default, the kernel stops moving when the size of the

kernel is larger than that of the patch left. The kernel opera-
tion can still be valid under this condition if we allow for zero
padding in the image. Since either the kernel height, the ker-
nel width, or both are greater than 1, the resulting image always
shrinks in size without padding. If the strides are 1 in both di-
rections and zero padding is applied, the resulting image has the
same size as the input image.

We want to point out two important properties of the con-
volution operation. First, each pixel in the output image is a
weighted sum of all pixels (along all channels) within a patch.
Both the patch size and the weights are determined by the
kernel. This property indicates that it is possible to convert
weighted sum of pixels to a convolution operation. For exam-
ple, average pooling can be represented as a convolution opera-
tion with a kernel whose values are all 1/(Hk ×Wk). Second,
the image can be down-sampled by using a stride that is larger
than 1. These two properties indicates that a pooling operation
is not necessary to make CNNs work effectively.

2.2. Layer-wise Context Expansion and Attention

It is well known that exploiting contextual frames is important
for deep learning based models to achieve good speech recogni-
tion accuracy. In feed-forward DNNs, this is achieved by using
a window of frames as inputs, where the size of the contex-
tual window is determined a priori. RNNs, on the other hand,
can exploit the contextual information automatically by remem-
bering them in the recurrent states. While the uni-directional
RNNs only use information prior to the current frame, the bi-
directional RNNs can exploit contextual information in both di-
rections. Unlike feed-forward DNNs, RNNs can learn the ef-
fective length of the contextual window.

In this work, we propose the LAyer-wise Context Expan-
sion and Attention (LACEA) model as shown in Figure 1 after
noticing that the length of useful context is limited for phoneme-
state recognition. In this architecture, each higher layer is a
weighted sum of nonlinear transformation of a window of lower
layers. For example, in Figure 1(a), layer 2 operates on a win-
dow of 5 frames of layer 1, which in turn operates on a win-
dow of 5 frames of input feature. It is clear that each frame
at higher layer spans more frames and covers longer contexts.
For example, each frame in layer 1 and layer 2 covers 5 and 9
frames of input feature, respectively. Since each higher layer
operates on a window of frames in their immediate lower layer,
it potentially operates on more abstract patterns. Different from
using the contextual window in the input feature only, as in the
feed-forward DNNs, in LACEA the lower layers can focus on
extracting simple local patterns and higher layers can extract
complex patterns that cover broader contexts.
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Figure 1: Illustration of the layer-wise context expansion.

The LACEA model can be more efficiently trained if each
utterance is a training unit. This is because each frame at the
lower layer will be used by multiple frames in the immediate
higher layer. If each utterance is a training unit, each frame at
any layer only needs to be computed once and reused multi-
ple times when computing the higher layer units. In practice,
however, we found that doing so has three problems: First, we
can only use utterance randomization which often converges
worse than the frame randomization. Second, it prevents us
from building deeper models due to GPU memory limitation.
This is because the length of utterances is in principle unlim-
ited. Third, using utterance as the training unit may actually
slow down, instead of speed up, the training process due to less
degree of parallelization in spite of the elimination of duplicated
computation. This is, again, tied to the fact that GPU memory
is limited and you can only process very small number of utter-
ances in parallel even if the model is not deep. For these rea-
sons, in this study we employed the frame-level training strat-
egy which provides higher flexibility with regard to the number
of samples in each minibatch and configurations with deeper
and wider networks at the cost of duplicated computations.

To further reduce the computation cost, we can down-
sample the image after each layer. As shown in Figure 1(b),
since the adjacent frames are very similar at each higher layer,
we only need to keep, for example, odd frames, and drop even
frames. Since the main operation in LACEA is weighted sum
over the time (and optionally frequency) dimensions, the whole
mechanism can be implemented using the convolution opera-
tion by specifying a stride that is larger than 1.

In the convolution operation, however, the same kernel is
used across the whole spectrogram, while the contribution from
each frame (and each frequency bin) often varies with its dis-
tance to the current frame. This is different from the image clas-
sification task. To incorporate this observation, we introduce
the attention mechanism into the system. Basically, an impor-
tance (or static attention) weight matrix is multiplied, element-
wise, with each layer before the convolution operation is ap-
plied. This attention matrix is the same for all channels and
covers the whole down-sampled image. In other words, it spans
wider range than what can be covered by each kernel. Combin-
ing all these treatments, we can significantly reduce computa-
tion cost without sacrificing accuracy.



2.3. The Complete Model

Figure 2 illustrates the detailed structure of the whole model. As
shown in Figure 2(a), the model is composed ofN jump blocks,
a convolution layer whose goal is to compute the weighted sum
(over width and height) of channels as we explained in Section
2.1, and a softmax layer which is essentially a log-linear model.
Each element of the kernel in the last convolution layer is ini-
tialized to be 1/(Hk ×Wk).

Figure 2(b) describes the jump block. Each jump block
starts with a convolution layer, whose goal is to reduce the res-
olution of the image but increase the number of channels. In
our study, we kept using kernels with size (3, 3) and strides of
(2, 2) and always double the number of channels for this layer
in all jump blocks. Note that kernels with different sizes are
often used in image classification models. However, we have
found that using a small kernel is important for speech data
mainly because the resolution of the speech feature is already
low compared to images. It is obvious that this layer is the com-
bination of layer-wise context expansion and frame dropping.
After this critical convolution layer are the M jump nets, and
an element-wise matrix product operation that implements the
location-based attention mechanism. As mentioned in Section
2.2 the attention matrix covers the whole image at that layer and
is the same for all channels. Unlike kernels, which are initial-
ized randomly, each element in the attention matrix is initialized
to 1. Note that this weighted image will be the input to the next
jump block, which involves another LACEA operation. We did
not apply the attention mechanism to the input feature and it is
possible that doing so would be beneficial.

Each jump net is a complicated nonlinear transformation as
shown in Figure 2(c). Basically, the input image is first pro-
cessed with a conventional convolution ReLU layer with batch
normalization. Another convolution operation is then applied
to y1, the output of this first convolution layer. The output of
this second convolution operation c2 is summed with the input
of the jump net and processed by another batch normalization
and ReLU layer. To be able to sum with the input image, the
dimensions of the image tensor are kept the same across all the
layers in the same jump net. In our model, this is implemented
by using stride one across both width and height and by en-
abling zero padding. Note that convolution and sum operations
are both linear operations. Thus it is critical to have nonlinear
components such as the ReLU units used in our model.

The jump connection from x to the plus operation allows for
a direct gradient backpropagation and thus alleviates the gradi-
ent vanishing problem. It helps to train very deep models more
effectively although it may not be critical to achieve our spe-
cific experimental results reported in Section 4 since the total
number of layers used in our model is similar to the VGG net.

3. Related Work
Various CNN structures [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 23, 24] have been evaluated for speech
recognition. The ones most similar to our work are [20, 24, 26]
which employed the famous very deep VGG network structure.
These works, however, do not include the attention mechanism,
the jump connection, and the weighted sum at the top layer.

The layer-wise context expansion has been studied in [27,
21, 22] under different names and setups. However, as pointed
out by Amodei et al. [21], the basic block of the computation
can be implemented as a convolution operation and is in fact
called “row convolution” in their work. Note that while in [21]
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Figure 2: The detailed diagram of the final model.

the context is expanded for each higher layer, in [27, 22] the
contextual information is only exploited at the input layer and
optionally the first hidden layer. Even in [21] only the right con-
text information is expanded, similar to [28], since their goal is
to incorporate information from future frames into RNNs with-
out looking to the end of the utterance. In all these works, deep
CNNs are not part of their models and the context expansion
only happens along the time dimension.

The attention mechanism was firstly proposed in the CNN-
based speech recognition [7] as an automatic way to decide the
pooling range and weights. It became popular after it is shown
to be important in the sequence-to-sequence translation model
[29]. The attention mechanism has also been used for speech
recognition [30] under the sequence-to-sequence framework.

The concept of using jump connection to improve the con-
vergence property has been studied in the linearly augmented
deep neural network (LADNN) [25], the highway LSTM [28]
and the residual network (ResNet) [5]. In fact, the basic jump
net architecture in this work is very similar to that in ResNet
with differences in the ordering of some operations.

4. Experiments
Our models were built using the computational network toolkit
(CNTK) [31]. The experiments were carried out on a GPU clus-
ter that is optimized for CNTK for rapid no-hassle deep learning
model training and evaluation. The cluster, which has high-
throughput distributed storage, virtual file systems, and fault
tolerance, is managed by specially designed automated cluster
management and job/container scheduling software. Each GPU
machine in the cluster contains four K40 GPU cards. Infini-
band is used to connect nearby GPU machines for high-speed
data transmission between GPUs across machines. To speed up
the experiments, we have exploited the 1-bit quantized SGD al-
gorithm [32] built into CNTK and run all the experiments on 8
GPUs across two computers.

We evaluated our proposed model on the Switchboard and
short message dictation tasks, both of which have about 300



hours of training data. In our experiments, the kernel sizes are
always set to (3, 3) and we always useM = 4 jump blocks. The
channel sizes for these blocks are 128, 256, 512, and 1024. We
choose these numbers mainly because the final channel number
1024 is a popular number for hidden layers in DNN-based ASR
systems. We did not attempt to tune these values. Given the
input context of 30-1-30 frames, which is the typical value used
in our experiments, and the feature dimension of 40, the im-
age tensors in each jump block are (20, 31, 128), (10, 16, 256),
(5, 8, 512), and (3, 4, 1024). The models used the CD-DNN-
HMM [2] framework.

We mainly compare against the DNN and LSTM base-
lines. The DNN model has 5 hidden layers, each with 2048
sigmoid units. The LSTM model has 4 layers, each with 1024
LSTM cells and a 512-unit projection layer. The output HMM
state label for the LSTM model is delayed by 5 frames. The
mean-variance feature normalization was used for the DNN and
LSTM models but not for the CNN-LACEA model. All models
were trained using the frame cross-entropy criterion.

4.1. Switchboard

Switchboard (SWB) is a conversational speech transcription
task. In our experiments, we used the 309hr training set. We
reserved 80 conversational sides selected randomly from the
training set as the validation set for controling the learning rate
during model training.

The feature used in this task is the 40-dim log Mel-
scale filter bank. The speaker-independent crossword triphones
use the common 3-state topology and share 9000 CART-tied
states across all models. The GMM-HMM baseline sys-
tem was trained with the maximum likelihood (ML) criterion
and refined with the boosted maximum-mutual-information
(BMMI) sequence-discriminative training criterion. This base-
line GMM-HMM system was used to generate the label align-
ment to train, with the frame cross-entropy criterion, a six-layer
ReLU-DNN. This DNN is then used to generate a refined align-
ment to train all other models, including a six-layer ReLU-DNN
baseline. Each layer in this DNN baseline contains 2048 units.

The language model (LM) used in this task incorporates 3M
words of SWB transcripts, 21M words from the Fisher corpus,
and 191M words of conversational Web data compiled by U.
Washington, pruned to 13.6M bigrams, trigrams and fourgrams.
The vocabulary size is 226k. Decoding used Microsoft’s WFST-
based Argon recognizer. The AM weight was set to 0.0667 (cor-
responding to an LM weight of 15) and not tuned. No insertion
penalty was used. The evaluation was conducted on the 1831-
segment SWB part of the NIST 2000 Hub5 eval set. In all ex-
periments, recognition was done in a single-pass without any
speaker adaptation or using any auxiliary information.

Table 1 compares our proposed model with the baseline
systems2. We can observe that the proposed approach performs
significantly better than DNNs and LSTMs. The context win-
dow of 30-1-30 seems to be sufficient. Increasing it to 40-1-40
does not improve the accuracy.

The CNN-LACEA models converges very fast. After
sweeping through the 309hr data twice, the training already
converges to close-to-optimal parameters. The CNN-LACEA
results reported in the table were achieved after sweeping the
training set three times. CNN-LACEA takes 5x more time

2Recently WERs of 11.6% (LSTM) and 10.3% (BLSTM) were re-
ported using CE training [33]. However, these results were achieved
using speaker-adaptive features, speed-perturbation for 3-fold data aug-
mentation, and iVector for instantaneous adaptation.

than LSTM to sweep data once if both are implemented using
cuDNN but requires 1/5 of sweeps.

Table 1: Word error rate on the SWB task

Model Window WER WER (Full LM)
DNN - 15.1% 14.9%
LSTM - 12.8% 12.6%
BLSTM - 12.0% 11.8%
CNN-LACEA 30-1-30 11.3% 11.0%
CNN-LACEA 40-1-40 11.3% 11.0%

4.2. Short Message Dictation

The Short Message Dictation (SMD) task contains 375 hours of
transcribed US-English data, of which 12 hours are reserved as
the validation set to determine the learning rate schedule. The
test set contains 17.8k word tokens.

The 80-dim log Mel-scale filter bank feature was used in the
study for the LSTM and CNN-LACEA models. For the DNN
baseline model, an 87-dimensional feature that consists of the
29-dimensional static log-filter-bank outputs and their first- and
second-order derivatives, is used. This 87-dim feature outper-
formed the 80-dim log filter bank feature for the DNN baseline.
All models evaluated in this study use 5976 tied-triphone states
(senones), determined by a CD-GMM-HMM system, and were
trained to minimize the frame-level cross-entropy criterion.

Table 2 summarizes the WER on the SMD task. In this
study, the context window used in the CNN-LACEA model is
30-1-30 per the discussion in Section 4.1. We can observe that
on this task the proposed system also outperformed both the
DNN and LSTM baselines. We want to point out that we only
swept the training set three times to achieve the reported CNN-
LACEA results while the LSTM model was optimized with 16
sweeps of the data.

Table 2: Word error rate on the SMD task

Model WER
DNN 16.1%
LSTM 14.4%
CNN-LACEA 13.0%

5. Conclusions
In this paper, we proposed a novel deep CNN for LVSR. We
employed layer-wise context expansion and attention for more
powerful modeling and jump connection for better convergence.
No pooling is used in our model since pooling can be better
implemented using a convolution operation as well.

Our work indicates that the full potential of CNNs may yet
to be explored. This is our first attempt to build very deep
CNNs. There are many dimensions to explore. By combining
our model with existing techniques such as sequence discrimi-
native training, further improvements should be achievable.
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