Curating GitHub for Engineered
Software Projects

https://reporeapers.github.io/

Nuthan Munaiah Steven Kroh Craig Cabrey Mei Nagappan ﬁIT

Software Engineering Mix
Volume 2: Large-scale Data

Analysis of Software Repositories

[

Overview
Regionc North Amernca
Date: July 15 2016 - My 15 206

Thme: 830 AM - 300 P

About

Software Engineenng Mix (SE-M00 provides & forum for our colleague from academia %0
imeract deectly with Microso® engineers. The program will feature talks fom acadenms:
highights of published research that s highly relevant for Microsoft and Dlue sy talks
KIMMANIING eMmengng research areas. In addtion, practitionens will grve presectations abogt
Secretical and pragmatic engneeting challenges they fate, perbags sohiating help from
academa A coMee round table setting will be used 10 faoltate discussons. Ths session budds
on the success of SUF Days, which provsded 3 dscussion forum about the future of software

Why is this topic interesting today?

Software Engineering Mix
Volume 2: Large-scale Data

Analysis of Software Repositories

-

Overview Software Engineenng Mix (SE-M00 provides & forum for our colleague from academia %0
imeract deectly with Microso® engineers. The program will feature talks fom acadenms:

Regionc North Amernca highights of published research that s highly relevant for Microsoft and Dlue sy talks
KIMMANIING eMmengng research areas. In addtion, practitionens will grve presectations abogt

Date: July 15 2016 - Ny 15 2006 Secretical and pragmatic engneeting challenges they fate, perbags sohiating help from

academa A coMee round table setting will be used 10 faoltate discussons. Ths session budds
Thene: 830 AM - 330 P M on the success of SUF Days, which provsded 3 dscussion forum about the future of software

Why is this topic interesting today?

Access to Data

SOURC%RGE‘ e
NV

github

Why is this topic interesting today?

Access to Data Computing Power
soum%nce- ‘

github

SOCIAL CODING

What can we do with this data?

Data Driven Decision
Support for Software Stakeholders

Developer Maintainer

Manager
Operator

Build Engineer

A Large Scale Study of Programming Languages
and Code Quality in Github

AP

Department of

ABSTRACT

What is the effect of programming languages on software qual-
ity? This question has been a topic of much debate for a very long
tume. In this study, we gather a very large data set from GitHub
(728 peojects, 63 Million SLOC, 29,000 authors, 1.5 million com-
mits, in 17 languages) in an attempl to shed some empirical light
on this question, This reasonably large sample size allows us to use
a mixed-methods approach, combining multiple regression modei-
ine with visualization and text analvtics. to studv the effect of lan-

Baishakhi Ray, Daryl Posnett, Viadimir Filkov, Premkumar Devanbu

{bairggﬁ dpposnett@, filkov@cs., devanbu@cs.jucdavis.edu
puter Science, University of California, Davis, CA, 95616, USA

1. INTRODUCTION

A vaniety of debates ensue during discussions whether a given
programming language is “the right ool for the job”. While some
of these debates may appear (o be tinged with an almost religious
fervor, most people would agree that a programming language can
impact not caly the coding process, but also the properties of the
resulting artifact.

Advocates of strong static typing argue that type mnference will
catch software bugs early. Advocates of dynamic typing may argue

Towards building a universal defect prediction model
with rank transformed predictors

Feng Zhang') . Audris Mockus? - Iman Keivanloo® -
Ying Zou®

a®
e

© Springer Science+Business Media New York 2015

Abstract Software defects can lead to undesired results. Correcting defects costs 50 % to
75 % of the total software development budgets. To predict defective files, a prediction
model must be built with predictors (e.g., software metrics) obtained from either a project
itself (within-project) or from other projects (cross-project). A universal defect prediction

Quallty and Productivity Outcomes Relating to

cbcb

Continuous Integration in GitHub

dan Vasilescu'" , Yue Yu''", Huaimin Wang*, Premkumar Devanbu’, Viadimir Filkov'

'Department of Computer Science
University of Caldornia, Davis
Davis, CA 95616, USA

‘College of Computer
National University of Defense Technology
Changsh& 410073, China

{vasilescu, ptdevanbu, vfilkovi@ucdavis.edu {yuyue, hmwang}@nudt.edu.cn

ABSTRACT

Software processes comprise many steps; coding is followed
by building, integration testing, system testing, deployment,
operations, among others. Sofltware process integration and
automation have been areas of key concern in software engl-

nooring suwor dinre the ninnesering avirk Af MNetaranils markos

1. INTRODUCTION

Innovations in software technology are central to economic
growth. People place ever-increasing demands on software,
in terms of features, security, reliability, cost, and ubiquity;
and these demands come at an increasingly faster rate. As
the annetites grow for ever more nowerful software. the hn.

A Large-Scale Empirical Study of the Relationship between
Build Technology and Build Maintenance

Shane Mclntosh - Meiyappan Nagappan -
Bram Adams - Audris Mockus - Ahmed E.

,\’Ambo: pre-peint copy. The final publication is available at Springer via:
http://dx.doi,.org/10.1007/810664~-014-9324~-x

Abstract Build systems specify how source code is translated into deliverables. They
require continual maintenance as the system they build evolves. This build mainte-
nance can become so burdensome that projects switch build technologies, potentially
having to rewrite thousands of lines of build code. We aim to understand the preva-
lence of different build technologies and the relationship between build technology
and build maintenance by analyzing version histories in a corpus of 177,039 reposi-

tnrac enrnanrd anrnece fanre eaftuare farnae thema cafluware anncvetame and fane laros_

An Empirical Study of Goto
in C Code from GitHub
Repositories

,Q@ Mei Nagappan, Romain Robbes, Yasutaka Kamei, Eric
Tanter, Shane Mclntosh, Audris Mockus, Ahmed E. Hassan

- T ol T
Y
/i
KYUSHU McG1ll UI Cll,eens

lllllllll

246,657 out of the 2,150,387 files
(11.47%)

11,627 \ 3 3,093
Projects Goto Miner Projects

Extent of use of goto statements by
Developers is non-trivial

246,657 out of the 2,150,387 files
(11.47%)

I
2

11,627 \ 3,003 3
Projects Goto Miner Projects 5
6

7

8

Extent of use of goto statements by 9
Developers is non-trivial (1)

Most goto usage is for error handling
and cleanup

int fun (int x)

{ ;
code ... Error Handling =

if(error)

goto err_label: 80%

code

er-lavel: - Cleanup = 40%
print(error);
cleanup (mem) :
return 0;

246,657 out of the 2,150,387 files Most goto usage is for error handling
(11.47%) and cleanup

int fun (int x)

{ .
code ... Error Handling =

if(error)

goto err_label: 80%

code

er-lavel: - Cleanup = 40%
print(error);
cleanup (mem) :
return 0;

11,627 \ 2 3,093
Projects Goto Miner Projects

Extent of use of goto statements by
Developers is non-trivial

— O OO E W —

Spaghetti code is uncommon

Il int fun (int x)

21 {

3 // Spaghetti code due to goto

+ code ...

5 if(error)

6 goto err.labell:

7 code ...

8

9 err.labell: « 6%
10 print(error)

1 code ..,

12 if(another.error)

13 goto err_label2;

14 code ... /« The above code block is skipped

when another.error evaluates to true.
Thus there is now spaghetti code due to a
goto inside the code block of a label.«/
15 err.label2:

16 print(another_error)

17 return 0

18] }

L 4

246,657 out of the 2,150,387 files
(11.47%)

11,627 \ 2 3,093
Projects Goto Miner Projects

Extent of use of goto statements by
Developers is non-trivial

Spaghetti code is uncommon

Il int fun (int x)

21 {

3 // Spaghetti code due to goto

R code ...

5 if(error)

6 goto err.labell:

7 code ...

8

9 err.labell: « 6%

10 print(error)

1 code ..,

12 if (another.error)

13 goto err_label2;

14 code ... /« The above code block is skipped
when another.error evaluates to true.
Thus there is now spaghetti code due to a
goto inside the code block of a label.«/

15 err.label2:

16 print(another_error)

17 return 0;

18] }

— O OO E W —

Most goto usage is for error handling

and cleanup

int fun (int x)

{

code ... Error Handling =

if(error)

goto err_label: 80%

code

eaplebel Cleanup = 40%

print(error);
cleanup (mem) :
return 0;

Even fewer Gotos are removed/
modified in the post-release bug fixes

2 kb “ Removed
“ Modified

1

0

However, there is a lurking issue

What are these projects on Github?

85 + 5% files are system
or networking files

Student projects
Tutorial projects
Personal projects
Forked projects

We need to choose
engineered
software projects

So how are we finding
engineered software projects?

Stargazers/Watchers/Forks

O This repository Pull requests Issues Gist l ‘. +~ :'6‘!'

facebook | facebook-ios-sdk @ Watch~ 495 Star 5521 YFork 2,219

<> Code Pull requests 4 ~ Pulse Graphs

Can we do better?

Curate Github to find the
engineered software projects

How do we define an
engineered software project?

Unit
testing

Engg.
SW

Project

0890

score(r) = Z hg(Mg,tg) X wy

deD I ,

Metric
Threshold

Weight

Thresholds — 150 Github Projects

amazZon APACHE
N—"]

OOOOOOOOOOOOOOOOOOO

Google

=" Microsoft

Table 1 Dimensions and their corresponding weights, metrics, and thresholds

Dimension (d) Weight (wy) Metric (M) Threshold (t;)

Architecture 20 Monolithicity 0.649123

Interpretation: At least 64.9123% of source files must be connected to one another

in the largest subsystem.

Community 20 Core Contributors 2

Interpretation: At least 2 contributors whose commits account for 80% of the total

commits.

Continuous Integration) Evidence of CI 1

lntefprétitlbnx Evldenoe of continuous integ:ration usage must be present.

Documentation 20 Comment Ratio 0.001866
Interpretation: At least 0.1866% of the source lines must be comments.

History 20 Commit Frequency 2.089552

Interpretation: At least 2.089552 commits per month.

[ssues 5 Issue Frequency 0.022989

Interpretation: At least 0.022989 issues per month.

License 0 Evidence of License 1

Interpretation: Evidence of a license usage must be present,

Unit Test 10 Test Ratio 0.001016

lnterpretatfon: At least 0.1016% of source uhes must be unit test code.

High Stars, High Score (100)

o This repositony Pull requests lssues Cist 8 4 i
L peterbe / premaller @©wWasch> 19 WSt 376 Yrerk 19
<) Code isswes B Pull requests 10 Wiel - Pulse Geaphs

Turrs CSS blocks inmo style stiributes MipJ/premaierio

) 304 commits v 2 branches 0 releases AL 4% contributons

High Stars, but very low score (25)

O Tha repok vy Pull requests tssues Cist ‘ +v :&: =
. codedance / Retaliation OwWsch~ 39 WS 439 VYrok 70
<> Code ssoes O 1 Pull requasts 7 Wik ~ Puise ' Graphs

A Jenkins “Extremne Feedback™ Contraption - fire foam rockets at build breakdng perpetrators.

7' 38 caommits V 1 branch 0 relvases AL 3 comricanors
Branch: master= ow pul requee Crome sew e Uplosdfres ind e
.m Verge pudl request 810 from kindasimple/master = Latest coomet 4193338 on Apr 1, 2013
- g Scaled down image so it fits across the page 4 yoars ago
= README.ma Added news section - Rspberry Pl mastwo! 4 yoars 390
sl retaiation. oy Add supparnt for Origingl Dream Chaeky USE Missie Launcher 3 yoa's a0

5 README md

Low Stars, but very high score (100)

O Ths regostery Pull requests Issues Gist ‘ +v -
yadt | yadtreceiver @Watch> 9 fSur 1 Yhok 2
<> Code Issues 3 VPl reguests 0 Wikl - Pulse Graphs

Executes yadishel commands triggered by 8 yatibroadcaster.

(P 272 comemits ¥ 1 branch 1 release AL 8 contributors

Hranch: master ~ Now pull request Crestenew tile Upicad files Find Nie Clone or dowrdosd ~
5. mriehd 1°** you pyfint, 11l use the red hat package Latest commit 72a8ecs on Feb 25, 2015
» src fakoB plugin and fxes a yoar ago
& gitignore . git ignoring 1IDEA flles 4 yoars ago
R Aravisymi update apt cache on travis 1o prevent 404s 2 YOuUrs ago
| README md add clustering section 2 YOUrs ago

k! bigpicture.png enhancing documentation 3 yoars ago

Evaluation — Ground truth data

384 Github repos were manually analyzed

Evaluation — 384 Github repos were manually analyzed

Performance of reaper-based classification scheme against the ground truth

FPR FNR Precision Recall F-measure
26.87% 32.10% 76.56% 67.90% 71.97%

Evaluation — 384 Github repos were manually analyzed

Performance of reaper-based classification scheme against the ground truth

FPR FNR Precision Recall F-measure
26.87% 32.10% 76.56% 67.90% 71.97%

Performance of stargazers-based classification scheme against the ground truth

FPR FNR Precision Recall F-measure
0.00% 99.31% 100.00% 0.69 % 1.38%

Perfect precision, but very low recall

Performance of reaper-based classification scheme against the ground truth

FPR FNR Precision Recall F-measure
26.87% 32.10% 76.56% 67.90% 71.97%

Performance of stargazers-based classification scheme against the ground truth

FPR FNR Precision Recall | F-measure
0.00% 99.31% 100.00% 0.69 % 1.38%

Data https://reporeapers.github.io/
O

reaper Run Results

Lvws
MAoym by (44 Lavguege Saiee Aaiiew Coammanly O Dibmasiains Mabery Lates Masigesmasl U e Dt Slers Teniany

Data https://reporeapers.github.io/
O

reaper Run Results

MAoym by (44 Lavguege Saiee Aaiiew Coammanly O Dibmasiains Mabery Lates Masigermasl U Tt Dte Slen T e ewe

Source Code https://github.com/RepoReapers/reaper

