

A Game Theoretic Model for the Formation of Navigable Small-World Networks

Wei Chen **Microsoft**Joint work with Zhi Yang, Peking U.

Milgram'67: Six Degrees of Separation

 296 People in Omaha, NE, were given a letter, asked to try to reach a stockbroker in Boston, MA, via personal acquaintances

• 20% reached target

• average number of "hops" in the completed

chains = 6.5

Why are chains so short?

Watts & Strogatz'98: Small-World Model

- Propose two important features of the small-world networks
 - Low diameter
 - High clustering
- Propose a random rewiring model
- But one feature of the Milgram experiment is missing!

Kleinberg'00: Navigable Small World

- Notice the feature of efficient decentralized navigation in Milgram's experiment --- navigability
 - Subjects only use local information to navigate the network
- Adjust the rewiring model of Watts&Strogatz
- Prove the navigability of the model at a critical parameter setting

4

Kleinberg's Small-World Model

- Put n^k people on a k-dimensional grid
- Connect each to its immediate grid neighbors
- Add one directed long-range link per node
 - Node u connects to v with probability

$$\Pr(u \to v) \propto \frac{1}{d(u, v)^r}$$

- $-r \in [0, +\infty)$ is connection preference:
 - r close to ∞ : prefers to connect to nodes in the vicinity
 - $oldsymbol{\cdot}$ r close to 0: prefer to connect to faraway nodes equally as neighboring nodes
 - r = 0: reduces to the Watts & Strogatz model (random network)

Decentralized Routing in Kleinberg's Model

- Decentralized greedy routing:
 - given a target t, every node u routes the message for t to u's neighbor (local or long-range contact) closest to t in grid distance
- r > k

- Main result:
 - -r = k: routing is efficient $O(\log^2 n)$ --- navigable network
 - -r < k or r > k: routing is not efficient $\Omega(n^c)$ for some c related to r.
- Intuition:
 - -r > k: long-range links are too close to move towards the target
 - -r < k: long-range links are too random to zoom into the target
 - -r=k: right balance between fast moving towards and zooming into the target

r < k

r = k

What is the parameter in real networks?

Empirical Validation

- Liben-Nowell et al. '05:
 - fractional dimension α for non-uniform population distribution $|\{w:d(u,w)\leq d(u,v)\}|=c\cdot d(u,v)^{\alpha}$
 - When $r=\alpha$, the network is navigable
 - LiveJournal dataset (495K nodes): $\alpha \approx 0.8, r = 1.2$
- Ours:
 - Renren dataset (10 mil nodes)
 - $-\alpha \approx 1.0, r = 0.9$
- Others show similar results

Why is connection preference close to the critical value of grid dimension in the real world!?

WWW'15, May 21, 2015

8

Our Proposal

- Game-theoretic formation of navigable small world
 - strong theoretical and empirical support
 - Navigable small world network is not only one equilibrium, but is the only one tolerating both collusions and random perturbations
 - Surprising connection with relationship reciprocity
 - New insight: balance between connection reciprocity connection distance leads to network navigability!
- Other earlier attempts [Mathias&Gopal'01, Clauset&Moore'03, Sandberg&Clarke'06, Chaintreau et al.'08, Hu et al.'11]
 - Use node or link dynamics, mostly by simulation, some theoretical results on approximate settings for the navigability, none connects to reciprocity

Game Theoretic Model

- Players: n^k nodes in a k-dimensional grid
- Strategies: connection preference $r_u \in [0, +\infty)$ of node u
 - u has a long-range link to v with probability $\Pr(u \to v) \propto \frac{1}{d(u,v)^{r_u}}$
 - Indicate the preference of u in connecting to local or remote nodes
 - For convenience, we discretize $r_u \in \{0, \gamma, 2\gamma, 3\gamma, ...\}$, γ --- granularity

WWW'15, May 21, 2015

10

Payoff function: Distance-Reciprocity Tradeoff

- First attempt: average routing distance as payoff
 - Random network ($r_u \equiv 0$) seems to be the equilibrium
- Novel payoff function: distance reciprocity tradeoff

$$\pi_u(r_u, \mathbf{r}_{-u}) = \left(\sum_{v \neq u} p_u(v, r_u) d(u, v)\right) \times \left(\sum_{v \neq u} p_u(v, r_u) p_v(u, r_v)\right)$$

Average grid distance of a longrange link --- prefer faraway nodes to get diverse information Average probability that the longrange link is reciprocated --- prefer mutual relationship

Theoretical Analysis

Uniform Nash Equilibria

• Theorem 1. For sufficiently large n, If everyone else plays the same strategy ($\mathbf{r}_{-u} \equiv s$), the best response of u is

$$B_u(\mathbf{r}_{-u} \equiv s) = \begin{cases} k & \text{if } s > 0 \\ 0 & \text{if } s = 0 \end{cases}$$

- Corollary 2. There are only two uniform Nash equilibria:
 - Navigable small-world network ($\mathbf{r} \equiv k$)
 - Random small-world network ($\mathbf{r} \equiv \mathbf{0}$)

Intuition (Proof Sketch)

- $\mathbf{r}_{-u} \equiv s, s > 0$: everyone else (slightly) prefers local nodes
 - If $r_u < k$, u's long-rang links achieve good distance but poor reciprocity
 - If $r_u > k$, u's long-rang links achieve good reciprocity but poor distance
 - If $r_u = k$, u's long-rang links achieve best balance between distance and reciprocity
- $\mathbf{r}_{-u} \equiv s$, s = 0: everyone else connects uniformly to other nodes
 - Reciprocity is a constant regardless of r_u
 - Thus, set $r_u=0$ to achieve the largest average grid distance

Stability of Navigable Small World --- Collusion Toleration

 What if a group of players (instead of one player) want to collude and deviate together for better payoff?

- Theorem 3. Navigable small-world network ($\mathbf{r} \equiv k$) is a strong Nash equilibrium for sufficiently large n.
 - Strong Nash: no collusion group of any size could successfully deviate from the equilibrium without someone in the group got hurt in payoff.
 - Reason: In any strategy profile, if $r_u \neq k$, u's payoff is strictly worse than its payoff in the navigable small world.

Stability of Navigable Small World ---Random Perturbation Toleration

- What if perturbations occur at random players, without increasing payoff constraint?
- Theorem 4. In the navigable small-world network ($\mathbf{r} \equiv k$), even if every node has an independent probability of $1 n^{-\varepsilon}$ (for small $\varepsilon > 0$) to be perturbed to an arbitrary strategy, with high probability every player u wants to set $r_u = k$ as its best strategy after the perturbation.
- Intuition: a small portion of randomly distributed nodes holding $r_u = k$ is enough to pull everyone to $r_u = k$.

Instability of Non-navigable Equilibria --Not Tolerating Collusions from a Small Group

Does any other Nash equilibrium tolerate Collusion? --- NO!

- Theorem 5. No other equilibrium tolerates the collusion of $2n^{-\varepsilon}$ (for small $\varepsilon > 0$) fraction of players.
- Intuition: Dual aspect of Theorem 4 --- a small portion of evenly distributed nodes collude and set $r_u = k$ is enough to pull everyone to $r_u = k$.

Instability of Non-navigable Equilibria --Not Tolerating Random Perturbations

- Does any other Nash equilibrium tolerate random perturbation?
 - No if perturbed players could set strategy to k (by Theorem 4)
- What if the target strategy set after perturbation does not contain k?

• Theorem 6. In the random small world ($\mathbf{r} \equiv \mathbf{0}$), for an arbitrary finite target strategy set S after the perturbation ($\beta = \max S > 0$), if every u is perturbed to every $u \in S \setminus \{0\}$ with probability at least $u \in S \setminus \{0\}$ (for small $u \in S \setminus \{0\}$), then with high probability the best strategy for every u after the perturbation is $u \in S \setminus \{0\}$.

Implication of Theoretical Analysis

- Navigable small world is the only stable state of the system
 - Once in it, any size of collusion, or large random perturbation cannot shake the system out of navigable small world
 - If the system temporarily gets stuck at other states (other equilibria)
 - Small size collusion can bring the system back to navigable small world
 - Small size random perturbation can also bring the system back to navigable small world

Empirical Evaluation

Grid size: 100 x 100

Stability of NE under Perturbation

- At time step 0, each player is perturbed independently with probability p.
- At time step t > 0, every player picks the best strategy based on the strategies of others in the previous step.

Figure 6: The return Figure 7: to navigable small-world dom NE to small-world NE (perturbed probabil- NE (perturbed probability p=1).

From ity p = 0.01)

DRB Game with Limited Knowledge (1)

- Scenario 1: knowing friends' strategies.
- At every step $t \geq 0$, each player u creates q out-going longrange links based on her current strategy, and learns the (noisy) connection preferences of these qlong-range contacts, then infer others' connection preferences.

Figure 8: Network evolution where each player only knows the strategies of their friends.

DRB Game with Limited Knowledge (2)

- Scenario 2: No information about others' strategies.
- a player creates a certain number of links with the current strategy, and computes the payoff by multiplying the average link distance and the percentage of reciprocal links.
- at each step each player only has one chance to slightly modify her current strategy. If the new strategy yields better payoff, the player would adopt the new strategy.

Figure 9: Network evolution where players have no knowledge of strategies of others.

Conclusion & Future Work

The first model connecting reciprocity with navigability

Distance x Reciprocity ⇒ Navigability

- Navigable small world is the only stable system state
- Strong theoretical and empirical support
- Future work
 - Non-uniform population distribution
 - Arbitrary base graph
 - Other more general long-range link distribution than power-law
 - Integrating with node mobility and link dynamics

Thanks, and questions?

