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(Social) networks are natural phenomena
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Booming of online social networks

facebook

A AR & myspace.

renren.com

www.tlianya.cC
@ Harvard, Oct. 18, 2011

AN,




Opportunities and challenges on the
research of online social networks

e Opportunities
e massive data set, real time, dynamic, open

e help social scientists to understand social interactions in a
arge scale

e help marketing people to target to the right audience
e help economists to understand social economic networks

e Challenges
e graph structure based large scale data analysis
e scalable graph algorithm design

e realistic modeling of network formation, evolution, and
information/influence diffusion in networks
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Our recent work on social network
related research

e Social influence in social networks
e scalable influence maximization
¢ influence maximization with complex social interactions

* Game-theoretic based modeling of social interaction

e bounded budget betweenness centrality game for
network formation

e Optimal pricing in social networks with networked effect

e Fundamental algorithms for large graphs
e fast distance queries in power-law graphs
e game-theoretic approach to community detection
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Scalable Influence Maximization

in Social Networks

[KDD’09, KDD’10, ICDM’10]
Collaborators:

)
Chi Wang, Yajun Wang, Siyu Yang, & /é}
Yifei Yuan, Li Zhang
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Word-of-mouth (WoM) effect in social networks

@e is good]
@e is good
: \ @e is good
xphonelsgood
xphone is good \ we 1S 800d
xphone IS good :

* Word-of-mouth effect is believed to be a promising
advertising strategy.

* Increasing popularity of online social networks may enable
large scale WoM marketing
Harvard, Oct. 18, 2011




WoM (or Viral) Marketing

level of trust on different types of ads

[ family and friends

] <E[ very effective ]

consumer posts on boards
newspaper

magazine

Radio

TV

outdoor

online ads

mobile phone ads
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*source from Forrester Research and Intelliseek
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Two key components for studying WoM

marketing

* Modeling influence diffusion dynamics, prior work includes:
e independent cascade (IC) model
e linear threshold (LT) model
e voter model

e Influence maximization, prior work includes:
e greedy approximation algorithm
e centrality based heuristics
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The Problem of Influence Maximization

@ Social influence graph
@ vertices are individuals
@ links are social relationships

@ number p(u,v) on a directed
link from u to v is the
probability that v is activated
by u after u is activated

@ |ndependent cascade model

@ initially some seed nodes are
activated

@ At each step, each newly
activated node u activates its
neighbor v with probability
p(u,v)

@ Influence maximization:

@ find k seeds that generate the
largest expected influence
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Prior Work

@ Influence maximization as a discrete optimization problem
proposed by Kempe, Kleinberg, and Tardos, 2003

@ Introduce Independent Cascade (IC) and Linear Threshold (LT)
models

@ Finding optimal solution is provably hard (NP-hard)

@ Greedy approximation algorithm, 63% approximation of the
optimal solution

@ select k seeds in k iterations

@ in each iteration, select one seed that provides the largest marginal
increase in influence spread

@ Several subsequent studies improved the running time

@ Serious drawback:
@ very slow, not scalable: > 3 hrs on a 30k node graph for

@ 50 seeds
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Our Work

@ Exact influence computation is #P hard, for both IC and LT
models --- computation bottleneck

@ Design new heuristics

@ MIA (maximum influence arborescence) heuristic [KDD’10]

@ for general independent cascade model (more realistic)

@ 103 speedup --- from hours to seconds

@ influence spread close to that of the greedy algorithm of [KKT'03]
@ Degree discount heuristic [KDD’09]

@ for uniform independent cascade model

@ 10°speedup --- from hours to milliseconds

@ LDAG (local directed acyclic graph) heuristic [[CDM’10]

@ for the linear threshold model
@ 103 speedup --- from hours to seconds
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Maximum Influence Arborescence (MIA)
Heuristic

@ For any pair of nodes u and
v, find the maximum
influence path (MIP) from u
tov

@ ignore MIPs with too small
probabilities ( < parameter 0)
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MIA Heuristic (cont’d)

@ Local influence regions

@ for every node v, all MIPs
to v form its maximum
influence in-arborescence
(MIIA)
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MIA Heuristic (cont’d)

@ Local influence regions

@ for every node v, all MIPs
to v form its maximum

influence in-arborescence
(MIIA)

@ for every node u, all MIPs
from u form its maximum
influence out-
arborescence (MIOA )

@ computing MIAs and the
influence through MIAs is
fast

@ Harvard, Oct. 18, 2011
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MIA Heuristic Ill: Computing Influence

through the MIA structure

@ Recursive computation of activation probability ap(u) of a
node u in its in-arborescence, given a seed set S

Algorithm 2 ap(u, S, MITA(v,0))
1: ifu € S then

2 ap(u)=1
3 else if Ch(u) = () then Q
4 ap(u) =0 L)
5. else
6 'ﬂ'p('u,} =1- Hu'EC-‘fL[u}(l — ﬂp(“"j | pplf_-w,u]]
7: end if
//Q\
: : : Qo /&
@ Can be used in the greedy algorithm for selecting k seeds, () *
but not efficient enough Q / 1
o )
Q
Q 4~ -
L) Q

| r
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MIA Heuristic IV: Efficient updates on

incremental activation probabilities

@ uisthe new seed in MITA(v)

@ Naive update: for each candidate w,
redo the computation in the previous

page to compute w’s incremental
influence to v

® O(IMIIA(v)|?)

@ Fast update: based on linear relationship
of activation probabilities between any
node w and root v, update incremental
influence of all w’s to v in two passes

° O(|IMIIA(v)])

@ Harvard, Oct. 18, 2011
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MIA Heuristic (cont’d)

@ |teration between two steps
@ Selecting the node v giving the largest marginal influence
@ Update MIAs after selecting v as the seed

@ Key features:
@ updates are local
@ |ocal updates are linear to the local tree structure

@ Harvard, Oct. 18, 2011
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Experiment Results on MIA heuristic

Influence spread vs. seed set size running time
1600 1.0E+05 - 3.5 hrs
——Greedy < 1.0E+04 -
1400 - 8 1.0£+03 -
1200 —MIA £ 1.0E+02 -
| ——DegreeDiscount v 1.0E+01 -
k: ° £ loes00 |
g 1000 + ——Degree £ 1.0E-01 -
- —Rand g 1.0E-02 -
Y 800 - andom 2 1.06-03 -
3 1.0E-04 -
2 600 - .
£ S
400 - ray &
200
0

1 11 21 31 41
seed set size

Experiment setup:

« 35k nodes from coauthorship graph in physics archive

« influence probability to a node v =1/ (# of neighbors of v)
« running time is for selecting 50 seeds
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Scalability of MIA heuristic

7000

5000 e Greedy
iy o 5P ] W
T 5000
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'ﬁl 3000
£ = e preeDiscountIC
E 2000
= == Random

10040

0 ; = —
0 2000040 400000 200000 200000

number of edges in the graph

Experiment setup:

- synthesized graphs of different sizes generated from power-law
graph model

- influence probability to a node v =1/ (# of neighbors of v)
¢ running time is for selecting 50 seeds

@ Harvard, Oct. 18, 2011




e

Summary

@ Scalable influence maximization algorithms
@ MixedGreedy and DegreeDiscount [KDD’09]
@ PMIA for the IC model [KDD’10]
@ LDAG for the LT model [ICDM’10]

@ PMIA/LDAG have become state-of-the-art benchmark
algorithms for Inf. Max.

@ Collective citation count above 110 in less than 2 years
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Handling Complex Social Interactions

[SDM’11, others under submissions]

Alex Collins, Rachel Cummings, Te Ke, Zhenming Liu,
David Rincon, Xiaorui Sun, Yajun Wang, Wei Wei, Yifei
Yuan, Xinran He, Guojie Song, Yanhua Li, Katie
Everett, Zhi-Li Zhang

e Harvard, Oct. 18, 2011
N, Il




Handling complex social interactions

e people may dislike a product after usage and spread
bad words about it

* a competing product may compete for social influence
in the social network

e social relationships may be friends or foes

Harvard, Oct. 18, 2011
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Our solutions

e people may dislike a product after usage and spread
bad words about it

¢ |C-N model and MIA-N algorithm
e a competing product may compete for social influence

in the social network

e CLT model and CLDAG algorithm for influence blocking
maximization

e social relationships may be friends or foes

e voter model in sighed networks with exact inf. max.
algorithm

Harvard, Oct. 18, 2011




|IC-N model and MIA-N algorithm for the
emergence and propagation of

@ Harvard, Oct. 18, 2011
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egatlve opinions may
! Xxphone sucks
xphone is good :

emerge and propagate
: \ xphone crashes a Iot
xphonelsgood
xphone is good xphone 's bad ]
Yxphone is good :V

* Negative opinions originates from poor product/service
quality

e Negative opinions may be more contagious --- negativity

bias
@ Harvard, Oct. 18, 2011 /




Negative opinion model

e Extention of the independent cascade model

e The quality of the product to be advertised is
characterized by the quality factor (QF) g € [0,1].

e Each node could be in 3 states
e [nactive, positive, and negative.

e When node v becomes active,

e |f the influencer is negative, the activated influencee is also
negative (negative node generates negative opinions).
e |f the influencer is positive, the activated influencee
is positive with prob. g.
is negative with prob. 1 — gq.
e |f multiple activations of a node occur at the same step,
randomly pick one

e Asymmetric --- negativity bias

Harvard, Oct. 18, 2011
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Independent Cascading Process

(without considering QF)

A
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Independent Cascading Process
(when considering QF)
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Our results (1)

e Complexity and approximation algorithm results

Objective function | Algorithm result Negative
result

General directed Maximize expected (1 — = — ¢)-approx alg, Exact sol. is NP
graphs positive nodes due to submodularity hard.
General directed Maximize expected  Exists an (1 — 1_ £)- Same as

onc _ . e
graphs (nzczjsel’glve negative) approx alg. Only when g is above

' sufficiently large

Directed graphs  Maximize expected NA Obijective is
with different g  positive nodes non-
for different submodular

people
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Our results (2)

e Q:is the knowledge of quality factor important?

e guess a “universally good” value g so that regardless of the
actual quality factor, the seeds are good?

e No: 3 social networks s.t. a wrong guess of g could lead to a
much worse result than the optimal one. (0(y/n/k))
e Intuition: which one seed to select in the following graph?

é? **** :E ‘ J\\o § - (n—+/n) nodes

|
Vn nodes
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Our results (3)

e Q: what is the bottleneck of the approx. alg.

* Given a specific seed set S, can we evaluate the
expected number of positive nodes?
* In general, #P-hard; can use Monte Carlo to approximate.
* But exists efficient exact algorithm for arborescence (trees).

e Developed scalable heuristic MIA-N based on influence
calculation alg. for arborescences.

Harvard, Oct. 18, 2011




Computation in directed trees
(in-arborescences)

* Without negative opinions, a simple
recursion computes the activation
probability of u:

—ap(u) =
1~ yeningy (1 — apw)p(w,w)

e Difficulty with negative opinions:

needs to know whether the

neighbors of u is positive or negative
--- because of negativity bias

Harvard, Oct. 18, 2011
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Solutions for in-arborescences

e Step 1: compute activation probability of u at step t (via
dynamic programming):

ap(u,t) =
() t:DﬂHES,
e =S ap(w, ) p(w, u
]._[w[:.-"'u - {u}[ Z’*:D P{ JPI: }] t=>=0AMu E S.

— e v [ — Xizg ap(w, i)p(w, w)]

e Step 2: compute positive activation probability of u at
step t:

pﬂp{:u: t) — ﬂlp[:i'_i: 1’-} ) gt_l_l'
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Influence spread and QF
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e Results on a collaboration network with 15K nodes.
« Convex function because of negativity bias
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Performance of the heuristic
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« MIA-N heuristic performs nearly as good
as the original greedy algorithm.
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Scalability
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* MIA-N heuristic is 3 orders of magnitude
faster than Greedy
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CLT model for competitive influence
diffusion and CLDAG algorithm for the

influence blocking maximization problem

Harvard, Oct. 18, 2011
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The problem

e Consider two competing influence diffusion process,
onhe positive and one negative

* Inf. Blocking Max.: selecting positive seeds to block the
negative influence diffusion as much as possible

e e.g. stop rumors on a company, on a political candidate,
on public safety events, etc.

Harvard, Oct. 18, 2011




Our solution

e Competitive linear threshold model

e positive influence and negative influence diffuse
concurrently in the network

e negative influence dominates in direct competition
* Prove that the objective function is submodular

e Design scalable algorithm CLDAG to achieve fast
olocking effect

Harvard, Oct. 18, 2011




Influence diffusion on networks with

friends and foes

@ Harvard, Oct. 18, 2011




The problem

* You would positively influence your friends, but
influence your foes in the reverse direction

e How to model such influence?

* How to design influence maximization algorithm?

@ Harvard, Oct. 18, 2011




Our solution

e Voter model in sighed networks

e suitable for opinion changes from positive to negative or
reverse

e individual takes the opposite opinion from his foe

e Provide complete characterization of short term
dynamics and long-term steady state behavior

e Provide exact solutions to the influence maximization
problem

Harvard, Oct. 18, 2011




On going and future directions

* Model validation and influence analysis from real data
e Even faster heuristic algorithms

e Fast approximate algorithms

e Online and adaptive algorithms

Harvard, Oct. 18, 2011




Questions?
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