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We study a variant of the quantum approximate optimization algorithm [ E. Farhi, J. Goldstone,
and S. Gutmann, arXiv:1411.4028| with slightly different parametrization and different objective:
rather than looking for a state which approximately solves an optimization problem, our goal is to
find a quantum algorithm that, given an instance of MAX-2-SAT, will produce a state with high
overlap with the optimal state. Using a machine learning approach, we chose a “training set” of
instances and optimized the parameters to produce large overlap for the training set. We then
tested these optimized parameters on a larger instance set. As a training set, we used a subset of
the hard instances studied by E. Crosson, E. Farhi, C. Yen-Yu Lin, H.-H. Lin, and P. Shor (CFLLS)
|arXiv:1401.7320]. When tested on the full set, the parameters that we find produce significantly
larger overlap than the optimized annealing times of CFLLS. Testing on other random instances
from 20 to 28 bits continues to show improvement over annealing, with the improvement being
most notable on the hardest instances. Further tests on instances of MAX-3-SAT also showed
improvement on the hardest instances. This algorithm may be a possible application for near-term
quantum computers with limited coherence times.
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PACS numbers:

I. INTRODUCTION

The quantum approximation optimization algorithm
(QAOA)[IL 2] is a recently proposed quantum optimiza-
tion algorithm, which itself is inspired by the quantum
adiabatic algorithm (QAA)[3]. Consider a classical opti-
mization problem. Typically, the optimization problem
will optimize some objective over bit strings of length
N. One encodes the objective function into a quantum
Hamiltonian Hz which is diagonal in the computational
basis, using N qubits to encode possible bit strings in
the obvious way, with the optimal value of the objective
function corresponding to the smallest value of Hz. Now
define an additional Hamiltonian Hx, which is typically
selected to be a transverse magnetic field on each qubit
(the subscripts X, Z on H indicate whether the corre-
sponding Hamiltonian is diagonal in the Z basis or in
the X basis)

The QAA consists of first preparing the system in the
ground state of Hamiltonian Hx (which can be done eas-
ily since Hx does not couple the different qubits) and
then adiabatically evolving from Hx to Hz. The sim-
plest adiabatic path chosen is Hs = (1—s)Hx +sHy, for
s € [0,1], although other paths have been considered[4].
If the evolution time T is sufficiently long compared to
the smallest inverse spectral gap along the path (we de-
note the minimum gap as A,,;,), then with probability
close to 1 the final state will be the ground state of Hy
and hence will solve the given instance.

Unfortunately, there are theoretical arguments that
Apin can be super-exponentially small[6] (scaling as
N=<N for some constant ¢ > 0) for some instances, and
so for these instances the time required for this adia-
batic condition to hold is even longer than the time 2V
required by an algorithm that iterates over spin configu-

rations (other numerics suggests that the gap may not be
quite as small as this for random instances[7]). Some im-
provements have instead been found by looking at faster
evolution times for which the adiabatic condition does
not hold[8] and we review this in more detail below.

The QAOA is based on the observation that to im-
plement the evolution under a time-dependent Hamilto-
nian on a quantum computer, the simplest method is
to Trotterize: first, decompose the evolution for a to-
tal time T' into many small increments d¢, small enough
that the Hamiltonian H is roughly constant on time d7'.
Then, again for small enough d¢, one may decompose
exp(iHsdt) ~ exp(i(1—s)Hxdt) exp(isHzdt). Thus, the
total evolution is decomposed into a product of rotations
by Hx, Hz with certain angles, and the final state at the
end of the evolution has the form

Up = exp(i@ffHX) exp(z’@fHZ) e

exp(ify Hx) exp(i03 Hz) exp(i6 Hx ) exp(i6f Hz) ¥,

where 9;(,9»2 are some parameters determined by the
evolution path, where the “number of steps” p = T/dt,
and Uy is the ground state of Hx (for all j, 6,67 are
small, of order dt, but for small j, 9;»( is larger than HJZ
but for larger j the reverse is true). The QAOA then
instead restricts to a much smaller value of p (indeed,
Refs. [1, 2] study p = 1) but allows the angles 0}1 to be
chosen arbitrarily as variational parameters. The param-
eters may then be adjusted to optimize some objective
function; in Refs. 1} 2] this objective function was chosen
to be the expectation value (Vp|Hz|¥g).

In Ref. 5l a similar ansatz was used for purposes of ap-
proximating ground states of interacting quantum Hamil-
tonians, such as the Hubbard model. For example, in this
case one might select Hx to be a free fermion hopping
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term (or other term whose ground state can be easily pre-
pared) and Hz to contain the interactions. Some modifi-
cations to the ansatz of Eq. were made, as described
in detail below. A larger value of p was chosen and a
numerical search over parameter values was performed.

In this paper, we again use the modified ansatz of
Ref. |5 but we apply it to the classical optimization prob-
lem of MAX-2-SAT. Instead of adjusting parameters to
minimize (Vp|Hz|Ur), our objective function was the
overlap between W and the true ground state of the
given instance. We refer to this as “targetting” the over-
lap. Our general approach is inspired by machine learn-
ing techniques; this differs from the worst-case analysis of
Refs. [I, 2. We consider p > 1 and we choose a “training
set” consisting of a small number of example instances.
This training set is chosen from the remarkable paper
[8] which searches for instances which are hard for the
QAA and then investigates whether a fast anneal or other
modifications outperforms the original algorithm. After
“learning” a set of parameter values which optimize the
average overlap on this training set, we consider various
test sets including many instances not in the training set.
We refer to a given sequence of parameters as a “sched-
ule”. An “annealing schedule” is a particular choice of
parameters which approximates a linear anneal, so that
the 0])-( decrease linearly in j while the QJZ increase linearly
in 7, while a “learned schedule” is a particular schedule
obtained by optimizing parameters on a training set.

What we find is that the schedules we have learned
give results on various random test sets which outperform
annealing schedules, including both slow and fast anneals
(a sufficiently slow anneal will always find the ground
state but for many of the test cases, the time required for
such an anneal would be enormous, and if one restricts
to anneals of modest time then a fast anneal outperforms
a slow one).

Choosing a test set much larger than the training set is
an essential step in showing the possible usefulness of this
algorithm. Learning a schedule is very costly as it is done
by a numerical search which itself consists of many steps
and in each step we must evaluate the objective function,
while testing the schedule requires a single evaluation of
the objective function on each instance.

Further, we trained on sizes N = 20 but tested on
sizes up to N = 28 where they continued to perform well
and we also tested on some MAX-3-SAT instances. All
the simulations in this paper were performed on classical
computers, taking a time exponential in N and limiting
the possible values of V. However, if in the future a quan-
tum computer becomes available, the algorithm could be
run with larger values of N. By training on a small size
and testing on larger sizes, we raise the possibility that
one might do training runs on a classical computer at
smaller values of N and then testing runs on a quan-
tum computer at larger values of N (one could also train
on the quantum computer, of course, but time on the
quantum computer may be more expensive than time on
the classical computer; also, one might use the schedule

found on the classical computer at small values of N as
a starting point for further optimization of the schedule
at larger values of N on the quantum computer).

II. PROBLEM DEFINITION AND ANSATZ

The MAX-2-SAT problem is defined as follows. One
has N different Boolean variables, denoted x;. Clauses
are made up from the Boolean OR of two terms, each
term being a variable or its negation. Thus, possible
clauses are all of one of the four forms

T, Vi, Ty Vay, x; VT, T; VT,

where T; denotes the negation of a variable. The problem
is to find a choice of variables x; that maximizes the
number of satisfied clauses.

This problem can be cast into the form of an Ising
model as follows. Consider a system of N qubits. Let
o7 denote the Pauli Z operator on spin 7. Let o7 = +1
correspond to z; being true and o7 = —1 correspond to x;
being false. Then, a clause @; V z; is true if (1 —07)(1—
0%) is equal to 0 and is false if 11 —0o7)(1 - of) =1
Indeed, each of the four possible types of clauses above
can be encoded into a term

1 z z
Z(l:l:oi)(lzlzaj)

which is 0 if the clause is true and 1 if the clause is
false, with the sign 4+ being chosen based on whether
the clause contains a variable or its negation. Following
CFLLS [§] which did an annealing study of the MAX-
2-SAT 1pr0blem, we define Hz to be the sum of these

terms (1 £ 07)(1 £07) over all clauses in the instance.

Similarly following the notation of CFLLS, we define

1

szzi(lfaf% (2)
K3

where o7 is the Pauli X operator on spin i.

With these choices of Hx, Hz, the ground state energy
of Hx is equal to 0 and the ground state energy of Hyz
is equal to the number of violated clauses. Both Hx and
Hz have integer eigenvalues.

As mentioned, Ref. 5l used a modification of the ansatz
(1). This “modified ansatz” is

expli(0X Hx + 02 Hy)) expli(6;X Hx + 07 Hy)|¥;.

The difference is that each exponential contains a sum of
two non-commuting terms, both Hx and Hz. We note
that in the case of the ansatz of Eq. , the quantities 67
indeed are angles in that ¥ is periodic in these quanti-
ties mod 27 if Hx, Hz have integer eigenvalues, but for
the modified ansatz of Eq. H the quantities §5 are gener-
ally not periodic mod 27. e modified ansatz was cho-
sen because we found that choosing the modified ansatz



lead to a significantly easier numerical optimization in
practice. In the gate model of quantum computation,
the simplest way to implement the modified ansatz is
to approximate each exponential expli(6X Hx + 07 H )]
using a Trotterization, which thus corresponds to a par-
ticular choice of parameters in the “original ansatz” of
Eq. , albeit with a larger p. In this paper we continue
to use this ansatz.

III. TRAINING AND COMPARISON TO CFLLS

A. Problem Instances

Our training sets are taken from examples in CFLLS
[8]. We briefly review the construction of the instances
there. These are randomly constructed instances with
N = 20 variables and 60 clauses. For each clause,
the variables i,j are chosen uniformly at random, and
also each variable is equally likely to be negated or not
negated, subject to the constraints that ¢ # j and that no
clause appears twice, though the same pair of variables
may appear in more than one clause. Thus, it is permit-
ted to have clauses z; V x; and z; V ¥; but it is not per-
mitted to have z; V x; appear twice in the list of clauses.
From these random instances, further one retains only
those instances that have a unique ground state. In this
way, 202,078 instances were generated. From these in-
stances, a subset of hard instances are determined. These
are instances for which an implementation of the QAA
using a linear annealing path H, = (1 — s)Hx + sHy
and an evolution time 7" = 100 has a small success prob-
ability of less than 10~% of finding the ground state. In
that paper, the Schrédinger equation was numerically in-
tegrated in continuous time. This left a total of 137 hard
instances. In the rest of the section, we simply call these
“instances”, without specifying that they are the hard
instances.

For each instance, CFLLS then determined whether
a faster anneal would lead to a higher probability of
overlap with the ground state than the slow anneal of
time 100 (other strategies were considered as well in that
paper, which we do not discuss here; we also remark
that other authors have also considered the possibility of
faster paths[9, [10]). The annealing time was optimized
individually for each instance (keeping the annealing time
smaller than 100), to maximize the squared overlap with
the ground state [11]. Below, when comparing learned
schedules to annealing, we are comparing the ratio of the
squared overlap for a learned schedule with that from this
optimized anneal. Our main result is that we are able to
learn schedules for which this ratio is significantly larger
than 1. If one instead made a comparison to a QAA
with a fixed annealing time for all instances of CFLLS,
this would lead to a further slight improvement in the
ratio.

B. Training Methods

Rather than training on the full set of 137 instances,
we chose training sets consisting of 13 randomly chosen
instances from this set. This was done partly to speed
up the simulation, as then evaluating the average success
probability could be done more rapidly on the smaller
set, but it was primarily done so that then testing on the
set of all instances would give a test set much larger than
the training set; this is needed to determine whether the
learned parameters generalize to other instances beyond
the training set.

Given a training set, our objective function is the aver-
age, over the training set, of the squared overlap between
the state ¥ and the ground state of Hz. To compute the
objective function, we compute the state ¥g; we do this
by approximating the exponentials exp [z(@j( Hy _ngz Hyz)]
by a Trotter-Suzuki formula, as

exp[i(GfHX + HJ-ZHZ)]
04 X [ n
~ (explis- Hz) expli——Hx) expliz- Hz))
2n n 2n

where we chose n = 4. This value of n was chosen as
the smallest value of n that gives results for an annealing
schedule on the CFLLS data set which are consistent
with the continuous time limit; larger values of n will
likely lead to slight changes in the optimal parameters of
the learned schedule.

We treat this objective function as a black box, and
optimize the parameters in the schedule using the same
algorithm as in Ref. [5l, except for modification of how we
choose the starting point for the search (also, we do not
use the annealed variational method of Ref. 5] to do the
search). Briefly, the optimization algorithm is: given an
“initial schedule” (i.e., a schedule chosen as the starting
point for the optiization), we use a greedy noisy search,
slightly perturbing the values of each 6 at random, ac-
cepting the perturbation if it improves the objective func-
tion for a total of 150 evaluations of the objective func-
tion. The step size for the greedy search is determined
in a simple way: every fifty trials, we count the num-
ber of acceptances. If the number is large, the step size
is increased and if the number is small the step size is
reduced[I2]. After the noisy search, we then use Powell’s
conjugate direction[I3] method until it converges. We
alternate Powell’s method and the noisy search until no
further improvement is obtained.

We did this numerical optimization for 5 different ran-
domly chosen training sets of 13 instances (10% of the
data for each). For each training set, we did 5 different
runs of the optimization for a variety of initial sched-
ules, thus giving 25 runs for each initial schedule. While
different choices of initial schedule led to very different
performances of the final schedule found at the end of the
optimization, for any given choice of initial schedule the
results were roughly consistent across different choices of
the training set and different optimization runs. Cer-
tain training sets tended to do slightly better (schedules
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FIG. 1: Dashed curves show #% and solid curves show 6Z.
Four different learned schedules are shown; the format such
as X621.3.64 indicates that this curve is 6%, for a schedule
started using initial schedule 6; the 21 indicate the particu-
lar training set and run (these numbers are not important,
as they are just keys to a random number generator but they
differentiate the three different curves that use initial schedule
3); the 3.64 indicates the average improvement for that sched-
ule. The Xavg, Zavg curves show the parameters averaged
over those four schedules.

trained on them tended to perform better when tested
on the full set as described in the next section) but in
general for an appropriate choice of initial schedules we
found that all choices of training sets and all runs of the
optimization with that initial schedule and training set
led to good performance on the full set.

C. Results

The learned schedules that performed well had a form
quite different from an annealing schedule. Instead, the
form of many of the good schedules was similar to that
in Fig. [l The schedule begins with #% large and fairly
flat but 6% oscillating near zero. Then, at the end of the
schedule, the values are more reminiscent of an anneal,
with 6% increasing (albeit with some oscillations) and %
decreasing fairly linearly.

To find the schedules shown in Fig. [I| required an ap-
propriate choice of initial schedule (described further be-
low). Instead, if we chose an initial schedule that was
an annealing schedule, the search over schedules would
become stuck in local optima that did not perform as
well.

After discovering this form after some experimenta-
tion, we studied a variety of schedules which had this
form. These schedules were labelled by a key ranging
from 2 to 14 (key values of 0,1 corresponded to sched-
ules with a different form that did not perform well and
are not reported here). These schedules are shown in
Table [Il

Key 6% 0%

2 [1111111111{0000000000
3 [1111111110{0000000001
4 [1111100000|0000011111
5 |0000000000|1111111111
6 [1111111111| Linear

7 |1111100000| Linear

8 [1111111110| 000000001
9 |1111111110| Linear
10 |1111111110| Frozen
11 |1111111150{0000000051
12 |1111111150| Linear
13 |1111111150| Frozen
14 Avg Avg

TABLE I: Initial schedules for 67,6X. The 10 entries in a
line such as “1111111150” shows a sequences of §; for j =
1,...,10 in order. An entry 1 or O indicates a 1 or 0, while
5 indicates 0.5. “Linear” indicates a linear function, GJZ =
0.05,0.15,...,0.95 for 5 = 1,...,10. “Frozen” also indicates
a linear function, but with 67 held fixed during learning as
described in text. “Avg” indicates that the initial schedule is
the average schedule shown in Fig. [I]

The details of the schedules are not that important.
We simply report the variety of the schedules considered
for completeness and to show that all such choices led to
some improvement but that certain choices consistently
led to more improvement. Some of the schedules are
described as “Frozen”; in this case, the #Z variables were
not allowed to change during the learning process and
only the 6% variables were allowed to change. Thus, the
final learned schedule had the same % variables as the
initial and this was chosen to be HjZ changing linearly
as a function of j. These schedules may be simpler to
implement in hardware due to less need for complicated
control of #%. They showed some improvement but not
quite as much as others.

The improvement is shown in Table[[T} The data in this
table includes all 137 instances, so it includes instances
which are in the training set; however, these instances
represent less than 10% of the test set. We report in
this table a “ratio of averages”. That is, we compute
the squared overlap of ¥ with the ground state for each
intance and average over instances. Then, we compute
the ratio of this average to the same average using the
optimized annealing times of CFLLS. The parameters for
certain schedules which performed well are shown in the
Appendix.

Another option to reporting the “ratio of averages” is
to report an “average of ratios”. This means computing,
for each instance, the ratio of the squared overlap of ¥
with the ground state for a given learned schedule to the
same overlap for an optimized anneal. Then, averaging
this ratio over intances. The result would be different and
would lead to a larger improvement because the learned
schedules do better on the harder instances as shown in

Fig. [2|



Initial| 0 | 1 | 2 | 3 | 4 |Avg
2 1.4(2.0|11.7/1.9(2.2| 1.8
3 |4.2|3.6/3.5/3.3|3.8| 3.7
4 12.5(2.4|12.4]12.3(2.4| 2.4
5 12.4]|2.3|2.4(2.4|2.4| 24
6 ]2.9|3.0(3.1{3.3|2.6| 3.0
7 12.4]2.012.3|2.2|2.1] 2.2
8 13.5(3.5(3.4|3.5|3.7| 3.5
9 12.713.2(2.8(3.1|3.4| 3.0
10 [2.5(2.2|12.1|2.4(2.1| 2.3
11 (4.4(4.2|14.214.1{4.1| 4.2
12 13.1({2.9|3.3|3.5(3.1| 3.2
13 12.0(2.4]2.3/2.0|2.0| 2.1
14 14.5(4.5|4.3|4.5|4.4| 4.4

Avg [3.0/2.9(2.9|2.9|3.0| 2.9

TABLE II: Improvement compared to optimized annealing
times. The entries report the ratio of averages (see text).
First column “Initial” labels the initial schedule from table
[ Columns 0,1,2,3,4 label different training sets. Column
“Avg” is average of that row over training sets. Row “Avg”
is average of that training set over choices of Initial. One
can see that there is some variance from one training set to
another, but the performance is roughly consistent. The best
rows are 14, 11 and 8.
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FIG. 2: x-axis labels different instances. y-axis shows overlap.
Dashed curve is from learned schedule while solid curve is
for optimized anneal. Instance numbers differ from CFLLS
because instances are sorted by overlap for optimized anneal.

IV. TESTING ON RANDOM INSTANCES
WITH N = 20,24 AND 28

In addition to testing against the instances of CFLLS,
to determine whether the learned schedules generalize to
larger sizes and other ensembles, we constructed further
problem instances for N = 20,24 and 28. We repeated
the case IV = 20, since the ensemble that we constructed
differs from that in CFLLS as we explain.

We took 60,72 and 84 clauses, respectively, so that
the clause-to-variable ratio was maintained. We used the
same ensemble as in CFLLS, so that clauses are chosen
at random subject to the constraint that no clause ap-
pears twice and that the instance has a unique ground
state. However, rather than finding hard instances based
on a continuous time anneal at time T = 100, we used
a slightly different method . This was partly done to

speed up our search for hard instances; in CFLLS, fewer
than 1/1000 of the instances were hard by that standard.
However, it was primarily done to test the learned sched-
ules in a more general setting and to consider a range
of hardnesses to demonstrate that the learned schedules
perform relatively better on the harder instances.

In testing hardness, we used annealing schedules. Since
we will compare to a variety of annealing schedules,
we introduce some notation. Let L(p,x,z) denote the
schedule with p steps and HjZ = zj/(p+ 1) and Gf =
z(p+1-7)/(p+1).

We used L(10,1,1) to determine hardness, construct-
ing 3346 random instances and sampling from 6.8% of
the instances which had the smallest squared overlap
with L(10,1,1), yielding 170 instances (for N = 28, we
generated a smaller number of instances so that only 72
were retained). The reason for choosing 6.8% is that the
resulting ensemble had a difficulty for L(10,1,1) which
was roughly comparable to that of the CFLLS instances
(however, the actual distribution of instance difficulty is
different from CFLLS and so the value 6.8% is fairly arbi-
trary). On these instances, a comparison of various algo-
rithms is shown in Tables [Tl and [Vl We also include in
these tables results for the instances of CFLLS, as now
the tables compare the performance of various learned
schedules to L(10,1,1) rather than to an optimized an-
neal. For the instances described in this section, we only
compared to schedules of the form L(p,x,z) which give
a discrete approximation to an anneal, rather than com-
paring to anneal. This was done to simplify the numerics.
The results for the instances of CFLLS is that such sched-
ules give performance similar to that of a continuous time
QAA.

In these tables, the learned schedules are identified by
a pair such as 31(9). In this case, the number 31 is an ar-
bitrary key labelling the schedule. The number in paren-
thesis, 9 in this case, indicates that schedule 31 was ob-
tained by starting from initial schedule 9 in Table [} We
only give the keys here because we also later refer to cer-
tain schedules by key; in particular, number 154 which is
one of the best performing by several measures.

Note that while the learned schedules, in particular
154, improve over L(10,1,1), we find that slower an-
neals such as L(80,1,1) outperform the learned sched-
ules on the N = 20,24 and 28 instances. However, on
instances from CFLLS, the slower annealing schedules
do significantly worse, with L(80,1,1) much worse than
L(10,1,1).

The reason for this can be seen by further dividing
the instances based on their hardness for L(80,1,1). We
binned the instances into 8 different groups depending
upon the squared overlap for L(80,1,1). Fig. shows the
performance compared to L(10,1, 1) of various schedules
for each bin. We find that learned schedule 154 (cho-
sen simply as it was the best example, we expect similar
performance from other learned schedules) outperform
L(10,1,1) everywhere, while the performance compared
to L(80,1,1) varies: it outperforms L(80,1,1) on the in-



Overlap Ratio

Sched || CFLLS |[N=20|N=24|N=28||CFLLS|N=20|N=24|N=28
8 (8) 0.111 |0.068]0.040|0.025| 119 | 44 | 6.7 | 8.2
31 (9) 0.108 |0.04810.028 |0.017| 8.1 29 | 4.0 | 5.0
49 (9) 0.108 |0.026 {0.013|0.007| 6.6 1.6 | 1.7 | 2.0
84 (11) || 0.120 |0.065|0.037|0.023|| 104 | 4.1 | 5.9 | 7.1
113 (12) || 0.111 |0.024 |0.011 | 0.006 6.8 1.5 1.6 1.8
122 (12) || 0.107 |0.029(0.014 |0.008|| 7.0 1.7 | 1.9 | 2.3
154 (14) || 0.117 |0.085(0.050|0.034 || 10.5 52 | 7.7 | 10.5
157 (14) || 0.116 |0.079|0.047|0.032|| 10.6 | 4.9 | 7.4 | 9.8
L(10,1,1)|| 0.025 |0.019|0.009 |0.004 1.0 1.0 | 1.0 | 1.0
L(10,2,2)|| 0.024 |0.075|0.039 |0.021 1.0 4.0 | 51 | 5.3
L(10,3,3)|| 0.011 |0.105|0.058|0.032 0.5 58 | 83 | 83
L(10,4,4)|| 0.006 |0.118|0.056|0.038 | 0.3 6.5 | 13.5 | 9.7
L(20,1,1)|| 0.028 |0.073{0.028 | 0.022 1.3 39 | 64 | 54
L(40,1,1)|| 0.008 |0.159|0.077|0.054| 0.4 8.8 | 188 | 14.1
L(80,1,1) || 0.0003 |0.288|0.164|0.132| 0.0 16.3 | 43.5 | 34.1

TABLE III: First column labels schedule. Next four columns
gives the average overlap for various test sets for each sched-
ule; N = 20,24 and 28 refers to random instances con-
structed following procedure described in this section. Last
four columns give average (over instances) of ratio (of square
overlap) comparing to L(10,1,1). Note that the entry in the
last four columns is 1 for the schedule L(10, 1, 1) because there
it is being compare to itself.

Ratio
Sched |[|CFLLS|N=20|N=24|N=28
8 4.4 3.5 4.7 5.6
31 4.2 2.5 3.2 3.7
49 4.2 1.4 1.5 1.6
84 4.7 3.4 4.3 5.3
113 4.4 1.3 1.3 1.4
122 4.2 1.5 1.7 1.8
154 4.6 44 | 59 | 7.6
157 4.6 4.1 5.5 7.1
L(10,1,1)|| 1.0 | 1.0 | 1.0 | 1.0
L(10,2,2)|| 0.9 3.9 | 45 | 48
L(10,3,3)|| 04 55 | 6.8 | 7.2
L(10,4,4)|| 0.2 6.2 | 6.5 | 85
L(20,1,1)|| 1.1 | 3.8 | 3.3 | 4.9
L(40,1,1)|| 0.3 83 | 9.0 | 12.3
L(80,1,1)|| 0.01 15.0 | 19.2 | 29.8

TABLE IV: First column labels schedule. Next four columns
give ratio of average comparing to L(10,1, 1) for various test
sets. Note that the entry in the last four columns is 1 for the
schedule L(10,1, 1) because there it is being compare to itself.

stances where L(80,1,1) does worst. On the instances
where L(80, 1,1) does worst, even L(10, 1, 1) outperforms
L(80,1,1). This fits with the observed performance of
the learned schedule on the instances of CFLLS as those
instances were chosen to be difficult for a slow anneal.
Importantly, the data shows that as N increases the
ratio between the learned schedules and L(10,1,1) is in-
creasing. This may partly be due to the fact that the
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FIG. 3: Ratio of averages for 8 different subsets of the
MAX-2-SAT instances with N = 20, chosen by binning
by hardness for L(80,1,1). We compare various sched-
ules to L(10,1,1). Different colors label different sched-
ules. On hardest instances, 154 does best, followed by
L(20,1,1), L(30,1,1), L(10,1,1), L(40, 1, 1), L(80,1,1) in se-
quence. Hardest instances are on the left of the graph.

overlap for all schedules is decreasing with increasing N.

A. MAX-3-SAT

As a final example, we tested the performance of the
algorithm on MAX-3-SAT. Clauses were of the form
x; V xj V xp (or similar, with some variables negated).
Each variable in the clause was chosen independently
and uniformly and was equally likely to be negated or
not negated (so in this case it is possible to have a clause
such as z; V x; V z; which is just a 2-SAT clause or a
clause such as z; VZ; V x; which is always true). We took
N = 20 variables and 120 clauses (clauses were chosen
independently and we allowed the same clause to occur
more than once). The clause to variable ratio was taken
6 to ensure that we are above the satisfiability phase
transition[I7]. We then selected for intances which had
unique ground states. Finally we chose the hardest 6.8%
of instances based on overlap for L(10,1,1). The results
are shown in Fig. |4 We emphasize that we use the sched-
ules trained on MAX-2-SAT instances from CFLLS here,
even though this is a different problem.

V. TOY MODEL AND THEORETICAL
ANALYSIS

A. Toy Model

To better understand why the learned schedules per-
form well, we have constructed a toy model. We write
the model directly as an Ising model (it does not exactly
correspond to a MAX-2-SAT instance since some of the
terms involve only a single variable). The model is re-
lated to a model studied in Refs. [14] [15] but with one
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FIG. 4: Ratio of averages for 8 different subsets of the MAX-
3-SAT instances with N = 20, chosen by binning by hardness
for L(80,1,1). We compare various schedules to L(10,1,1).
154 and 157 are both learned schedules. Different colors label
different schedules. On hardest instances, 157 does best, fol-
lowed by 154, L(20,1,1), L(10,1,1), L(40,1,1), L(80,1,1) in
sequence.

FIG. 5: Graph of the toy model considered for the case of
K = 6 with N = 12 spins. The edges indicate ferromagnetic
couplings between spins. All but one spin of the inner ring has
positive magnetic fields (indicated by + symbols), while all
the outer spins have negative fields (indicated by —) symbols
applied in the z-direction.

crucial modification; in those papers, a model was stud-
ied which has a large number of classical ground states.
All but one of those ground states form a cluster of solu-
tions which are connected by single spin flips, while the
remaining ground state is isolated from the others and
can only be reached by flipping a large number of spins.
It was shown that a quantum annealer will be very likely
to end at one of the ground states in the cluster, while
a classical annealer in contrast will have a much higher
probability of ending at the isolated ground state. We
modify this model so that it has only a single unique
ground state (the isolated state of the original model),
moving the others to higher energy. In this way, it be-
comes very difficult for a quantum annealer to locate the
ground state.

This is a model with NV = 2K spins. As shown in Fig.
K of the spins form what is called the “inner ring”,
and are arranged in a ring with ferromagnetic couplings
of strength 1/4. The 1/4 is chosen to correspond to the
factor of 1/4 that arises when translating from a MAX-2-
SAT model to an Ising model; we chose to keep the mag-
nitudes of terms similar to the magnitudes of the terms
on the training set. Each of the other spins form what is
called the “outer ring”. The outer ring spins are not cou-
pled to each other; instead, each outer ring spin is coupled
to one inner ring spin (every outer ring spin is coupled
to a different inner ring spin), again with ferromagnetic
couplings of strength 1/4. Finally, on every outer ring
spin there is a magnetic field in the Z direction with
strength —1/4 while on all but one of the the inner ring
spins, there is a Z direction magnetic field with strength
+1/4. Thus, labelling the spins by i =0,..., N — 1 with
0 <7 < K corresponding to the inner ring, we have

1 K—1 1K71
Hz = _Z ; S{Z 1'Z+1modK - 1 ; Siz iz+K (4)

2K—-1

1 1 K-2
-1 > si+ 1 > s
i=K =0

To better understand this model, suppose that instead
we added the Z direction magnetic field with strength
+1/4 to all spins on the inner ring, so that the last term
of Hz became iZiK:Bl S7. This model, which is the
model studied in Refs. [14], 15, has 2% + 1 degenerate
ground states. The isolated ground state is the state with
S# = +1 for all i. The cluster of 2X ground states has
S% = —1 for all spins on the inner ring while the spins on
the outer ring are arbitrary. By removing the Z direction
field from one of the spins on the inner ring, the model
has a unique unique ground state with S7 = +1 for
all ¢ while the cluster of states with S = —1 on the inner
ring is now an excited state with energy 1/2 above the
ground state.

Now comnsider the effect of a small transverse magnetic
field as occurs near the end of an annealing path. The
energy of the unique ground state does not change to
linear order in the transverse field strength. However,
the energy of the cluster of states does change to lin-
ear order, by an amount proportional to the number of
spins. Thus such a low order perturbation analysis sug-
gests a level crossing occuring at a transverse magnetic
field strength proportional to 1/N, i.e., a level crossing
in H, for (1 —s) ~ 1/N. Of course, since H, always has
a unique ground state this level crossing must become
an avoided crossing. However, K ~ N spins must flip
to move from the cluster to the core, so one may expect
that the gap will be small, proportional to the transverse
magnetic field strength raised to a power proportional to
K. Thus, the gap will be of order N~°"**N for some
positive constant.

This argument for the small gap above is closely related
to the argument of Ref. [0 and so this toy model may



K| 154 |L(10,1,1)| L(80,1,1)
2| 0.409 | 0.379 0.811

31| 0.237 | 0.208 0.212

4| 0.157 | 0.104 0.0182

5| 0.1 0.0493 | 0.000683
6] 0.0582 | 0.0233 [1.25%x107°
710.0313 | 0.011 [9.37x107°
810.0169 | 0.00524 [1.34x107°
91 0.0095 | 0.00248 | 4.x107°
10/0.00543| .00118 |5.42x10~7

TABLE V: Absolute squared overlap for various values of
K, for learned schedule 154 and for annealing schedules
L(10,1,1) and L(80, 1,1).

provide an interesting example. It would be interesting
if a super-exponentially small gap could be proven in this
particular case.

The performance of various schedules in this model is
shown in table[VA] For K = 2, the slow annealing sched-
ule L(80, 1, 1) outperforms the others, but already its suc-
cess probability is noticeably less than 1. For K = 3, the
slow anneal L(80, 1,1) and the fast anneal L(10, 1, 1) have
comparable performance, and for increasing values of K,
the slow anneal becomes dramatically worse. This is due
to the spectrum of the model which has a single avoided
crossing with very small gap. Comparing L(10,1,1) to
154, we find that 154 is consistently better and becomes
relatively better as K increases. Both L(10,1,1) and 154
show a roughly exponential decay of the squared over-
lap with increasing K, but the decay is slightly faster for
L(10,1,1).

We remark that we removed the Z field from one of
the inner spins to break the ground state degeneracy.
Another way to do this is to vary the field strengths,
keeping the same field on all inner spins but making it
slightly weaker. The results are shown in Table [VA]
where we took the inner field strength to be (1/4)(N —
1)/N on all spins (so that the total field is the same
as above). It is interesting that this does not hurt the

performance of the learned schedule (see discussion of
weighted MAX-2-SAT later).

We also studied another toy model. This model has
N states (not N qubits, but rather an N dimensional
Hilbert space), divided into 3 subspaces of dimensions
N1, Na, 1 respectively, with N = N;+ Ny+1. The Hamil-
tonian Hx was chosen to be a sum of two terms; the first
term was proportional to the projector onto the uniform
superposition of all states, while the second term was
proportional to the uniform projector onto the superpo-
sition of states in the second subspace (the subspace with
dimension N3). The Hamiltonian H; was proportional
to the identity in each eigenspace, with the ground state
being the third subspace (of dimension 1) and the sub-
space of first excited states being the subspace of dimen-
sion No. If we take No = 0, then this model is simply

K| 154 |L(10,1,1)| L(80,1,1)
2| .422 .386 0.8

3| .265 228 191

4| .186 122 0124

5| .121 | .0594 | .000353
6(0.0704| 0.0283 | .000214
710.0379| .0135 | .000113
8(.0204 | .00647 [3.98x107°
9.0115 | .00309 [6.79%x10
10| .0066 | .00147 |2.15%x10~7

TABLE VI: Absolute squared overlap for various values of
K, for learned schedule 154 and for annealing schedules
L(10,1,1) and L(80,1,1). All inner fields have same strength
but are reduced compared to outer fields. Total strength of
inner fields is same as in Table [V Al

an instance of database search (and Grover’s algorithm is
optimal[16]); likely there are algorithms similar to Grover
which are equally optimal for this model. However, our
goal was instead to test various schedules. We found that
if the second term in Hx was chosen sufficiently strong,
then this would create a small gap: at intermediate val-
ues of s the ground state was concentrated on the second
subspace while at s = 1 the ground state was the third
subspace. It was in this case that the learned schedules
outperformed the annealing schedules.

B. Creating Excited States

These toy models suggest the following explanation for
the success of the learned schedules. Small gaps can cre-
ate difficulties for an annealing algorithm. These small
gaps can occur especially if one “basin of local minima”
has slightly higher energy than the true minimum of Hy
but is able to reduce its energy by more in the presence of
a transverse field. Suppose there is a single small gap at
some S, with the gap sufficiently small that a very slow
anneal will be required to stay in the ground state. In
this case, it might be desirable to be in an excited state
at an intermediate value of s (s < s.) and then to anneal
more rapidly so that one ends close to the ground state
for s > s..

There are a variety of possible ways to produce this ex-
cited state. In Ref. 18] thermal excitation was suggested
as one possible mechanism. The optimized anneals of
CFLLS give another mechanism. Let us say that Ty is
some characteristic timescale to stay in the ground state
for s near s., while Tj,; is some intermediate timescale
required to stay in the ground state for other values of
s. Thus, a fast anneal (faster than Tj,;) may lead to a
transition to an excited state at some small s, leaving
one in the appropriate excited state at s slightly smaller
than s..

Another strategy also tried in CFLLS was to deliber-
ately prepare the system in a randomly chosen first ex-



cited state at s = 0 and then run an anneal (the time
of this anneal might be longer than T;,; but still faster
than Tyj0,) so that one is hopefully in the first excited
state at s slightly smaller than s.. Note that there are N
degenerate first excited states at s = 0 so the probability
of success of this method is at most 1/N. It was found|[§]
that in fact the probability of success was close to 1/N.

However, the learned schedules in this paper give
a higher probability of success than this (significantly
higher than 1/N for most of the instances). Thus, we
conjecture that the success of the learned schedules is
that the behavior in the first steps (with an oscillating Z
term, and a large X) serve to drive the system into the
correct first excited state and then schedules conclude by
approximately following an anneal so that they end in
the ground state.

VI. DISCUSSION

We have applied a numerical search to find schedules
for a modification of the QAOA algorithm. These sched-
ules were trained on a small subset of instances with 20
bits, but were found to perform well on the full set of such
instances as well as related but slightly different ensem-
bles with 20,24 and 28 bits. The performance of these
schedules raises the hope that they may outperform an-
nealing on larger sizes and may be a useful application
for an early quantum computer.

As a caveat, we have only studied SAT problems. We
began a study of weighted SAT, where each clause comes
with some arbitrary energy cost for violating that clause.
As a first step to such a study, we simply tried giving
all clauses the same weight; this does not change the
ground state of Hz but simply scales Hz by some fac-
tor. However, the learned schedules did not perform well
even with this simple rescaling. By training the schedules

instead on a range of such weighted instances (for exam-
ple, training on a set of 10 random instances as well as
those instances rescaled by various factors) we were able
to slightly improve the ability to deal with this rescaling,
but the ratios were much worse than the results reported
here. It may be the case that other initial schedules or
training methods would better deal with this case.

For hardware implementation, we have studied some
schedules where 6% simply does a linear ramp, which
may be easier to implement. Further, any schedule
where #Z has a fixed sign can be implemented by tak-
ing a time-varying 6% and a time-constant 4. That
is, suppose one has the abiility to time-evolve under
the Hamiltonian ¢X Hx + g?Hy for arbitrary g% and
some given ¢gZ; then, to implement a unitary transfor-
mation expli(§X Hx + 67 Hz)] one should evolve under
the Hamiltonian g% Hy + g? Hy for g% = ¢g?0% /6% and
do the evolution for time 6% /g%.

We have found that it is very important to have an ap-
propriate initial schedule as otherwise the learning gets
trapped in local optima. Thus, while it may be the case
that one can learn a schedule on a classical computer us-
ing a modest number of qubits and then apply it on a
quantum computer with a larger number of qubits, the
learned schedule might also be a good starting point for
further optimization of schedules on the quantum com-
puter.
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Appendix A: Schedules

Here we give the parameters for certain learned schedules.

Schedule |Initial| 67 0Z 6% 07 0Z 0% 0% 0% 0% 0%,
8 8 |-0.279307| 0.313947 | 0.614148 |-0.220295|0.256869 | 0.465194 |-0.212299|0.312254| 1.50651 [2.011013
31 9 ]0.368606 | 0.359748 | 0.190667 | 0.392364 |0.208514 | 0.021365 | 0.642995 |1.143198| 1.64574 |1.814225
49 9 10.424251 | 0.771576 | 0.464935 | 0.435078 |0.404496 | 0.187802 | 0.77197 |1.300528|1.701031|1.745732
84 11 | 0.1629 |-0.496857|0.450711 [-0.791892(0.326329|-0.475372| 0.433593 |1.033271|1.659841 |2.031027
113 12 | 0.37599 | 0.680923 | 0.997025 | 0.715514 [0.271968| 0.519316 | 1.068852 |1.443309|1.433469|1.333607
122 12 | 0.489956 | 0.510331 | 0.740654 | 0.538733 [0.245925| 0.08665 |0.761729 |1.188631|1.418336| 1.89151
154 14 | 0.748224 |-0.080047|-0.117857| 0.316126 |0.096738|-0.307805 | 1.210155 |1.183015|1.557269|1.745549
157 14 | 0.677717 |-0.099922|-0.055678 | 0.294502 [0.107643 |-0.276445 | 1.070014 |1.057304(1.479656 | 1.646192

TABLE VII: 62 for certain learned schedules. First column gives key indicating particular learned schedule number (the number
itself is meaningless and serves only as a key. Second column gives initial schedule for training (see table .

Schedule |Initial| 67 6 05 05 6x 0 60X 0f 0 6%,
8 8 10.985164(1.711707]1.308381|1.272364| 0.71373 |2.073916|1.340572|1.037615|1.217506|0.730447
31 9 [1.168114|1.375238|1.350988|1.356165|1.337642|1.091975|1.426565|1.162721|0.885662|0.431466
49 9 [1.510793]1.665954|1.205267|1.062189| 1.59617 |1.481757| 1.6141 |1.285973|0.903954|0.396039
84 11 |1.945308(1.142874]0.875239|0.914909|1.373274|1.191093|2.016909|1.142808|1.104454| 0.585
113 12 11.609044|1.459435]1.971842|1.625206|1.537716(1.515011|1.398038|0.983823| 0.5701 |0.273691
122 12 ]1.683547(0.979162|1.878078(1.631202| 1.16941 |1.055429|1.635904 |1.172053|0.795996 |0.519226
154 14 | 1.35801 [0.955197(1.397257|1.219015|1.396977|1.420552|1.283791 [0.889047|0.671747|0.339493
157 14 ]1.359167|1.060199|1.293059|1.248988|1.328482|1.431533|1.237331|0.854213|0.688784 |0.382808

TABLE VIII: 6% for certain learned schedules. First column gives key indicating particular learned schedule number (the
number itself is meaningless and serves only as a key. Second column gives initial schedule for training (see table [I).
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