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The generation of reversible circuits from high-level code is in important problem in several ap-
plication domains, including low-power electronics and quantum computing. Existing tools compile
and optimize reversible circuits for various metrics, such as the overall circuit size or the total
amount of space required to implement a given function reversibly. However, little effort has been
spent on verifying the correctness of the results, an issue of particular importance in quantum
computing. There, compilation allows not only mapping to hardware, but also the estimation of
resources required to implement a given quantum algorithm. This resource determination is crucial
for identifying which algorithms will outperform their classical counterparts. We present a reversible
circuit compiler called ReVer, which has been formally verified in F* and compiles circuits that
operate correctly with respect to the input program. Our compiler compiles the Revs language
[1] to combinational reversible circuits with as few ancillary bits as possible, and provably cleans
temporary values.

I. INTRODUCTION

The ability to evaluate classical functions coherently and in superposition as part of a larger quantum
computation is essential for many quantum algorithms. For example, Shor’s quantum algorithm [2] uses
classical modular arithmetic and Grover’s quantum algorithm [3] uses classical predicates to implicitly define
the underlying search problem. There is a resulting need for tools to help a programmer translate classical,
irreversible programs into a form which a quantum computer can understand and carry out, namely into
reversible circuits which are a special case of quantum transformations [4]. Other applications of reversible
computing include low-power design of classical circuits, see [5] for background and a critical discussion.

Several tools have been developed for synthesizing reversible circuits, ranging from low-level methods for
small circuits such as [6–10] (see also [11] for a survey) to high-level programming languages and compilers
[1, 12–16]. In this paper we are interested in the latter class—i.e., methods for compiling high-level code
to reversible circuits. Such compilers commonly perform optimization, as the number of bits quickly grows
with the standard techniques for achieving reversibility (see, e.g., [17]). The crucial question, as with general
purpose compilers, is whether or not we can trust these optimizations.

In most cases, extensive testing of compiled programs is sufficient to establish the correctness of both the
source program and its translation to a target architecture by the compiler. Formal methods are typically
reserved for safety- (or mission-) critical applications. For instance, formal verification is an essential step
in modern computer-aided circuit design due largely to the high cost of a recall. Reversible – specifically,
quantum – circuits occupy a different design space in that 1) they are typically “software circuits,” i.e., they
are not intended to be implemented directly in hardware, and 2) there exists few examples of hardware to
actually run such circuits. Given that there are no large-scale universal quantum computers currently in
existence, one of the goals of writing a quantum circuit compiler at all is to accurately gauge the amount of
physical resources needed to perform a given algorithm, a process called resource estimation. Such resource
estimates can be used to identify the “crossover point” when a problem becomes more efficient to solve on
a quantum computer, and are invaluable both in guiding the development of quantum computers and in
assessing their potential impact. However, different compilers give wildly different resource estimates for the
same algorithms, making it difficult to trust that the reported numbers are correct. For this reason compiled
circuits need to have some level of formal guarantees as to their correctness for resource estimation to be
effective.

In this paper we present ReVer, a lightly optimizing compiler for the Revs language [1] which has been
written and proven correct in the dependently typed language F? [18]. Circuits compiled with ReVer are
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verified to preserve the semantics of the source Revs program, which we have for the first time formalized,
and to reset or clean all ancillary (temporary) bits used so that they may be used later in other computations.
In addition to formal verification of the compiler, ReVer provides an assertion checker which can be used
to formally verify the source program itself, allowing effective end-to-end verification of reversible circuits.
We also develop a type inference algorithm for Revs mixing subtyping and record concatenation, a known
hard problem [19]. Following is a summary of the contributions of our paper:

• We create a formal semantic model of Revs which respects the original compiler.

• We present a compiler for Revs called ReVer, written in F?. The compiler currently has two modes:
direct to circuit and Boolean expression compilation, the latter of which is space efficient.

• We provide a type inference algorithm for Revs, used to infer and allocate circuit inputs. Our algorithm
generates and then solves a set of type constraints using bound maps [20].

• Finally, we verify correctness of ReVer with machine-checked proofs that the compiled reversible
circuits faithfully implement the input program’s semantics, and that all ancillas used are returned to
their initial state.

a. Related work Due to the reversibility requirement of quantum computing, quantum programming
languages and compilers typically have a methods for generating reversible circuits. Quantum programming
languages typically allow compilation of classical, irreversible code in order to minimize the effort of porting
existing code into the quantum domain. In QCL [21], “pseudo-classical” operators – classical functions
meant to be run on a quantum computer – are written in an imperative style and compiled with automatic
ancilla management. As in Revs, such code manipulates registers of bits, splitting off sub-registers and
concatenating them together. The more recent Quipper [15] automatically generates reversible circuits from
classical code by a process called lifting : using Haskell metaprogramming, Quipper lifts the classical code to
the reversible domain with automated ancilla management. However, little space optimization is performed
[17].

Other approaches to high-level synthesis of reversible circuits are based on writing code in reversible pro-
gramming languages – that is, the programs themselves are written in a reversible way. Perhaps most notable
in this line of research is Janus [12] and its various extensions [13, 14, 16]. These languages typically feature
a reversible update and some bi-directional control operators, such as if statements with exit assertions. Due
to the presence of dynamic control in the source language, such languages typical target reversible instruction
set architectures like Pendulum [22], as opposed to the combinational circuits that ReVer and in general,
quantum compilers target.

Verification of reversible circuits has been previously considered from the viewpoint of checking equivalence
against a benchmark circuit or specification [23, 24]. This can double as both program verification and
translation validation, but every compiled circuit needs to be verified separately. Moreover, a program that
is easy to formally verify may be translated into a circuit with hundreds of bits, and is thus very difficult to
verify. To the authors’ knowledge, no verification of a reversible circuit compiler has yet been carried out. By
contrast, many compilers for general purpose programming languages have been formally verified in recent
years – most famously, the CompCert optimizing C compiler [25, 26], written and verified in Coq. Since then,
many other compilers have been developed and verified in a range of languages and logics including Coq,
HOL, F?, etc., with features such as shared memory [27], functional programming [28–30] and modularity
[31, 32].

b. Outline The rest of our paper is organized as follows: in the following section we provide an overview
of reversible computing and the original Revs compiler. Section III formalizes Revs and introduces a
semantic model, as well as our internal and target languages. Section IV describes our compilation methods
and Section V details our type system and inference algorithm. Section VI gives our machine-checked
correctness proofs for ReVer. Finally, Section VII compares our compiled circuits to those of Revs, and
Section VIII concludes the paper.
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FIG. 1. A Toffoli network computing the NOR function f(a, b) = a ∨ b. When read from left to right and numbering
the qubits from top to bottom as 0, 1, 2, 3, the applied gates are Toffoli 0 1 2, CNOT 2 0, CNOT 1 0, CNOT 0 3,
CNOT 1 0, CNOT 2 0, Toffoli 0 1 2, and NOT 3. Bit 2 is initialized in the zero state and returned clean, i.e., in the
zero state whereas bit 3 is used to store the result f(a, b).

II. REVERSIBLE COMPUTING

Reversible functions are Boolean functions f : {0, 1}n → {0, 1}n which can be inverted on all outputs,
i.e., precisely those functions which correspond to permutations of a set of cardinality 2n, for some n ∈ N.
As with classical circuits, reversible functions can be constructed from universal gate sets – for instance, it
is known that the Toffoli gate which maps (x, y, z) 7→ (x, y, z ⊕ (x ∧ y)), together with the controlled-NOT
gate (CNOT) which maps (x, y) 7→ (x, x ⊕ y) and the NOT gate which maps x 7→ x ⊕ 1, is universal for
reversible computation [4]. In particular, any given target function, when considered as a permutation πf
can be implemented over this gate set at the expense of at most 1 additional bit.

The number of Toffoli gates used in the implementation of a given permutation πf is the basic measure
of complexity. Indeed, it is known from the theory of fault-tolerant quantum computing [4] that the Toffoli
gate has a substantial cost, whereas the cost of so-called Clifford gates, such as CNOT and NOT, can usually
be neglected. Another important metric that is associated to a reversible circuit is the amount of scratch
space required to implement a given target function, i.e., temporary bits which store intermediate results of
a computation. In quantum computing such bits are commonly denoted as ancilla bits. A very important
difference to classical computing is that scratch bits cannot just be overwritten when they are no longer
needed: any ancilla that is used as scratch space during a reversible computation must be returned to its
initial value—commonly assumed to be 0—computationally. Moreover, if an ancilla bit is not “cleaned” in
this way, in a quantum computation it may remain entangled with the computational registers which in turn
can destroy the desired interferences that are crucial for many quantum algorithms.

Figure 1 shows a reversible circuit over NOT, CNOT, and Toffoli gates computing the NOR function.
NOT gates are denoted by an ⊕, while CNOT and Toffoli gates are written with an ⊕ on the target bit
(the bit whose value changes) connected by a vertical line to, respectively, either one or two control bits
identified by solid dots. Two ancilla qubits are used which both initially are 0; one of these ultimately holds
the (otherwise irreversible) function value, the other is returned to zero. For larger circuits, it becomes a
non-trivial problem to assert a) that indeed the correct target function f is implemented and b) that indeed
all ancillas that are not outputs are returned to 0.

c. Revs From Bennett’s work on reversible Turing machines follows that any function can be imple-
mented by a suitable reversible circuit [33]: if an n-bit function x 7→ f(x) can be implemented with K
gates over {NOT,AND}, then the reversible function (x, y) 7→ (x, y ⊕ f(x)) can be implemented with at
most 2K + n gates over the Toffoli gate set. The basic idea behind Bennett’s method is to replace all AND
gates with Toffoli gates, then perform the computation, copy out the result, and undo the computation.
This strategy is illustrated in Figure 2, where the box labelled Uf corresponds to f with all AND gates
substituted with Toffoli gates and the inverse box is simply obtained by reversing the order of all gates in
Uf . Bennett’s method has been implemented in the Haskell-based quantum programming language Quipper
[15, 34] via a monad that allows lifting of classical functions to Toffoli networks with the Bennett method.
One potential disadvantage of Bennett’s method is the large number of ancillas it requires as the required
memory scales proportional to the circuit size of the initial, irreversible function f . In a recent work, an
attempt was made with the Revs compiler (and programming language of the same name) [1] to improve
on the space-complexity of Bennett’s strategy by generating circuits that are space-efficient – that is, Revs
is an optimizing compiler with respect to the number of bits used. We build on their work in this paper,
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FIG. 2. A reversible circuit computing f(x1, . . . , xm) using the Bennett trick.

Var x

Nat i, j ∈ N
Loc l ∈ N
Val v ::= unit | l | register l1 . . . ln | λx.t

Term t ::= let x = t1 in t2 | λx.t | (t1 t2) | t1; t2 | x | t1 ← t2

| true | false | t1 ⊕ t2 | t1 ∧ t2 | clean t | assert t
| register t1 . . . tn | t.[i] | t.[i..j] | append t1 t2 | rotate i t

FIG. 3. Syntax of Revs.

formalizing Revs and developing a verified compiler without too much loss in efficiency.

III. LANGUAGES

In this section we give a formal definition of Revs, as well as the intermediate and target languages of the
compiler.

A. The Source

The abstract syntax of Revs is presented in Figure 3. The core of the language is a simple imperative
language over Boolean and array (register) types. The language is further extended with ML-style functional
features, namely first-class functions and let definitions, and a reversible domain-specific construct clean.

In addition to the basic syntax of Figure 3 we add the following derived operations

¬t ∆
= true⊕ t, t1 ∨ t2

∆
= (t1 ∧ t2)⊕ (t1 ⊕ t2),

if t1 then t2 else t3
∆
= (t1 ∧ t2)⊕ (¬t1 ∧ t3),

for x in i..j do t
∆
= t[x 7→ i]; · · · ; t[x 7→ j].

Note that Revs has no dynamic control. This is due to the restrictions of our target architecture (see
below).

The ReVer compiler uses F# as a meta-language to generate Revs code with particular register sizes
and indices, possibly computed by some more complex program. Writing an F# program that generates
Revs code is similar in effect to writing in a hardware description language [35]. We use F#’s quotations
mechanism to achieve this by writing Revs programs in quotations <@...@>. Note that unlike languages
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1 let s0 a =
2 let a2 = rot 2 a
3 let a13 = rot 13 a
4 let a22 = rot 22 a
5 let t = Array.zeroCreate 32
6 for i in 0 .. 31 do
7 t.[i] <- a2.[i] <> a13.[i] <> a22.[i]
8 t
9 let s1 a =

10 let a6 = rot 6 a
11 let a11 = rot 11 a
12 let a25 = rot 25 a
13 let mutable t = Array.zeroCreate 32
14 for i in 0 .. 31 do
15 t.[i] <- a6.[i] <> a11.[i] <> a25.[i]
16 t
17 let ma a b c =
18 let t = Array.zeroCreate 32
19 for i in 0 .. 31 do
20 t.[i] <- (a.[i] && (b.[i] <> c.[i]))
21 <> (b.[i] && c.[i])
22 t

23 let ch e f g =
24 let t = Array.zeroCreate 32
25 for i in 0 .. 31 do
26 t.[i] <- e.[i] && f.[i] && g.[i]
27 t

29 fun k w x ->
30 let hash x =
31 let a = x.[0..31], b = x.[32..63]
32 c = x.[64..95], d = x.[96..127],
33 e = x.[128..159], f = x.[160..191],
34 g = x.[192..223], h = x.[224..255]
35 (%modAdd 32) (ch e f g) h
36 (%modAdd 32) (s0 a) h
37 (%modAdd 32) w h
38 (%modAdd 32) k h
39 (%modAdd 32) h d
40 (%modAdd 32) (ma a b c) h
41 (%modAdd 32) (s1 e) h
42 for i in 0 .. n - 1 do
43 hash (rot 32*i x)
44 x

FIG. 4. Implementation of the SHA-2 algorithm with n rounds, using a meta-function modAdd.

such as Quipper, our strictly combinational target architecture doesn’t allow computations in the meta-
language to depend on computations within Revs.

Example 1. The 256-bit Secure Hash Algorithm 2 [36] is a cryptographic hash algorithm which performs a
series of modular additions and functions on 32-bit chunks of a 256-bit hash value, before rotating the register
and repeating for a number of rounds. In the Revs implementation, shown in Figure 4, this is achieved by
a function hash which takes a length 256 register, then makes calls to modular adders with different 32-bit
slices. At the end of the round, the entire register is rotated 32 bits with the rotate command.

d. Semantics We designed our semantic model of Revs with two goals in mind:

1. keep the semantics as close to the original implementation, Revs, as possible, and

2. simplify the task of formal verification.

The result is a somewhat non-standard semantics that is nonetheless intuitive for the programmer. Moreover,
the particular semantic model naturally enforces a style of programming that results in efficient circuits and
allows common design patterns to be optimized.

The operational semantics of Revs is presented in big-step style in Figure 5 as a relation ⇒⊂ Config ×
Config on configurations – pairs of terms and Boolean-valued stores. A key feature of our semantic model is
that Boolean, or bit values are always allocated on the store. Specifically, Boolean constants and expressions
are modelled by allocating a new location on the store to hold its value – as a result all Boolean values,
including constants, are mutable. All other values are immutable.

The allocation of Boolean values on the store serves two main purposes: to give the programmer fine-
grain control over how many bits are allocated, and to provide a simple and efficient model of registers –
arrays of bits. In studying pseudo-code for low-level bitwise operations, e.g., arithmetic and cryptographic
functions, we observed that most algorithms were naturally specified by a combination of array-type accesses
– modifying individual elements of bit arrays – and list-type manipulations – splitting and merging bit arrays.
While these patterns could be implemented with arrays, most algorithms would require either complex index
book-keeping by the programmer or extraneous copying of arrays; in the latter case, circuits could be
optimized to do away with unnecessary copies, but this complicates the process of formal verification. In
particular, we want to compile efficient circuits with as little extrinsic optimization as possible.
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Store σ : N⇀ B
Config c ::= 〈t, σ〉 [refl]

〈v, σ〉 ⇒ 〈v, σ〉 [let]
〈t1, σ〉 ⇒ 〈v1, σ′〉 〈t2[x 7→ v1], σ′〉 ⇒ 〈v2, σ′′〉

〈let x = t1 in t2, σ〉 ⇒ 〈v2, σ′′〉

[app]

〈t1, σ〉 ⇒ 〈λx.t′1, σ′〉 〈t2, σ′〉 ⇒ 〈v2, σ′′〉
〈t′1[x 7→ v2], σ′′〉 ⇒ 〈v, σ′′′〉
〈(t1 t2), σ〉 ⇒ 〈v, σ′′′〉

[seq]
〈t1, σ〉 ⇒ 〈unit, σ′〉 〈t2, σ′〉 ⇒ 〈v, σ′′〉

〈t1; t2, σ〉 ⇒ 〈v, σ′′〉

[assn]
〈t1, σ〉 ⇒ 〈l1, σ′〉 〈t2, σ′〉 ⇒ 〈l2, σ′′〉
〈t1 ← t2, σ〉 ⇒ 〈unit, σ′′[l1 7→ σ′′(l2)]〉

[bexp]
〈t1, σ〉 ⇒ 〈l1, σ′〉 〈t2, σ′〉 ⇒ 〈l2, σ′′〉 l3 /∈ dom(σ′′)

〈t1 ? t2, σ〉 ⇒ 〈l3, σ′′[l3 7→ σ′′(l1) ? σ′′(l2)]〉

[true]
l /∈ dom(σ)

〈true, σ〉 ⇒ 〈l, σ′′[l 7→ 1]〉
[false]

l /∈ dom(σ)

〈false, σ〉 ⇒ 〈l, σ′′[l 7→ 0]〉

[append]
〈t1, σ〉 ⇒ 〈register l1 . . . lm, σ′〉 〈t2, σ′〉 ⇒ 〈register lm+1 . . . ln, σ

′′〉
〈append t1 t2, σ〉 ⇒ 〈register l1 . . . ln, σ′′〉

[index]
〈t, σ〉 ⇒ 〈register l1 . . . ln, σ′〉 1 ≤ i ≤ n

〈t.[i], σ〉 ⇒ 〈li, σ′〉

[slice]
〈t, σ〉 ⇒ 〈register l1 . . . ln, σ′〉 1 ≤ i ≤ j ≤ n

〈t.[i..j], σ〉 ⇒ 〈register li . . . lj , σ′〉 [reg]

〈t1, σ〉 ⇒ 〈l1, σ1〉
〈t2, σ〉 ⇒ 〈l2, σ2〉

...
〈tn, σ〉 ⇒ 〈ln, σn〉

〈register t1 . . . tn, σ〉 ⇒ 〈register l1 . . . ln, σn〉

[rotate]
〈t, σ〉 ⇒ 〈register l1 . . . ln, σ′〉 1 < i < n

〈rotate t i, σ〉 ⇒ 〈register li . . . li−1, σ
′〉

[clean]
〈t, σ〉 ⇒ 〈l, σ′〉 σ′(l) = false

〈clean t, σ〉 ⇒ 〈unit, σ′
∣∣
dom(σ′)\{l}〉

[assert]
〈t, σ〉 ⇒ 〈l, σ′〉 σ′(l) = true

〈assert t, σ〉 ⇒ 〈unit, σ′〉

FIG. 5. Operational semantics of Revs.

The semantics of ⊕ and ∧ are also notable in that they first reduce both arguments to locations, then
retrieve their value. This allows programmers to write statements whose value may not be immediately
apparent – e.g., x ⊕ (x ← y; y), which under these semantics will always evaluate to 0. The benefit of this
definition is that it allows the compiler to perform important optimizations without a significant burden on
the programmer (see Section IV).

Semantically, the clean and assert commands have no effect, other than to evaluate their argument. In
the case of the assert statement, while an assertion could be modelled with reversible circuits, it is unlikely
that any circuit design would ever have a use for such a construct; instead, assertions are used strictly for
program verification by the compiler. Clean statements have a similar interpretation – rather than having
the compiler generate circuit code cleaning a particular bit, they are viewed as compiler directives asserting
that a particular bit is in the zero state. The location is then freed for use by the rest of the program, making
the statement analogous to free in other languages. Practically speaking this statement is only useful in
the form clean x for some identifier x.

B. Boolean expressions

Our compiler uses XOR-AND Boolean expressions – single output classical circuits over XOR and AND
gates – as an intermediate language. Compilation from Boolean expressions into reversible circuits forms
the main “code generation” step of our compiler. We briefly describe its syntax and semantics.

A Boolean expression is defined as an expression over Boolean constants, variable indices, and logical ⊕
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and ∧ operators. Explicitly, we define

BExp B ::= 0 | 1 | i ∈ N |B1 ⊕B2 |B1 ∧B2.

Note that we use the symbols 0, 1,⊕ and ∧ interchangeably with their interpretation in the Boolean field
F2. We use vars(B) to refer to the set of variables used in B.

We interpret a Boolean expression as a function from (total) Boolean-valued states to Booleans. In
particular, we define State = N→ B and denote the semantics of a Boolean expression by JBK : State→ B.
The formal definition of JBK is obvious, but we include it below for completeness:

J0Ks = 0 J1Ks = 1 JiKs = s(i)

JB1 ⊕B2Ks = JB1Ks⊕ JB2Ks
JB1 ∧B2Ks = JB1Ks ∧ JB2Ks

C. Target architecture

ReVer compiles to combinational, reversible circuits over NOT, controlled-NOT and Toffoli gates. By
combinational circuits we mean a series of logic gates applied to bits with no external means of control or
memory – effectively pure logical functions. We chose this model as it is suitable for implementing classical
functions and oracles within quantum computations [4].

Formally, we define

Circ C ::= − |NOT i | CNOT i j | Toffoli i j k | C1 :: C2,

i.e., Circ is the free monoid over NOT, CNOT, and Toffoli gates with unit − and the append operator ::.
All but the last bit in each gate is called a control, whereas the final bit is denoted as the target. Only the
target is modified by a gate. We use use(C), mod(C) and control(C) to denote the set of bit indices that
are used in, modified by, or used as a control in the circuit C, respectively. A circuit is well-formed if no
gate contains more than one reference to a bit – i.e., the bits used in each Controlled-Not or Toffoli gate are
distinct.

Similar to Boolean expressions, a circuit is interpreted as a function from states (maps from indices to
Boolean values) to states, given by applying each gate which updates the previous state in order. The formal
definition of the semantics of a reversible circuit C, given by JCK : State→ State, is straightforward:

JNOT iKs = s[i 7→ ¬s(i)]
JCNOT i jKs = s[j 7→ s(i)⊕ s(j)]

JToffoli i j kKs = s[k 7→ (s(i) ∧ s(j))⊕ s(k)]

J−Ks = s JC1 :: C2Ks = (JC2K ◦ JC1K)s

We use s[x 7→ y] to denote that function that maps x to y, and all other inputs z to s(z); by an abuse of
notation we use [x 7→ y] to denote other substitutions as well.

IV. COMPILATION

In this section we discuss the implementation of ReVer. The compiler consists of 4381 lines of non-blank
code in a common subset of F? and F#, with a front-end to evaluate and translate F# quotations into Revs
expressions. The core of the compiler – i.e., compilation from the abstract syntax of Revs into reversible
circuits – was proven correct with F?.
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A. Boolean expression compilation

The core of ReVer’s code generation is a compiler from Boolean expressions into reversible circuits. We
effectively use the method employed in Revs [1], with the addition of an eager cleanup option.

As a Boolean expression is already in the form of an irreversible classical circuit, the main job of the
compiler is to allocate ancillas to store sub-expressions whenever necessary. ReVer does this by maintaining
a global ancilla heap ξ which keeps track of the currently available (zero-valued) ancillary bits. Cleaned
ancillas (ancillas returned to the zero state) may be pushed back onto the heap, and allocations have been
formally verified to return previously used ancillas if any are available, hence not using any extra space.

The function compile-BExp, shown in pseudo-code in Algorithm 1, takes a Boolean expression B and a
target bit i then generates a reversible circuit computing i⊕B. Note that ancillas are only allocated to store
sub-expressions of ∧ expressions, since ⊕ is associative (i.e., i⊕ (B1 ⊕B2) = (i⊕B1)⊕B2).

Algorithm 1 Boolean expression compiler.

function compile-BExp(B, i) // Global ancilla heap ξ
if B = 0 then −
else if B = 1 then NOT i
else if B = j then CNOT j i
else if B = B1 ⊕B2 then

compile-BExp(B1, i) :: compile-BExp(B2, i)
else // B = B1 ∧B2

a1 ← pop(ξ), C1 ← compile-BExp(B1, a1)
a2 ← pop(ξ), C2 ← compile-BExp(B2, a2)
C1 :: C2 :: Toffoli a1 a2 i

end if
end function

e. Cleanup The definition of compile-BExp above is adequate to generate a reversible circuit com-
puting the Boolean expression, but it leaves many garbage bits that take up space and need to be cleaned
before they can be re-used. Revs provides two main modes of cleanup for Boolean expressions: eager and
lazy. The former performs cleanup after each recursive call, while the latter performs one cleanup after the
entire Boolean expression is computed. The key difference is that the eager strategy uses fewer bits, but
requires more gates as sub-expressions may need to be re-computed. While we only implement these two
strategies, the problem of finding a good tradeoff between bits used and number of gates can be formalized
as pebble games [37].

To facilitate the cleanup – or uncomputing – of a circuit, we define the restricted inverse uncompute(C,A)
of C with respect to a set of bits A ⊂ N by reversing the gates of C, and removing any gates with a target
in A. For instance:

uncompute(CNOT i j, A) =

{
− if j ∈ A

CNOT i j otherwise

The other cases are defined similarly.

The restricted inverse allows the temporary values of a reversible computation to be uncomputed with-
out affecting any of the target bits. In particular, if C = compile-BExp(B, i), then the circuit C ::
uncompute(C, {i}) maps a state s to s[i 7→ JBKs ⊕ s(i)]. Intuitively, since no bits contained in A are
modified, the restricted inverse preserves their values; that the restricted inverse uncomputes the values of
the remaining bits is more difficult to see, but it can be observed that if the computation doesn’t depend
on the value of a bit in A, the computation will be inverted. We formalize and prove this statement in
Section VI. The eager and lazy cleanup strategies are defined respectively by applying this cleanup at every
recursive call to compile-BExp or to just the outer-most call. In order to re-use ancilla bits that have been
cleaned, they are pushed back onto the heap.
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B. Revs compilation

In studying the Revs compiler, we observed that most of what the compiler was doing was evaluating the
non-Boolean parts of the program – effectively bookkeeping for registers – only generating circuits for a small
kernel of cases. As a result, transformations to different Boolean representations (e.g., circuits, dependence
graphs [1]) as well as the interpreter itself reused significant portions of this bookkeeping code. To make
use of this redundancy to simplify both writing and verifying the compiler, we designed ReVer as a partial
evaluator parameterized by an abstract machine. As a side effect, we arrive at a unique and intuitive model
for circuit compilation similar to staged computation (see, e.g., [38]).

Our compiler works by evaluating the program with an abstract machine providing mechanisms for initial-
izing and assigning locations on the store to Boolean expressions. In particular, an interpretation I consists
of a domain D and 2 operations:

assign : D × N×BExp→ D

eval : D × N× State→ B.
Formally, a series of assignments in an interpretation builds a Boolean computation or circuit within a

specific model (i.e., classical, reversible, different gate sets) which may be simulated on an initial state with
the eval function – effectively an operational semantics of the model. Practically speaking, it abstracts the
store in Figure 5 and allows delayed computation or additional processing of the Boolean expression stored
in a cell, which may be mapped into reversible circuits immediately or after the entire program has been
evaluated. We give some examples of interpretations below.

Example 2. The standard interpretation Istandard has domain Store = N ⇀ B, together with the opera-
tions

assignstandard(σ, l, B) = σ[l 7→ JBKσ]

evalstandard(σ, l, s) = σ(l).

Partial evaluation over the standard interpretation coincides exactly with the operational semantics of Revs.

Example 3. The Boolean expression interpretation IBExp has domain N ⇀ BExp, together with the
operations

assignBExp(σ, l, B) = σ[l 7→ B[l′ ∈ B 7→ σ(l′)]]

evalBExp(σ, l, s) = Jσ(l)Ks.

The Boolean expression interpretation can be viewed as the standard interpretation with deferred evaluation
– that is, it expands Boolean expressions over locations to Boolean expressions over a set of variables
representing the program inputs, but defers evaluation until a set of initial values are supplied. Effectively
the result is the expression (or expressions) the program computes on a given input.

Example 4. The reversible circuit interpretation Icircuit is somewhat more complex. It has domain (N⇀
N) × Circ, where the first element maps program-level locations to circuit-level bits and the second is a
reversible circuit. The 2 operations are defined as follows – note that assign uses the global ancilla heap ξ:

assigncircuit((ρ, C), l, B) = (ρ[l 7→ i], C :: C ′)

where i = pop(ξ),

C ′ = compile-BExp(B[l′ ∈ vars(B) 7→ ρ(l′)], i)

evalcircuit((ρ, C), l, s)) = s′(ρ(l)), where s′ = JCKs.

This interpretation generates a reversible circuit directly from the program by maintaining a mapping from
program locations to bits. When a location is overwritten, a new ancilla i is allocated and the expression
B⊕ i is compiled into a circuit. Evaluation amounts to running the circuit on an initial state, then retrieving
the value at a particular bit.
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ReVer provides implementations of the interpretations above. It is also possible to define an interpretation
that generates mutable dependence diagrams, which were used as an intermediate representation in [1] to
compile space-efficient reversible circuits.

Given an interpretation I with domain D, we define the set of I -configurations as ConfigI = Term×D
– that is, I -configurations are pairs of programs and elements of D which function as the heap. The relation

⇒I⊆ ConfigI ×ConfigI

gives the operational semantics of Revs over the interpretation I . We do not give a formal definition of
⇒I , as it can be obtained trivially from the definition of ⇒ (Figure 5) by replacing all heap updates with
assign. To compile a program term t, ReVer evaluates t over a particular interpretation I (for instance, the
reversible circuit interpretation) and a suitable initial heap σ ∈ D according to the semantic relation ⇒I .
In this way, evaluating a program and compiling a program to, for instance, a circuit look almost identical.
As we will show later, this greatly simplifies the problem of verification.

Our compiler currently supports two modes of compilation: a default mode, and a space-efficient mode.
The default mode evaluates the program using the circuit interpretation, and simply returns the circuit
and output bit(s). The space-efficient mode, on the other hand, evaluates the program to a list of Boolean
expressions over the inputs, by partial evaluation with the Boolean expression interpretation. The Boolean
expression compiler is then used to compile each Boolean expression into a circuit. This method effectively
erases the program structure, allowing the Boolean expression compiler to more effectively manage the allo-
cation of ancillas for sub-expressions and to apply optimizations, described below. However, the duplication
of sub-expressions leads to an exponential blowup, making this compilation method not scalable.

f. Input vs parameters Quipper [15] makes a distinction between function inputs and parameters, the
latter of which are available at compile time. In this way the language provides a static, structural divide
between run-time and compile-time computations. Partial evaluation on the other hand effectively erases
this distinction, any structural limitations owing to the limitations of the target architectures (for instance,
unbounded for loops cannot be compiled to a combinational circuit). Practically speaking, this means the
programmer can use the same code to perform more or less computation at the circuit level – for instance, an
adder may be partially instantiated to compile a circuit performing addition by a constant, without making
any changes to the code itself. The downside of this method is it can be more difficult for the programmer
to determine what the compiled circuit is actually computing. We intend to add more support for types and
constructs which may be computed either at compile-time or run-time, such as integers and array indexing.

C. Optimization passes

Both methods of compilation described above suffer from the problem that more ancillas may be allocated
than are actually needed, due to the program structure. Our implementation performs some optimizations,
all of which have been verified to be correct, in order to reduce ancilla usage for some common patterns.

g. XOR-equal In the circuit interpretation, a new ancilla is allocated by default whenever a location is
updated, since updates are generally not reversible. However, in the case when an update can be rewritten
as an XOR of the target bit, the update can be performed reversibly. Specifically, given a Boolean expression
B and target bit i, we try to factor B as i⊕B′ where i /∈ vars(B′), a condition required for the correctness of
compile-BExp (see Section VI). If such a factoring exists, rather than allocate an ancilla to store the result
we compile the expression B′ with target i. In practice this significantly reduces the number of ancillas used,
as evidenced by the Revs code in Figure 4 which makes extensive use of the XOR-equal pattern.

h. Boolean simplifications Before compiling a Boolean expression, we perform basic simplifications, e.g.,
short circuiting AND’s and XOR’s whenever possible. We also distribute ANDs to rewrite the expression
in positive-polarity ESOP (exclusive sum-of-products) form. The benefit of this transformation is that
it produces circuits with the minimal number of ancillas using compile-BExp without eager cleanup – in
particular, the compiled circuit uses k − 2 ancilla bits where k is the highest degree of any product in the
ESOP form. Its minimality with respect to compile-BExp can be observed by noting that the positive-
polarity ESOP form of a Boolean function is unique, so any equivalent expression over AND and XOR must
contain a product of length k and hence use at least k − 2 ancilla bits.
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If cleanup is performed eagerly the number of bits used depends on the factoring of a given product into
binary products. In particular, the product ((((a∧ b)∧ c)∧ d)∧ e)∧ f would require 4 ancilla bits using the
eager cleanup scheme, while the product ((a∧ b)∧ (c∧ d))∧ (e∧ f) would use only 3 extra bits. In principal
this can be implemented by representing products as sets of variables, but in practice we found this greatly
complicated the task of verification due to the more complicated data structure, while only saving at most
log2(k) bits.

i. Growing expressions One key difference between our partial evaluator and the semantics of Figure 5
is that the compiler evaluates Boolean terms to Boolean expressions rather than locations directly. For
instance, given a term t1 ∧ t2 the compiler reduces each sub-expression t1 and t2 to Boolean expressions
rather than locations – in comparison, the formal semantic definition reduces both t1 and t2 to locations
first. While the equivalence of these two methods is not verified in our implementation, it is nonetheless
easy to observe its correctness since all side-effectual computation is carried out during the reduction of t1
and t2 to Boolean expressions.

This method of growing expressions allows larger Boolean expressions to be optimized and efficiently
compiled to circuits. In particular, a straightforward implementation of the operational semantics would
require every binary sub-expression to be computed using an ancilla. In reality, this is not necessary, as in
the case of compiling t1 ⊕ t2 where no ancillas are allocated. While the Boolean expression interpretation
goes farther and expands all locations within a Boolean expression, the expression size grows exponentially
and quickly becomes unmanageable – we found this was a good compromise between the number of bits
used and scalability of compilation.

V. TYPE INFERENCE

While the definition of ReVer as a partial evaluator streamlines both development and verification, it
leaves one issue: compiling functions. Semantically a function is a value, so the interpreter has nothing to
do. In reality we wrap the evaluator with a procedure that allocates locations for the function parameters,
then proceeds to evaluate the body; however, to do so, the compiler needs to know how many locations to
allocate.

Ideally, this would be handled by type annotations, but this proved to be unnatural and confusing as
F# has no mechanism for syntax extensions or dependent types. Instead we took the approach of using
type inference together with a type system based on fixed-length registers. One of the practical benefits of
our inference algorithm is it functions as both optimization and verification by only allocating bits that are
actually used in the program. In particular, the inference algorithm exposed an off-by-one error in a Revs
program by allocating fewer bits than were required by the algorithm.

We note that many other solutions are possible: the original Revs compiler for instance had programmers
allocate inputs manually rather than write functions. This led to a significantly more complicated semantic
model and somewhat unnatural looking programs. On the other hand, the problem could be avoided by
delaying bit allocation until after the circuit is compiled. We opted for the type inference approach as it
simplified verification, removing named variables from our internal representations which complicate formal
verification [28].

j. Type system Our type system includes three basic types – the unit type, Booleans, and fixed-length
registers – as well as the function type. As expected, indexing registers beyond their length causes a
type error. To regain some polymorphism and flexibility the type system allows (structural) subtyping, in
particular so that registers with greater size may be used anywhere a register with lesser size is required.

Type inference in systems with (structural) subtyping is generally considered a difficult problem – see, for
e.g., [19] which proves NP-completeness of the problem for a similar type system involving record concate-
nation. While many attempts have been made ([20, 39–42]), they are typically not effective in practice and
to the authors’ knowledge no such algorithms are currently in common use. Given the simplicity of our type
system (in particular, the lack of non-subtype polymorphism), we have found a relatively simple inference
algorithm based on constraint generation and bound maps is effective in practice.

Figure 6 summarizes algorithmic rules of our type system, which specify a set of constraints that any valid
typing most satisfy. Constraints are given over a language of type and integer expressions. Type expressions
include the basic types of ReVer, as well variables representing types and registers over integer expressions.
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IExp I ::= i ∈ N | x | I1 ± I2
TExp T ::= X |Unit | Bool | Register I | T1 → T2

Const c ::= I1 = I2 | I1 v I2 | T1 = T2 | T1 v T2 [C-let]
Γ ` t1 : T1 ↓ C1 Γ, x : T1 ` t2 : T2 ↓ C2

Γ ` let x = t1 in t2 : T2 ↓ C1 ∪ C2

[C-var]
(x : T ) ∈ Γ

Γ ` x : T ↓ ∅
[C-lambda]

Γ, x : X ` t : T ↓ C X fresh

Γ ` λx.t : X → T ↓ C

[C-app]

Γ ` t1 : T1 ↓ C1 Γ ` t2 : T2 ↓ C2
C3 = {T1 = X1 → X2, X2 v T2} X1, X2 fresh

Γ ` (t1 t2) : X2 ↓ C1 ∪ C2 ∪ C3
[C-seq]

Γ ` t1 : T1 ↓ C1 Γ ` t2 : T2 ↓ C2
Γ ` t1; t2 : T2 ↓ C1 ∪ C2 ∪ {T1 = Unit }

[C-bexp]
Γ ` t1 : T1 ↓ C1 Γ ` t2 : T2 ↓ C2

Γ ` t1 ? t2 : Bool ↓ C1 ∪ C2 ∪ {T1 = Bool , T2 = Bool }

[C-true]
Γ ` true : Bool ↓ ∅

[C-false]
Γ ` false : Bool ↓ ∅

[C-assn]
Γ ` t1 : T1 ↓ C1 Γ ` t2 : T2 ↓ C2

Γ ` t1 ← t2 : Unit ↓ C1 ∪ C2 ∪ {T1 = Bool , T2 = Bool }

[C-append]

Γ ` t1 : T1 ↓ C1 Γ ` t2 : T2 ↓ C2
C3 = {T1 = Register x1, T2 = Register x2, x3 = x1 + x2} x1, x2, x3 fresh

Γ ` append t1 t2 : Register x3 ↓ C1 ∪ C2 ∪ C3}

[C-index]
Γ ` t : T ↓ C1 C2 = {T = Register x, i v x} x fresh

Γ ` t.[i] : Bool ↓ C1 ∪ C2

[C-slice]
Γ ` t : T ↓ C1 C2{T = Register x, i v j, j v x} x fresh

Γ ` t.[i..j] : Register j − i+ 1 ↓ C1 ∪ C2 [C-reg]

Γ ` t1 : T1 ↓ C1
...

Γ ` tn : Tn ↓ Cn
Cn+1 = {Ti = Bool | ∀1 ≤ i ≤ n}

Γ ` register t1 . . . tn : Register n ↓
⋃n+1
i=1 Ci

[C-rotate]

Γ ` t : T ↓ C1
C2{T = Register x, i v x} x fresh

Γ ` rotate t i : Register x ↓ C1 ∪ C2
[C-clean]

Γ ` t : T ↓ C
Γ ` clean t : Unit ↓ C ∪ {T = Bool }

[C-assert]
Γ ` t : T ↓ C

Γ ` assert t : Unit ↓ C ∪ {T = Bool }

FIG. 6. Constraint typing rules

Integer expressions are linear expressions over integer-valued variables and constants. Equality and order
relations are defined on type expressions as expected, while the integer expression ordering corresponds to the
reverse order on integers (≥) – this definition is used so that the maximal solution to an integer constraint
gives the smallest register size. Constraints may be equalities or order relations between expressions of the
same kind.

A type substitution Θ is a mapping from type variables to closed type expressions and integer variables to
integers. By an abuse of notation we denote by Θ(T ) the type T with all variables replaced by their values
in Θ. Additionally, we say that Θ satisfies the set of constraints C if every constraint is true after applying
the substitutions. The relation Γ ` t : T ↓ C means t can be given type Θ(T ) for any type substitution
satisfying C.

k. Constraint solving We now give a brief sketch of our constraint solving algorithm, which finds a type
substitution satisfying a set of constraints C. We use a combination of unification (see, for e.g., [43]) and sets
of upper and lower bounds for variables, similar to the method used in [20]. The function computeBounds,
shown in pseudo-code in Algorithm 2, iterates through a set of constraints performing unification and com-
puting the closure of the constraints wherever possible. Bounds – both subtype and equality – on variables
are translated to a range of type or integer expressions, possibly open at one end, and the algorithm main-
tains a set of such bounds for each variable. To reduce complex linear arithmetic constraints to a variable
bound we use a normalization procedure to write the constraint with a single positive polarity variable on
one side.

After all constraints have translated to bounds we iterate through the variables, simplifying and checking
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the set of upper and lower bounds. Any variable with no unassigned variable in its upper and lower bound
sets is assigned the maximum value in the intersection of all its bounds; this process repeats until no variables
are left unassigned. It is easy to observe that this algorithm terminates as the syntax of Revs does not allow
circular systems of constraints to be generated. This has been confirmed in practice, as the constraint solver
has terminated with the correct maximal bounds (or a type error) for every Revs program we tested.

Algorithm 2 Computation of bound sets.

function computeBounds(C, θ)
C is a set of constraints
θ a set of (possible open at one end) ranges for each variable
while c ∈ C do

if c is T1 = T2 or I1 = I2 then use unification
else if c is T v T or I v I then

computeBounds(S \ {c}, θ)
else if c is X v Unit or Unit v X then

computeBounds(S \ {c}, θ ∪ {X 7→ [Unit ,Unit ]})
else if c is X v Bool or Bool v X then

computeBounds(S \ {c}, θ ∪ {X 7→ [Bool ,Bool ]})
else if c is X v Register I then

computeBounds(S \ {c} ∪ {I v x}, θ ∪ θ′)
where θ′ = {X 7→ [Register x,Register x], x 7→ [I,∞]}

else if c is Register I v X then
computeBounds(S \ {c} ∪ {x v I, θ ∪ θ′)

where θ′ = {X 7→ [Register x,Register x], x 7→ [0, I]}
else if c is X v T1 → T2 then

computeBounds(S \ {c} ∪ {T1 v T ′1 , T ′2 v T2, θ ∪ θ′)
where θ′ = {X 7→ [T ′1 → T ′2 , T ′1 → T ′2 ]}

else if c is T1 → T2 v X then
computeBounds(S \ {c} ∪ {T ′1 v T1, T2 v T ′2 , θ ∪ θ′)

where θ′ = {X 7→ [T ′1 → T ′2 , T ′1 → T ′2 ]}
else if c is X1 v X2 then

computeBounds(S \ {c}, θ ∪ {X1 7→ [−, X2]})
else if c is x v I then

computeBounds(S \ {c}, θ ∪ {x 7→ [−, I]}
else if c is I v x then

computeBounds(S \ {c}, θ ∪ {x 7→ [I,−]}
else Fail
end if

end while
end function

VI. VERIFICATION

In this section we describe the verification of ReVer and give the major theorems proven. All theorems
given in this section have been formally specified and proven using the F? compiler [18]. We first give
theorems about our Boolean expression compiler, then use these to prove properties about whole program
compilation. The total verification of ReVer comprises around 1500 lines of code.

Rather than give our proof code, we translate our proofs to more natural mathematical language as we
believe this is more enlightening. The original theorems and proofs are given in Appendix A for reference.

A. Boolean expression compilation

l. Correctness Below is the main theorem establishing the correctness of compile-BExp with respect to
the semantics of reversible circuits and Boolean expressions. It states that if the variables of B, the bits on
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the ancilla heap and the target are non-overlapping, then the circuit computes the function i⊕B.

Theorem 1. Let B be a Boolean expression, ξ be the global ancilla heap, i ∈ N and s be a map from bits to
Boolean values. Suppose vars(B), ξ and {i} are all disjoint and s(j) = 0 for all j ∈ ξ. Then

s′(i) = s(i)⊕ JBKs

where s′ = Jcompile-BExp(B, i)Ks.

Proof. We use structural induction on B. We only sketch a recursive case, as the nonrecursive cases are
trivial.

Consider the case B = B1 ⊕ B2. Since vars(B1) is clearly disjoint with ξ and {i}, we see by induction
that s1(i) = s(i) ⊕ JB1Ks where s1 = Jcompile-BExp(B1, i)Ks. Next we want to use induction to show
that s2(i) = s1(i) ⊕ JB2Ks1, where s2 = Jcompile-BExp(B2, i)Ks1. To do so we observe that since no new
ancillas are added to ξ by compile-BExp(B1, i), vars(B2), ξ and {i} remain disjoint. Furthermore, since the
circuit compile-BExp(B1, i) does not modify any bits still on the heap, s1(j) = 0 for all j ∈ ξ and hence
s2 = Jcompile-BExp(B2, i)Ks1 by induction.

Finally by the definition of compile-BExp(B1⊕B2, i) and the semantics of reversible circuits, s2 = s′. The
∧ case is slightly more involved, but mostly follows from the same argument.

m. Cleanup As remarked earlier, a crucial part of reversible computing is cleaning ancillas both to
reduce space usage, and in quantum computing to prevent entangled qubits from influencing the computation.
Moreover, the correctness of our cleanup is actually necessary to prove correctness of the compiler, as the
compiler re-uses cleaned ancillas on the heap, potentially interfering with the precondition of Theorem 1. We
use the following theorem to establish the correctness of our cleanup method, stating that the uncompute
transformation reverses all changes on bits not in the target set under the condition that no bits in the target
set are used as controls.

Theorem 2. Let C be a well-formed reversible circuit and A ⊂ N be some set of bits. If A∩ control(C) = ∅
then for all states s, s′ = JC :: uncompute(C,A)Ks and any i /∈ A,

s(i) = s′(i)

Theorem 2 largely relies on the below lemma, which can be verified by a simple inductive case analysis:

Lemma 1. Let A ⊂ N and s, s′ be states such that for all i ∈ A, s(i) = s′(i). If C is a reversible circuit
where control(C) ⊆ A, then (JCKs)(i) = (JCKs′)(i) for all i ∈ A.

Proof of Theorem 2. The proof proceeds by induction on the length of C. The base case is trivial, so we
consider C = C1 :: C2. Without loss of generality, we assume C1 is a single gate. If C1 doesn’t use any bit in
B, then uncompute(C,A) = uncompute(C2, A) :: C1, so we use the inductive hypothesis on C2 and the fact
that C1 is self-inverse.

On the other hand, if C1 uses some i ∈ A, then i must be the target of C1. Then uncompute(C,A) =
uncompute(C2, A), so we need to show that s(i) = s′(i) where s′ = JC1 :: C2 :: uncompute(C2, A)Ks for all
i /∈ A. We observe s(i) = s′(i) where s′ = JC1Ks for all i /∈ A, so by Lemma 1 we have

JC1 :: C2 :: uncompute(C2, A)Ks(i) = JC2 :: uncompute(C2, A)Ks(i)

for all i /∈ A. Thus by the inductive hypothesis we see that s(i) = s′(i) where s′ = JC1 :: C2 ::
uncompute(C2, A)Ks for all i /∈ A, as required.

Theorem 2, together with the fact that compile-BExp produces a well-formed circuit under disjointness
constraints, gives us the corollary below that Boolean expression compilation with cleanup correctly reverses
the changes to every bit except the target.

Corollary 1. Let B be a Boolean expression, ξ be a the global ancilla heap and i ∈ N such that vars(B),
ξ and {i} are all disjoint. Suppose compile-BExp(B, i, ) = C. Then for all j 6= i and states s, s′ =
JC ◦ uncompute(C, {i})Ks we have

s′(j) = s(j)
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n. Optimizations Due to lack of space we omit the correctness proofs of our optimization passes, but
note that we prove correctness of our Boolean expression simplifications, expansion to ESOP form, and
factoring of B as i⊕B′.

B. Revs compilation

It was noted in Section IV that the design of ReVer as a partial evaluator simplifies proving correctness.
We expand on that point now, and in particular show that if a relation between the states of two interpre-
tations is preserved by assignment, then the evaluator also preserves the relation. We state this formally in
the theorem below.

Theorem 3. Let I1,I2 be interpretations and suppose whenever (σ1, σ2) ∈ R for some relation R ⊆
I1 × I2, (assign1(σ1, l, B), assign2(σ2, l, B)) ∈ R for any l, B. Then for any term t, if 〈t, σ1〉 ⇒I1 〈v, σ′

1〉
and 〈t, σ2〉 ⇒I2 〈v, σ′

2〉, then (σ′
1, σ

′
2) ∈ R.

Theorem 3 lifts properties about interpretations to properties of evaluation over those abstract machines –
in particular, we only need to establish that assignment is correct for an interpretation to establish correctness
of the corresponding evaluator/compiler. In practice this significantly reduces boilerplate proof code, which
is useful as F? currently has limited support for automated induction.

Given two interpretations I ,I ′, we say states σ and σ′ of I and I ′ are observationally equivalent with
respect to a set of initial values s ∈ State if for all i ∈ N, evalI (σ, i, s) = evalI ′(σ′, i, s). We say σ ∼s σ

′

if σ and σ′ are observationally equivalent with respect to s. We establish the preservation of observational
equivalence between the three interpretations implemented in ReVer, Istandard,IBExp and Icircuit, to
prove the correctness of our compiler.

Theorem 4. For all states σ, σ′ of Istandard and IBExp, respectively, and for all l ∈ N, B ∈ BExp, s ∈
State, if σ ∼s σ

′ then

assignstandard(σ, l, B) ∼s assignBExp(σ′, l, B)

Proof. Follows directly from the compositionality of JBK.

Theorem 5. For all states σ, σ′ of Istandard and Icircuit, respectively, and for all l ∈ N, B ∈ BExp, s ∈
State, if σ ∼s σ

′ and s(i) = 0 whenever i ∈ ξ, then

assignstandard(σ, l, B) ∼s assigncircuit(σ
′, l, B).

Moreover, the ancilla heap remains 0-filled.

Proof. The correctness of the circuit interpretation is more difficult, since there is an extra level of abstraction
where locations get mapped to bits within the circuit. Moreover, we have to add the extra condition that
the ancilla heap is zero-filled, as observational equivalence alone is not strong enough to prove the theorem.
As a result we need to establish three conditions to prove the theorem:

• the ancilla heap remains zero-filled,

• l is mapped to a bit containing the value of B, and

• no other location is mapped to a modified bit.

The first condition follows from the fact that Boolean expression compilation cannot add any new bits to
the heap, while the second condition follows from the fact that compiled circuits only modify the target and
ancillas.

The final condition effectively follows from a lemma stating that JBKs is equivalent to JB[i ∈ vars(B) 7→
ρ(i)]K(JCKs) – i.e., evaluating the expression B gives the same result as running the circuit C then evaluating
B by replacing every variable in B with the state of the corresponding bit. This can be proven by a
straightforward induction on the structure of B.
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Benchmark Revs ReVer

bits gates Toffolis bits gates Toffolis

carryRippleAdder 32 127 187 90 128 277 60

carryRippleAdder 64 255 379 186 256 565 124

mult 32 130 6016 4032 128 6111 4032

mult 64 258 24320 16256 256 24511 16256

carryLookahead 32 169 399 112 169 503 120

carryLookahead 64 439 1116 322 439 1382 336

modAdd 32 65 188 62 65 189 62

modAdd 64 129 380 126 129 381 126

cucarroAdder 32 129 98 32 65 99 32

cucarroAdder 64 257 194 64 129 195 64

ma4 17 24 8 17 24 8

SHA-2 2 rounds 577 2374 782 577 2388 782

SHA-2 4 rounds 833 4832 1592 833 4860 1592

SHA-2 8 rounds 1345 7712 3408 1345 10392 3408

SHA-2 16 rounds 2594 10336 7712 2594 23472 7712

MD5 2 rounds 7841 53824 18240 4769 45440 18240

TABLE I. Bit & gate counts for both compilers in default mode. Instances where one compiler reports fewer bits or
Toffoli gates are bolded.

C. Assertion checking

Along with the formal compiler verification, ReVer provides additional program verification tools in the
form of a binary decision diagram (BDD) based assertion checker. BDD-based verification of both classical
and reversible circuits is a common technique and has been shown to be effective even on some large circuits
[23]. Our compiler provides the option to perform a verification pass where the interpreter is run using BDDs
to represent and store Boolean expressions. The interpreter checks that BDDs for asserted values are equal
to true and cleaned variables have BDD false, or else an error is raised. ReVer also provides translation
validation by generating the BDD(s) for an entire program and checking their equivalence to the BDD(s)
for the circuit outputs.

VII. EXPERIMENTS

We ran experiments to compare the ancilla usage, gate and Toffoli counts of circuits compiled by ReVer
to the original Revs compiler. We compiled circuits for various arithmetic and cryptographic functions
written in Revs using both compiler’s regular and space-efficient modes and reported the results in Tables I
and II, respectively. Experiments were run in Linux using 8GB of RAM – for the space efficient ReVer
mode, most benchmarks ran out of memory, so we only report a few small examples.

The results show that in their default modes, Revs and ReVer are more-or-less evenly matched in terms
of bit counts. In fact, ReVer used fewer bits on average despite also being certifiably correct. Our type
inference algorithm also found bits allocated but never used in some Revs programs, which may have led
to a reduction of bits. While ReVer typically used more total gates than Revs, the number of Toffoli
gates was only slightly worse for the carry lookahead adder, and significantly better for the carry ripple
adder. Since Toffoli gates are generally much more costly than Not and controlled-Not gates – at least 7
times as typical implementations use 7 CNOT gates per Toffoli [4, 44], or up to hundreds of times in most
fault-tolerant architectures [44] – we feel these gate counts are reasonable.

For the space-efficient compilation scheme, ReVer’s Boolean expression compilation consistently produced
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Benchmark Revs ReVer

bits gates Toffolis bits gates Toffolis

carryRippleAdder 2 8 19 6 6 9 5

carryRippleAdder 4 14 25 12 13 42 32

carryRippleAdder 8 30 61 36 29 10014 9996

mult 2 9 16 12 11 529 473

modAdd 2 5 8 2 3 8 4

modAdd 4 9 20 6 14 533 510

cucarroAdder 2 9 8 2 6 13 6

cucarroAdder 4 17 14 4 14 78 66

cucarroAdder 8 33 26 8 30 16406 16386

ma4 17 24 8 16 12 12

TABLE II. Space-efficient compilation results. Instances where one compiler reports fewer bits or Toffoli gates are
bolded.

circuits with fewer bits than Revs’ dependence graph based scheme, as seen in Table II. In the cases of mult
and modAdd 4, ReVer used more bits as the programs were written in in-place style, while the space-efficient
mode of ReVer is strictly out-of-place. However, ReVer used significantly more gates – almost 5000 times
more in the most extreme case. This is due to the exponential increase in the expression size caused by
expanding Boolean expressions to ESOP form, and hence the number of gates also grows exponentially.
Moreover, because of the exponential size ESOP transformation, ReVer’s space-efficient compilation is not
scalable, whereas Revs’ method is.

While the results show there is clearly room for optimization of gate counts, they appear consistent
with other verified compilers (e.g., [25]) which take some performance hit when compared to unverified
compilers. In particular, unverified compilers may use more aggressive optimizations due to the increased ease
of implementation and the lack of a requirement to prove their correctness compared to certified compilers.
In some cases, the optimizations are even known to not be correct in all possible cases, as in the case of
fast arithmetic and some loop optimization passes in the GNU C Compiler [45]. We found instances where
Revs’ optimizations appeared to violate correctness, resulting in a semantically different circuit compared
to the default compilation mode.

VIII. CONCLUSION

In this paper we described our verified compiler for the Revs language, ReVer. We formalized the
semantics of Revs and introduced a type system together with an inference algorithm. Our method of
compilation differs from the original Revs compiler by using partial evaluation over an interpretation of
the heap to compile programs, forgoing the need to re-implement and verify bookkeeping code for every
internal translation. We described ReVer’s two current methods of compilation in this framework, the
default direct-to-circuit method, and a space efficient method that compiles first to a Boolean expression(s),
then to a circuit.

While ReVer is verified in the sense that compiled circuits produce the same result as the program
interpreter, as with any verified compiler project this is not the end of certification. The implementation of the
interpreter may have subtle bugs, which ideally would be verified against a more straightforward adaptation
of the semantics using a relational definition. Moreover, our type inference algorithm and compilation
“wrapper” have not yet been formally verified. We intend to address these issues in the future, and to
extend ReVer to utilize dependence graphs as in [1]. A parallel line of research is to extend Revs with new
features that would make writing functions over complex data types easier, such as those used in quantum
walks [4].

With a formally verified reversible circuit compiler, algorithm designers can assert with increased confi-
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dence the actual circuit-level cost of running their algorithm, allowing a better assessment of the value of
quantum computers. Perhaps more importantly, they are afforded the guarantee that data does not remain
entangled with the garbage ancillas, allowing them to be safely reused later. Such guarantees are crucial to
the operation of quantum computers and will become increasingly important as quantum computers continue
to scale to larger sizes.
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Appendix A: Proof listings

In this appendix we give the F? source code listings for the theorems and proofs given in Section VI. As we
do not include auxiliary definitions and theorems, the code is included for reference against the less formal
mathematical statements given in the main text.

1 (* Theorem 1 *)
2 val compile_bexp_correct : ah:AncHeap -> targ:int -> exp:BExp -> st:state ->
3 Lemma (requires (zeroHeap st ah /\ disjoint (elts ah) (vars exp) /\
4 not (Util.mem targ (elts ah)) /\
5 not (Util.mem targ (vars exp))))
6 (ensures (compileBExpEval ah targ exp st = st targ <> evalBExp exp st))
7 (decreases %[exp;0])
8 val compile_bexp_correct_oop : ah:AncHeap -> exp:BExp -> st:state ->
9 Lemma (requires (zeroHeap st ah /\ disjoint (elts ah) (vars exp)))

10 (ensures (compileBExpEval_oop ah exp st = evalBExp exp st))
11 (decreases %[exp;1])
12 let rec compile_bexp_correct ah targ exp st = match exp with
13 | BFalse -> ()
14 | BVar x -> ()
15 | BNot x ->
16 let (ah’, xres, xanc, xgate) = compileBExp ah targ x in
17 let ind_hyp_x = compile_bexp_correct ah targ x st in
18 evalCirc_append xgate [RNOT xres] st
19 | BXor (x, y) ->
20 let (ah’, xres, xanc, xgate) = compileBExp ah targ x in
21 let (ah’’, yres, yanc, ygate) = compileBExp ah’ targ y in
22 let st’ = evalCirc xgate st in
23 let ind_hyp_x = compile_bexp_correct ah targ x st in
24 let ind_hyp_y =
25 compile_decreases_heap ah targ x;
26 disjoint_subset (elts ah’) (elts ah) (vars y);
27 compile_partition ah targ x;
28 zeroHeap_subset st ah ah’;
29 zeroHeap_st_impl st ah’ xgate;
30 compile_bexp_correct ah’ targ y st’
31 in
32 let lem1 = (* (eval (xgate@ygate)) targ = (eval ygate st’) targ *)
33 evalCirc_append xgate ygate st
34 in
35 let lem2 = (* eval y st = eval y st’ *)
36 compile_mods ah targ x;
37 eval_mod st xgate;
38 eval_state_swap y st st’
39 in ()
40 | BAnd (x, y) ->
41 let (ah’, xres, xanc, xgate) = compileBExp_oop ah x in
42 let (ah’’, yres, yanc, ygate) = compileBExp_oop ah’ y in
43 let st’ = evalCirc xgate st in
44 let ind_hyp_x = compile_bexp_correct_oop ah x st in
45 let ind_hyp_y =
46 compile_decreases_heap_oop ah x;
47 disjoint_subset (elts ah’) (elts ah) (vars y);
48 compile_partition_oop ah x;
49 zeroHeap_subset st ah ah’;
50 zeroHeap_st_impl st ah’ xgate;
51 compile_bexp_correct_oop ah’ y st’
52 in
53 let lem1 = (* st’ xres = (evalCirc ygate st’) xres *)
54 compile_mods_oop ah’ y;
55 eval_mod st’ ygate
56 in
57 let lem2 = (* eval y st = eval y st’ *)
58 compile_mods_oop ah x;
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59 eval_mod st xgate;
60 eval_state_swap y st st’
61 in
62 let lem3 = () (* st targ = (evalCirc ygate st’) targ *)
63 in
64 evalCirc_append xgate ygate st;
65 evalCirc_append (xgate@ygate) [RTOFF (xres, yres, targ)] st
66 and compile_bexp_correct_oop ah exp st = match exp with
67 | BVar v -> ()
68 | _ ->
69 let (ah’, targ) = popMin ah in
70 let (ah’’, _, _, gates) = compileBExp ah’ targ exp in
71 pop_proper_subset ah;
72 pop_elt ah;
73 compile_bexp_correct ah’ targ exp st

75 (* Lemma 1 *)
76 val evalCirc_state_lem : circ:list Gate -> st:state -> st’:state -> dom:set int ->
77 Lemma (requires (subset (ctrls circ) dom /\ agree_on st st’ dom))
78 (ensures (agree_on (evalCirc circ st) (evalCirc circ st’) dom))
79 let rec evalCirc_state_lem circ st st’ dom = match circ with
80 | [] -> ()
81 | x::xs ->
82 applyGate_state_lem x st st’ dom;
83 evalCirc_state_lem xs (applyGate st x) (applyGate st’ x) dom

85 val uncompute_agree : circ:list Gate -> dom:set int -> st:state ->
86 Lemma (requires (wfCirc circ /\ disjoint (ctrls circ) dom))
87 (ensures (agree_on (evalCirc circ st)
88 (evalCirc (uncompute circ dom) st)
89 (complement dom)))
90 let rec uncompute_agree circ dom st = match circ with
91 | [] -> ()
92 | x::xs ->
93 if (contains_lst dom (vars [x]))
94 then
95 (evalCirc_state_lem xs (applyGate st x) st (complement dom);
96 uncompute_agree xs targ st;
97 agree_on_trans (evalCirc xs (applyGate st x))
98 (evalCirc xs st)
99 (evalCirc (uncompute xs dom) st)

100 (complement dom))
101 else uncompute_agree xs dom (applyGate st x)

103 (* Theorem 2 *)
104 val uncompute_correct : circ:list Gate -> dom:set int -> st:state ->
105 Lemma (requires (wfCirc circ /\ disjoint (ctrls circ) dom))
106 (ensures (agree_on st (evalCirc (List.rev (uncompute circ dom))
107 (evalCirc circ st))
108 (complement dom)))
109 let uncompute_correct circ dom st =
110 uncompute_agree circ dom st;
111 uncompute_ctrls_subset circ dom;
112 evalCirc_state_lem (List.rev (uncompute circ dom))
113 (evalCirc circ st)
114 (evalCirc (uncompute circ dom) st)
115 (complement dom);
116 rev_inverse (uncompute circ dom) st

118 (* Corollary 1 *)
119 val compile_with_cleanup : ah:AncHeap -> targ:int -> exp:BExp -> st:state ->
120 Lemma (requires (zeroHeap st ah /\ disjoint (elts ah) (vars exp) /\
121 not (Util.mem targ (elts ah)) /\
122 not (Util.mem targ (vars exp))))
123 (ensures (clean_heap_cond ah targ exp st /\
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124 clean_corr_cond ah targ exp st))
125 let compile_with_cleanup ah targ exp st =
126 let (ah’, res, anc, circ) = compileBExp ah targ exp in
127 let cleanup = uncompute circ (singleton res) in
128 let ah’’ = List.fold_leftT insert ah’ anc in
129 let st’ = evalCirc circ st in
130 let st’’ = evalCirc (circ@(List.rev cleanup)) st in
131 let heap_cond =
132 let lem1 = (* zeroHeap st’ ah’ *)
133 compile_decreases_heap ah targ exp;
134 compile_partition ah targ exp;
135 zeroHeap_subset st ah ah’;
136 zeroHeap_st_impl st ah’ circ
137 in
138 let lem1 = (* zeroHeap st’’ ah’ *)
139 compileBExp_wf ah targ exp;
140 uncompute_uses_subset circ (singleton res);
141 zeroHeap_st_impl st’ ah’ (List.rev cleanup)
142 in
143 compile_ctrls ah targ exp;
144 uncompute_correct circ (singleton res) st;
145 compile_anc ah targ exp;
146 zeroHeap_insert_list st’’ ah’ anc
147 in
148 let corr_cond =
149 uncompute_targ circ res;
150 eval_mod st’ (List.rev cleanup)
151 in ()
152 val compile_with_cleanup_oop : ah:AncHeap -> exp:BExp -> st:state ->
153 Lemma (requires (zeroHeap st ah /\ disjoint (elts ah) (vars exp)))
154 (ensures (zeroHeap (compileBExpCleanEvalSt_oop ah exp st)
155 (first (compileBExpClean_oop ah exp)) /\
156 compileBExpCleanEval_oop ah exp st =
157 compileBExpEval_oop ah exp st))
158 let compile_with_cleanup_oop ah exp st =
159 let (ah’, targ) = popMin ah in
160 compile_with_cleanup ah’ targ exp st

162 (* Optimization theorems *)
163 val simplify_preserves_semantics : exp:BExp ->
164 Lemma (forall (st:state). (evalBExp exp st) = (evalBExp (simplify exp) st))
165 let rec simplify_preserves_semantics exp = match exp with
166 | BFalse -> ()
167 | BVar x -> ()
168 | BAnd (x, y) | BXor (x, y) ->
169 simplify_preserves_semantics x;
170 simplify_preserves_semantics y
171 | BNot x -> simplify_preserves_semantics x

173 val factorAs_correct : exp:BExp -> targ:int -> st:state ->
174 Lemma (forall exp’. factorAs exp targ = Some exp’ ==>
175 not (occursInBExp targ exp’) /\ evalBExp exp st = st targ <> evalBExp exp’ st)
176 let rec factorAs_correct exp targ st = match exp with
177 | BFalse -> ()
178 | BVar x -> ()
179 | BNot x -> factorAs_correct x targ st
180 | BAnd (x, y) -> ()
181 | BXor (x, y) ->
182 factorAs_correct x targ st;
183 factorAs_correct y targ st

185 val dist_preserves_semantics : exp:BExp ->
186 Lemma (forall (st:state). (evalBExp exp st) = (evalBExp (distributeAnds exp) st))
187 let rec dist_preserves_semantics exp = match exp with
188 | BFalse -> ()
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189 | BVar x -> ()
190 | BNot x -> dist_preserves_semantics x
191 | BXor (x, y) -> dist_preserves_semantics x; dist_preserves_semantics y
192 | BAnd (x, y) ->
193 dist_preserves_semantics x;
194 dist_preserves_semantics y;
195 begin match (distributeAnds x, distributeAnds y) with
196 | (BXor (a, b), BXor (c, d)) ->
197 distributivityAndXor (BXor (a, b)) c d;
198 commutativityAnd (BXor (a, b)) c;
199 commutativityAnd (BXor (a, b)) d;
200 distributivityAndXor c a b;
201 distributivityAndXor d a b;
202 commutativityAnd c a;
203 commutativityAnd c b;
204 commutativityAnd d a;
205 commutativityAnd d b
206 | (x’, BXor (c, d)) -> distributivityAndXor x’ c d
207 | (BXor (a, b), y’) ->
208 commutativityAnd (BXor (a, b)) y’;
209 distributivityAndXor y’ a b;
210 commutativityAnd y’ a;
211 commutativityAnd y’ b
212 | (x’, y’) -> ()
213 end

215 (* Theorem 4 and related lemma *)
216 type state_equiv (st:boolState) (st’:BExpState) (init:state) =
217 forall i. boolEval st init i = bexpEval st’ init i

219 val eval_bexp_swap : st:boolState -> st’:BExpState -> bexp:BExp -> init:state ->
220 Lemma (requires (state_equiv st st’ init))
221 (ensures (evalBExp (substBExp bexp (snd st’)) init =
222 evalBExp bexp (snd st)))
223 let rec eval_bexp_swap st st’ bexp init = match bexp with
224 | BFalse -> ()
225 | BVar i -> ()
226 | BNot x -> eval_bexp_swap st st’ x init
227 | BXor (x, y) | BAnd (x, y) ->
228 eval_bexp_swap st st’ x init;
229 eval_bexp_swap st st’ y init

231 val state_equiv_assign : st:boolState -> st’:BExpState -> init:state -> l:int -> bexp:BExp ->
232 Lemma (requires (state_equiv st st’ init))
233 (ensures (state_equiv (boolAssign st l bexp) (bexpAssign st’ l bexp) init))
234 let state_equiv_assign st st’ init l bexp = eval_bexp_swap st st’ bexp init

236 (* Theorem 5 and related lemmas *)
237 type circ_equiv (st:boolState) (cs:circState) (init:state) =
238 zeroHeap (evalCirc cs.gates init) cs.ah /\
239 (forall i. not (mem (lookup cs.subs i) cs.ah)) /\
240 (forall i. boolEval st init i = circEval cs init i)

242 val eval_commutes_subst_circ : st:boolState -> cs:circState -> bexp:BExp ->
243 bexp’:BExp -> init:state -> targ:int -> targ’:int ->
244 Lemma (requires (circ_equiv st cs init /\
245 bexp’ = substVar bexp cs.subs /\
246 targ’ = lookup cs.subs targ /\
247 not (Util.mem targ’ (vars bexp’)) /\
248 not (Util.mem targ’ (elts cs.ah)) /\
249 disjoint (elts cs.ah) (vars bexp’)))
250 (ensures ((evalCirc (last (compileBExp cs.ah targ’ bexp’))
251 (evalCirc cs.gates init)) targ’ =
252 lookup (snd st) targ <> evalBExp bexp (snd st)))
253 let eval_commutes_subst_circ st cs bexp bexp’ init targ targ’ =
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254 let init’ = evalCirc cs.gates init in
255 compile_bexp_correct cs.ah targ’ bexp’ init’;
256 eval_bexp_swap st cs bexp bexp’ init

258 val eval_commutes_subst_circ_oop : st:boolState -> cs:circState ->
259 bexp:BExp -> bexp’:BExp -> init:state ->
260 Lemma (requires (circ_equiv st cs init /\
261 bexp’ = substVar bexp cs.subs /\
262 disjoint (elts cs.ah) (vars bexp’)))
263 (ensures ((evalCirc (last (compileBExp_oop cs.ah bexp’))
264 (evalCirc cs.gates init))
265 (second (compileBExp_oop cs.ah bexp’)) =
266 evalBExp bexp (snd st)))
267 let eval_commutes_subst_circ_oop st cs bexp bexp’ init =
268 let init’ = evalCirc cs.gates init in
269 compile_bexp_correct_oop cs.ah bexp’ init’;
270 eval_bexp_swap st cs bexp bexp’ init

272 val circ_equiv_assign : st:boolState -> cs:circState -> init:state -> l:int -> bexp:BExp ->
273 Lemma (requires (circ_equiv st cs init))
274 (ensures (circ_equiv (boolAssign st l bexp) (circAssign cs l bexp) init))
275 let circ_equiv_assign st cs init l bexp =
276 let l’ = lookup cs.subs l in
277 let bexp’ = substVar bexp cs.subs in
278 let init’ = evalCirc cs.gates init in
279 let st’ = boolAssign st l bexp in
280 let cs’ = circAssign cs l bexp in
281 match factorAs bexp’ l’ with
282 | None ->
283 let (ah’, res, ancs, circ’) = compileBExp_oop cs.ah bexp’ in
284 let zeroHeap_lem =
285 compile_decreases_heap_oop cs.ah bexp’;
286 compile_partition_oop cs.ah bexp’;
287 zeroHeap_subset init’ cs.ah cs’.ah;
288 zeroHeap_st_impl init’ cs’.ah circ’
289 in
290 let preservation =
291 compile_mods_oop cs.ah bexp’;
292 eval_mod init’ circ’
293 in
294 let correctness =
295 eval_commutes_subst_circ_oop st cs bexp bexp’ init
296 in ()
297 | Some bexp’’ ->
298 let (ah’, res, ancs, circ’) = compileBExp cs.ah l’ bexp’’ in
299 let zeroHeap_lem =
300 factorAs_correct bexp’ l’ init’;
301 factorAs_vars bexp’ l’;
302 compile_decreases_heap cs.ah l’ bexp’’;
303 compile_partition cs.ah l’ bexp’’;
304 zeroHeap_subset init’ cs.ah cs’.ah;
305 zeroHeap_st_impl init’ cs’.ah circ’
306 in
307 let preservation =
308 compile_mods cs.ah l’ bexp’’;
309 eval_mod init’ circ’
310 in
311 let correctness =
312 admitP(b2t(lookup (snd st’) l = (evalCirc circ’ init’) (lookup cs’.subs l)));
313 factorAs_correct bexp’ l’ init’;
314 eval_commutes_subst_circ st cs bexp bexp’ init l l’
315 in ()
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