
Quantum Perceptron Models

Nathan Wiebe, Ashish Kapoor, Krysta M. Svore
Microsoft Research, One Microsoft Way, Redmond WA 98052

We demonstrate how quantum computation can provide non-trivial improvements in the compu-
tational and statistical complexity of the perceptron model. We develop two quantum algorithms
for perceptron learning. The first algorithm exploits quantum information processing to determine
a separating hyperplane using a number of steps sublinear in the number of data points N , namely
O(
√
N). The second algorithm illustrates how the classical mistake bound of O(1

γ2
) can be further

improved to O(1√
γ

) through quantum means, where γ denotes the margin. Such improvements are

achieved through the application of quantum amplitude amplification to the version space interpre-
tation of the perceptron model.

I. INTRODUCTION

Quantum computation is an emerging technology that utilizes quantum effects to achieve significant, and in some
cases exponential, speed-ups of algorithms over their classical counterparts. The growing importance of machine
learning has in recent years led to a host of studies that investigate the promise of quantum computers for machine
learning [1, 2, 12, 13, 17, 21–23].

While a number of important quantum speedups have been found, the majority of these speedups are due to
replacing a classical subroutine with an equivalent albeit faster quantum algorithm. The true potential of quantum
algorithms may therefore remain underexploited since quantum algorithms have been constrainted to follow the same
methodology behind traditional machine learning methods [2, 7, 22]. Here we consider an alternate approach: we
devise a new machine learning algorithm that is tailored to the speedups that quantum computers can provide.

We illustrate our approach by focusing on perceptron training [18]. The perceptron is a fundamental building block
for various machine learning models including neural networks and support vector machines [20]. Unlike many other
machine learning algorithms, tight bounds are known for the computational and statistical complexity of traditional
perceptron training. Consequently, we are able to rigorously show different performance improvements that stem from
either using quantum computers to improve traditional perceptron training or from devising a new form of perceptron
training that aligns with the capabilities of quantum computers.

We provide two quantum approaches to perceptron training. The first approach focuses on the computational aspect
of the problem and the proposed method quadratically reduces the scaling of the complexity of training with respect
to the number of training vectors. The second algorithm focuses on statistical efficiency. In particular, we use the
mistake bounds for traditional perceptron training methods and ask if quantum computation lends any advantages.
To this end, we propose an algorithm that quadratically improves the scaling of the training algorithm with respect
to the margin between the classes in the training data. The latter algorithm combines quantum amplitude estimation
in the version space interpretation of the perceptron learning problem. Our approaches showcase the trade-offs that
one can consider in developing quantum algorithms, and the ultimate advantages of performing learning tasks on a
quantum computer.

The rest of the paper is organized as follows: we first cover the background on perceptrons, version space and Grover
search. We then present our two quantum algorithms and provide analysis of their computational and statistical
efficiency before concluding.

II. BACKGROUND

A. Perceptrons and Version Space

Given a set of N separable training examples {φ1, .., φN} ∈ RD with corresponding labels {y1, .., yN}, yi ∈ {+1,−1},
the goal of perceptron learning is to recover a hyperplane w that perfectly classifies the training set [18]. Formally,
we want w such that yi · wTφi > 0 for all i. There are various simple online algorithms that start with a random
initialization of the hyperplane and make updates as they encounter more and more data [8, 11, 18, 19]; however, the
rule that we consider for online perceptron training is, upon misclassifying a vector (φ, y), w ← w + yφ.

A remarkable feature of the perceptron model is that upper bounds exist for the number of updates that need to
be made during this training procedure. In particular, if the training data is composed of unit vectors, φi ∈ RD, that
are separated by a margin of γ then there are perceptron training algorithms that make at most O(1

γ2) mistakes [16],

ar
X

iv
:1

60
2.

04
79

9v
1

 [
qu

an
t-

ph
]

 1
5

Fe
b

20
16

2

Feature Space Version Space

FIG. 1: Version space and feature space views of classification. This figure is from [14].

independent of the dimension of the training vectors. Similar bounds also exist when the data is not separated [6]
and also for other generalizations of perceptron training [8, 11, 19]. Note that in the worst case, the algorithm will
need to look at all points in the training set at least once, consequently the computation complexity will be O(N).

Our goal is to explore if the quantum procedures can provide improvements both in terms of computational com-
plexity (that is better than O(N)) and statistical efficiency (improve upon O(1

γ2). Instead of solely applying quantum

constructs to the feature space, we also consider the version space interpretation of perceptrons which leads to the
improved scaling with γ.

Formally, version space is defined as the set of all possible hyperplanes that perfectly separate the data: VS :=
{w|yi · wTφi > 0 for all i}. Given a training datum, the traditional representation is to depict data as points in the
feature space and use hyperplanes to depict the classifiers. However, there exists a dual representation where the
hyperplanes are depicted as points and the data points are represented as hyperplanes that induce constraints on
the feasible set of classifiers. Figure 1, which is borrowed from [14], illustrates the version space interpretation of
perceptrons. Given three labeled data points in a 2D space, the dual space illustrates the set of normalized hyperplanes
as a yellow ball with unit radius. The third dimension corresponds to the weights that multiply the two dimensions
of the input data and the bias term. The planes represent the constraints imposed by observing the labeled data
as every labeled data renders one-half of the space infeasible. The version space is then the intersection of all the
half-spaces that are valid. Naturally, classifiers including SVMs [20] and Bayes point machines [10] lie in the version
space.

We note that there are quantum constructs such as Grover search and amplitude amplification which provide non-
trivial speedups for the search task. This is the main reason why we resort to the version space interpretation. We can
use this formalism to simply pose the problem of determining the separating hyperplane as a search problem in the
dual space. For example given a set of candidates hyperplanes, our problem reduces to searching amongst the sample
set for the classifier that will successfully classify the entire set. Therefore training the perceptron is equivalent to
finding any feasible point in the version space. We describe these quantum constructs in detail below.

B. Grover’s Search

Both quantum approaches introduced in this work and their corresponding speed-ups stem from a quantum subrou-
tine called Grover’s search [4, 9], which is a special case of a more general method referred to as amplitude amplification
[5]. Rather than sampling from a probability distribution until a given marked element is found, the Grover search
algorthm draws only one sample and then uses quantum operations to modify the distribution from which it sampled.
The probability distribution is rotated, or more accurately the quantum state that yields the distribution is rotated,
into one whose probability is sharply concentrated on the marked element. Once a sharply peaked distribution is
identified, the marked item can be found using just one sample. In general, if the probability of finding such an
element is known to be a then amplitude amplification requires O(

√
1/a) operations to find the marked item with

certainty.
While Grover’s search is a quantum subroutine, it can in fact be understood using only geometric arguments.

The only notions from quantum mechanics used are those of the quantum state vector and that of Born’s rule

3

ψ

Pψ/||Pψ||

ψ

Pψ/||Pψ||

Utargψ

ψ

Pψ/||Pψ||

Utargψ

UtargψUinit

qa qa
qa

qa
qa

qa2

FIG. 2: A geometric description of the action of Ugrover on an initial state vector ψ.

(measurement). A quantum state vector is a complex unit vector whose components have magnitudes that are equal
to the square–roots of the probabilities. In particular, if v is a quantum state vector and p is the corresponding
probability distribution then

p = v† ◦ v, (1)

where the unit column vector v is called the quatum state vector which sits in the vector space Cn, ◦ is the Hadamard
(pointwise) product and † is the complex conjugate transpose. A quantum state can be measured such that if we have
a quantum state vector v and a basis vector w then the probability of measuring v = w is |〈v, w〉|2, where 〈·, ·〉 denotes
the inner product. One of the main differences between quantum and classical distributions is that the probability
distribution resulting from measurement depends strongly on the basis in which the vector is measured. This basis
dependence of measurement is the root of many of the differences between quantum and classical probability theory
and also gives rise to many celebrated results in the foundations of quantum mechanics such as Bell’s theorem [3].

At first glance, introducing the quantum state vector v may not seem to provide any advantages over working
with p for the purposes of sampling. More careful consideration reveals that the fact that v is complex valued allows
transformations on v to be performed that cannot be performed on p. In particular, we can reflect the quantum state
vector about any axis, whereas we cannot do the same to p without violating its positivity. Grover’s search, in fact,
is a cunning way to perform a series of reflections on v to bias p towards the marked state we wish to find. While
such reflections may not make sense from a classical perspective, quantum computers can be used to realize them
efficiently.

The key feature of a quantum computer is that it permits any unitary transformation to be performed on the unit
vector v, within arbitrarily small approximation error. We define the initial quantum state vector to be ψ and define
P to be a projection matrix onto a set of configurations that we want to find. In particular, if we define νgood to be
the set of all items that we want the quantum algorithm to find then

Pψ =

{
ψ, if ψ ∈ νgood
0, otherwise

(2)

Here being able to apply P does not imply that νgood is known. Instead, it implies that a subroutine that checks to
see if ψ ∈ νgood exists. The fact that P is implemented by a linear transformation of the state vector also allows it

to be simultaneously applied to exponentially many v via Pψ = 1
‖a‖
∑N
j=1 ajv = 1

‖a‖
∑N
j=1 ajPv. These two features

allow a single application of 11− 2P to be efficiently applied, assuming membership in vgood can be efficiently tested,
even though ψ is a sum of exponentially many basis vectors.

In order to perform the search algorithm we need to implement two unitary operations:

Uinit = 2ψψ† − 11, Utarg = 11− 2P. (3)

The operators Uinit and Utarg can be interpreted geometrically as reflections within a two–dimensional space spanned
by the vectors ψ and Pψ. If we assume that Pψ 6= 0 and Pψ 6= ψ then these two reflection operations can be used to
rotate ψ in the space span(ψ, Pψ). Specifically this rotation is Ugrover = UinitUtarg. Its action is illustrated in Figure

2. If the angle between the vector ψ and Pψ/‖Pψ‖ is π/2− θa, where θa := sin−1(|〈ψ, Pψ/‖Pψ‖〉|). It then follows
from elementary geometry and the rule for computing the probability distribution from a quantum state (known as
Born’s rule) that after j iterations of Grover’s algorithm the probability of measuring a desirable outcome is

p(v ∈ νgood|j) = sin2((2j + 1)θa). (4)

4

It is then easy to see that if θa � 1 and a probability of success greater than 1/4 is desired then j ∈ O(1/
√
θa) suffices

to find a marked outcome. This is quadratically faster than is possible from statistical sampling which requires
O(1/θa) samples on average.

As an example, if the initial success probability is 1/4 then θa = sin−1(1/2) = π/6. Therefore if we take j = 1
then p(v ∈ νgood|j) = 1. As a result a desirable outcome can be found after only 3 quantum operations whereas 4
samples from the initial distribution would be needed on average to find a marked outcome if quantum methods were
not used.

If on the other hand, the success probability were 1/2 then θa = π/4 and sin2((2j + 1)π/4) = 1/2 for all j. This
problem can be easily addressed by doing something that would not make any sense classically: purposefully lowering
the success probability to 1/4 by requiring a new event w = (v, u) where we define w to be a good state if the
independent variables v is good and u ∼ Bern(1/2) is 0. The independence assumption means that the probability
that both conditions are satisfied is 1/4 and hence a good v can be found with certainty by applying amplitude
amplification on w. More generally, if θa is known then this trick can be applied to make θa 7→ π/(2[2j + 1]) (for
positive integer j) which makes the search procedure deterministic.

On the other hand, if θa is not known then it isn’t clear how j should be chosen to make the success probability
greater than 1/4. Fortunately, methods are known to deal with such issues [4, 5]. The simplest one exploits the fact
that the average of p over a range of j = 0, . . . ,M − 1 can be easily computed:

p(v ∈ νgood;M) = 1
M

∑M−1
j=0 sin2((2j + 1)θa)

= 1
2

(
1− sin(4Mθa)

2M sin(2θa)

)
. (5)

If M ≥M0 := 1
sin(2θa)

then it is straight forward to see that

1

2

(
1− sin(4Mθa)

2M sin(2θa)

)
≥ 1

2

(
1− 1

2M sin(2θa)

)
≥ 1

4
. (6)

The average probability is then guaranteed to be at least 1/4 if j is chosen to be drawn uniformly from {0, . . . ,M −1}
if M ≥ M0. If a lower bound on θa is known a good sample can be drawn, then an appropriate value of M can be
computed.

If no lower bound on θa is known then a marked element can nonetheless be found with high probability by
exponential searching. Exponential searching involves, for step i taking M = ci for some c ∈ (1, 2). After a logarithmic
number of applications of amplitude amplification it will attainM ≥M0 with high probability. After which the average
success probability is known to be bounded below by 1/4 and the algorithm will succeed with high probability in a
constant number of attempts. Thus the quadratic speedup holds even if the success probability is not known apriori.

III. ONLINE QUANTUM PERCEPTRON

Now that we have discussed Grover’s search we turn our attention to applying it to speed up online perceptron
training. In order to do so, we first need to define the quantum model that we wish to use as our quantum analogue
of perceptron training. While there are many ways of defining such a model but the following approach is perhaps
the most direct. Although the traditional feature space perceptron training algorithm is online [16], meaning that
the training examples are provided one at a time to it in a streaming fashion, we deviate from this model slightly by
instead requiring that the algorithm be fed training examples that are, in effect, sampled uniformly from the training
set. This is a slightly weaker model, as it allows for the possibility that some training examples will be drawn multiple
times. However, the ability to draw quantum states that are in a uniform superposition over all vectors in the training
set enables quantum computing to provide advantages over both classical methods that use either access model.

We assume without loss of generality that the training set consists of N unit vectors, φ1, . . . , φN . If we then define
Φ1, . . . ,ΦN to be the basis vectors whose indices each coincide with a (B+ 1)-bit representation of the corresponding
(φj , yj) where yj ∈ {−1, 1} is the class assigned to φj and let Φ0 be a fixed unit vector that is chosen to represent a
blank memory register.

We introduce the vectors Φj to make it clear that the quantum vectors states used to represent training vectors
do not live in the same vector space as the training vectors themselves. We choose the quantum state vectors here
to occupy a larger space than the training vectors because the Heisenberg uncertainty principle makes it much more
difficult for a quantum computer to compute the class that the perceptron assigns to a training vector in such cases.

For example, the training vector (φj , yj) ≡ ([0, 0, 1, 0]T , 1) can be encoded as an unsigned integer 00101 ≡ 5, which
in turn can be represented by the unit vector Φ = [0, 0, 0, 0, 0, 1]T . More generally, if φj ∈ RD were a vector of

5

Algorithm 1 Online quantum perceptron training algorithm

for k = 1, . . . , dlog3/4 γ
2εe do

for j = 1 : dlogc(1/ sin(2 sin−1(1/
√
N)))e do

Draw m uniformly from {0, . . . , dcje}.
Prepare quantum state Ψ.
Ψ← ((2ΨΨ† − 11)Fw)mΨ.
Measure Ψ, assume outcome is uq.
(φ, y)← Uc(q).
if fw(φ, y) = 1 then
Return w′ ← w + yφ
end if
end for
end for
Return w′

floating point numbers then a similar vector could be constructed by concatenating the binary representations of the
D floating point numbers that comprise it with (yj + 1)/2 and express the bit string as an unsigned integer, Q. The
integer can then be expressed as a unit vector Φ : [Φ]q = δq,Q. While encoding the training data as an exponentially
long vector is inefficient in a classical computer, it is not in a quantum computer because of the quantum computer’s
innate ability to store and manipulate exponentially large quantum state vectors.

Any machine learning algorithm, be it quantum or classical, needs to have a mechanism to access the training
data. We assume that the data is accessed via an oracle that not only accesses the training data but also determines
whether the data is misclassified. To clarify, let {uj : j = 1 : N} be an orthonormal basis of quantum state vectors
that serve as addresses for the training vectors in the database. Given an input address for the training datum, the
unitary operations U and U† allow the quantum computer to access the corresponding vector. Specifically, for all j

U [uj ⊗ Φ0] = uj ⊗ Φj

U†[uj ⊗ Φj] = uj ⊗ Φ0. (7)

Given an input address vector uj , the former corresponds to a database access and the latter inverts the database
access.

Note that because U and U† are linear operators we have that U
∑N
j=1 uj⊗Φ0 =

∑
j uj⊗Φj . A quantum computer

can therefore access each training vector simultaneously using a single operation, while only requiring enough memory
to store one of the Φj . The resultant vector is often called in the physics literature a quantum superposition of states
and this feature of linear transformations is referred to as quantum parallelism within quantum computing.

The next ingredient that we need is a method to test if the perceptron correctly assigns a training vector addressed
by a particular uj . This process can be pictured as being performed by a unitary transformation that flips the sign of
any basis-vector that is misclassified. By linearity, a single application of this process flips the sign of any component
of the quantum state vector that coincides with a misclassified training vector. It therefore is no more expensive than
testing if a given training vector is misclassified in a classical setting. We denote the operator, which depends on the
perceptron weights w, Fw and require that

Fw[uj ⊗ Φ0] = (−1)fw(φj ,yj)[uj ⊗ Φ0], (8)

where fw(φj) is a Boolean function that is 1 if and only if the perceptron with weights w misclassifies training vector
φj . Since the classification step involves computing the dot–products of finite size vectors, this process is efficient
given that the Φj are efficiently computable.

We apply Fw in the following way. Let Fw be a unitary operation such that

FwΦj = (−1)fw(φj ,yj)Φj . (9)

Fw is easy to implement in the quantum computer using a multiply controlled phase gate and a quantum implemen-
tation of the perceptron classification algorithm, fw. We can then write

Fw = U†(11⊗Fw)U. (10)

Classifying the data based on the phases (the minus signs) output by Fw naturally leads to a very memory efficient
training algorithm because only one training vector is ever stored in memory during the implementation of Fw given
in (10). We can then use Fw to perform Grover’s search algorithm, by taking Utarg = Fw and Uinit = 2ψψ† − 11

6

with ψ = Ψ := 1√
N

∑N
j=1 uj , to seek out training vectors that the current perceptron model misclassifies. This leads

to a quadratic reduction in the number of times that the training vectors need to be accessed by Fw or its classical
analogue.

In the classical setting, the natural object to query is slightly different. The oracle that is usually assumed in online
algorithms takes the form U c : Z 7→ CD where

U c(j) = φj . (11)

We will assume that a similar function exists in both the classical and the quantum settings for simplicity. In both
cases, we will consider the cost of a query to U c to be proportional to the cost of a query to Fw.

We use these operations in Algorithm 1 to implement a quantum search for training vectors that the perceptron
misclassifies. This leads to a quadratic speedup relative to classical methods as shown in the following theorem.

Theorem 1. Given a training set that consists of unit vectors Φ1, . . . ,ΦN that are separated by a margin of γ in
feature space, the number of applications of Fw needed to infer a perceptron model, w, such that P (∃ j : fw(φj) = 1) ≤ ε
using a quantum computer is Nquant where

Ω(
√
N) 3 Nquant ∈ O

(√
N

γ2
log

[
1

εγ2

])
,

whereas the number of queries to fw needed in the classical setting, Nclass, where the training vectors are found by
sampling uniformly from the training data is bounded by

Ω(N) 3 Nclass ∈ O
(
N

γ2
log

[
1

εγ2

])
.

We assume in Theorem 1 that the training data in the classical case is accessed in a manner that is analogous to
the sampling procedure used in the quantum setting. If instead the training data is supplied by a stream (as in the
standard online model) then the upper bound changes to Nclass ∈ O(N/γ2) because all N training vectors can be
deterministically checked to see if they are correctly classified by the perceptron. A quantum advantage is therefore
obtained if N � log2(1/εγ2).

In order to prove Theorem 1 we need to have two technical lemmas (proven in the appendix). The first bounds the
complexity of the classical analogue to our training method:

Lemma 1. Given only the ability to sample uniformly from the training vectors, the number of queries to fw needed
to find a training vector that the current perceptron model fails to classify correctly, or conclude that no such example
exists, with probability 1− εγ2 is at most O(N log(1/εγ2)).

The second proves the correctness of Algorithm 1 and bounds the complexity of the algorithm:

Lemma 2. Assuming that the training vectors {φ1, . . . , φN} are unit vectors and that they are drawn from two classes
separated by a margin of γ in feature space, Algorithm 2 will either update the perceptron weights, or conclude that
the current model provides a separating hyperplane between the two classes, using a number of queries to Fw that is
bounded above by O(

√
N log(1/εγ2)) with probability of failure at most εγ2.

After stating these results, we can now provide the proof of Theorem 1.

Proof of Theorem 1. The upper bounds follow as direct consequences of Lemma 2 and Lemma 1. Novikoff’s theorem [6,
16] states that the algorithms described in both lemmas must be applied at most 1/γ2 times before finding the result.
However, either the classical or the quantum algorithm may fail to find a misclassified vector at each of the O(1/γ2)
steps. The union bound states that the probability that this happens is at most the sum of the respective probabilities
in each step. These probabilities are constrained to be γ2ε, which means that the total probability of failing to correctly
find a mistake is at most ε if both algorithms are repeated 1/γ2 times (which is the worst case number of times that
they need to be repeated).

The lower bound on the quantum query complexity follows from contradiction. Assume that there exists an algo-
rithm that can train an arbitrary perceptron using o(

√
N) query operations. Now we want to show that unstructured

search with one marked element can be expressed as a perceptron training algorithm. Let w be a known set of per-
ceptron weights and assume that the perceptron only misclassifies one vector φ1. Thus if perceptron training succeeds
then w the value of φ1 can be extracted from the updated weights. This training problem is therefore equivalent to
searching for a misclassified vector. Now let φj = [1 ⊕ F (j), F (j)]T ⊗ χj where χj is a unit vector that represents
the bit string j and F (j) is a Boolean function. Assume that F (0) = 1 and F (j) = 0 if j 6= 0, which is without

7

loss of generality equivalent to Grover’s problem [4, 9]. Now assume that φj is assigned to class 2F (j) − 1 and take

w = [1/
√

2, 1/
√

2]T ⊗ 1√
N

∑
j χj . This perceptron therefore misclassifies φ0 and no other vector in the training set.

Thus updating the weights yields φj , which in turn yields the value of j such that F (j) = 1, and therefore Grover’s
search reduces to perceptron training.

Since Grover’s search reduces to perceptron training in the case of one marked item the lower bound of Ω(
√
N)

queries for Grover’s search [4] applies to perceptron training. Since we assumed that perceptron training requires

o(
√
N) queries this is a contradiction. Thus the true lower bound must be Ω(

√
N).

We have assumed that in the classical setting that the user only has access to the training vectors through an oracle
that is promised to draw a uniform sample from {(φ1, y1), . . . , (φN , yN)}. Since we are counting the number of queries
to fw it is clear that in the worst possible case that the training vector that the perceptron makes a mistake on can be
the last unique value sampled from this list. Thus if the query complexity were o(N) there would be a contradiction,
hence the query complexity is Ω(N) classically.

IV. QUANTUM VERSION SPACE PERCEPTRON

The strategy for our quantum version space training algorithm is to pose the problem of determining a separating
hyperplane as search. Specifically, the idea is to first generate K sample hyperplanes w1, . . . , wK from a spherical
Gaussian distribution N (0, 11). Given a large enough K, we are guaranteed to have at least one hyperplane amongst
the samples that would lie in the version space and perfectly separate the data. As discussed earlier Grover’s algorithm
can provide quadratic speedup over the classical search consequently the efficiency of the algorithm is determined by
K. Theorem 2 provides an insight on how to determine this number of hyperplanes to be sampled.

Theorem 2. Given a training set that consists of d-dimensional unit vectors Φ1, . . . ,ΦN with labels y1, . . . , yN that are
separated by a margin of γ in feature space, then a D-dimensional vector w sampled from N (0, 11) perfectly separates
the data with probability Θ(γ).

The proof of this theorem is provided in the supplementary material. The consequence of Theorem 2 stated below
is that the expected number of samples K, required such that a separating hyperplane exists in the set, only needs
to scale as O(1

γ). Thus if amplitude amplification is used to boost the probability of finding a vector in the version

space then the resulting quantum algorithm will need only O(1√
γ) quantum steps on average.

Next we show how to use Grover’s algorithm to search for a hyperplane that lies in the version space. Let us take
K = 2m, for positive integer m. Then given w1, . . . , wK be the sampled hyperplanes, we represent W1, . . . ,WK to be
vectors that encode a binary representation of these random perceptron vectors. In analogy to Φ0, we also define W0

to be a vector that represents an empty data register. We define the unitary operator V to generate these weights
given an address vector uj using the following

V [uj ⊗W0] = [uj ⊗Wj]. (12)

In this context we can also think of the address vector, uj , as representing a seed for a pseudo–random number
generator that yields perceptron weights Wj .

Also let us define the classical analogue of V to be V c which obeys V c(j) = wj . Now using V (and applying the
Hadamard transform [15]) we can prepare the following quantum state

Ψ :=
1√
K

K∑
k=1

uk ⊗Wk, (13)

which corresponds to a uniform distribution over the randomly chosen w.
Now that we have defined the initial state, Ψ, for Grover’s search we need to define an oracle that marks the vectors

inside the version space. Let us define the operator F̂φ,y via

F̂φ,y[uj ⊗W0] = (−1)1+fwj
(φ,y)[uj ⊗W0]. (14)

This unitary operation looks at an address vector, uj , computes the corresponding perceptron model Wj , flips the
sign of any component of the quantum state vector that is in the half space in version space specified by φ and then
uncomputes Wj . This process can be realized using a quantum subroutine that computes fw, an application of V and
V † and also the application of a conditional phase gate (which is a fundamental quantum operation that is usually
denoted Z) [15].

8

Algorithm 2 Quantum version space perceptron training algorithm

for k = 1, . . . , dlog3/4 εe do
for j = 1 : dlogc(1/ sin(2 sin−1(1/

√
K)))e do

Draw m uniformly from {0, . . . , dcje}.
Prepare quantum state Ψ = 1√

K

∑K
p=1 up ⊗W0.

Ψ← ((2ΨΨ† − 11)G)mΨ.
Measure Ψ, assume outcome is uq.
w ← V c(q).
if fw(φ`, y`) = 0 for all ` ∈ {1, . . . , N} then
Return w
end if
end for
end for
Return w = 0

The oracle F̂φ,y does not allow us to directly use Grover’s search to rotate a quantum state vector that is outside the
version space towards the version space boundary because it effectively only checks one of the half–space inequalities
that define the version space. It can, however, be used to build an operation, Ĝ, that reflects about the version space:

Ĝ[uj ⊗W0] = (−1)1+(fwj
(φ1,y1)∨···∨fwj

(φN ,yN))[uj ⊗W0]. (15)

The operation Ĝ can be implemented using 2N applications of F̂φ as well as a sequence of O(N) elementary quantum

gates, hence we cost a query to Ĝ as O(N) queries to F̂φ,y.
We use these components in Algorithm 2 to, in effect, amplify the margin between the two classes from γ to

√
γ.

We give the asymptotic scaling of this algorithm in the following theorem (see appendix for proof).

Theorem 3. Given a training set that consists of unit vectors Φ1, . . . ,ΦN that are separated by a margin of γ in
feature space, the number of queries to F̂φ,y needed to infer a perceptron model with probability at least 1− ε, w, such
that w is in the version space using a quantum computer is Nquant where

Nquant ∈ O
(
N
√
γ

log3/2

[
1

ε

])
.

Proof. The proof of the theorem follows directly from bounds on K and the validity of Algorithm 2. It is clear from
previous discussions that Algorithm 2 carries out Grover’s search, but instead of searching for a φ that is misclassified
it instead searches for a w in version space. Its validity therefore follows by following the exact same steps followed in
the proof of Lemma 2 but with N = K. However, since the algorithm need is not repeated 1/γ2 times in this context
we can replace γ with 1 in the proof. Thus if we wish to have a probability of failure of at most ε′ then the number
of queries made to Ĝ is in

O(
√
K log(1/ε′)).

This also guarantees that if any of the K vectors are in the version space then the probability of failing to find that
vector is at most ε′.

Next since one query to Ĝ is costed at N queries to F̂φ,y the query complexity (in units of queries to F̂φ,y) becomes

O(N
√
K log(1/ε′)). The only thing that then remains is to bound the value of K needed.

The probability of finding a vector in the version space is Θ(γ) from Theorem 2. This means that there exists α > 0
such that the probability of failing to find a vector in the version space K times is at most

(1− αγ)K ≤ e−αγK . (16)

Thus this probability is at most δ for

K ∈ Ω

(
1

γ
log(1/δ)

)
. (17)

It then suffices to pick K ∈ Θ
(

1
γ log(1/δ)

)
for the algorithm.

The union bound implies that the probability that either none of the vectors lie in the version space or that Grover’s
search failing to find such an element is at most ε′ + δ ≤ ε. Thus it suffices to pick ε′ ∈ Θ(ε) and δ ∈ Θ(ε) to ensure

that the total probability is at most ε. Therefore the total number of queries made to F̂φ,y is in O(N√γ log3/2(1/ε)) as

claimed.

9

The classical algorithm discussed previously has complexity O(N log(1/ε)/γ), which follows from the fact (proven
in the appendix) that K ∈ Θ(log(1/ε)/γ) suffices to make the probability of not drawing an element of the version
space at most ε. This demonstrates a quantum advantage if 1

γ � log(1/ε), and illustrates that quantum computing

can be used to boost the effective margins of the training data. Quantum models of perceptrons therefore not only
provide advantages in terms of the number of vectors that need to be queried in the training process, they also can
make the perceptron much more perceptive by making training less sensitive to small margins.

These performance improvements can also be viewed as mistake bounds for the version space perceptron. The inner
loop in Algorithm 2 attempts to sample from the version space and then once it draws a sample it tests it against the
training vectors to see if it errs on any example. Since the inner loop is repeated O(

√
K log(1/ε)) times, the maximum

number of misclassified vectors that arises from this training process is from Theorem 2 O(1√
γ log3/2(1/ε)) which, for

constant ε, constitutes a quartic improvement over the standard mistake bound of 1/γ2 [16].

V. CONCLUSION

We have provided two distinct ways to look at quantum perceptron training that each afford different speedups
relative to the other. The first provides a quadratic speedup with respect to the size of the training data. We further
show that this algorithm is asymptotically optimal in that if a super–quadratic speedup were possible then it would
violate known lower bounds for quantum searching. The second provides a quadratic reduction in the scaling of the
training time (as measured by the number of interactions with the training data) with the margin between the two
classes. This latter result is especially interesting because it constitutes a quartic speedup relative to the typical
perceptron training bounds that are usually seen in the literature.

Perhaps the most significant feature of our work is that it demonstrates that quantum computing can provide
provable speedups for perceptron training, which is a foundational machine learning method. While our work gives
two possible ways of viewing the perceptron model through the lens of quantum computing, other quantum variants
of the perceptron model may exist. Seeking new models for perceptron learning that deviate from these classical
approaches may not only provide a deeper understanding of what form learning takes within quantum systems, but
also may lead to richer classes of quantum models that have no classical analogue and are not efficiently simulatable on
classical hardware. Such models may not only revolutionize quantum learning but also lead to a deeper understanding
of the challenges and opportunities that the laws of physics place on our ability to learn.

Appendix A: Proofs

Here we provide proofs of several of our results stated in the main body. In particular, we give the proofs of Theorem
2, Lemma 1 and Lemma 2 here.

Proof of Theorem 2. Given that the margin of the training set if γ there exist a hyperplane u such that yi · uTΦi > γ
for all i. If w be a sample from N (0, 11), then lets first compute what is the probability that perturbing the maximum
margin classifier u by amount w would lead still lead to a perfect separation. If we consider a data point Φ∗ that lies
on the margin, i.e. yi ·uTΦ∗ = γ, we are interested in the probability that yi ·(u+w)TΦ∗ > 0 and yi ·(u+w)TΦ∗ < 2γ.
The first inequality corresponds to preventing misclassification of Φ∗, while the second one corresponds to preventing
misclassification of the point belonging to the other class and on the margin. This is same as asking what is the
probability that:

− γ < yi · wTΦ∗ < γ (A1)

Let us define zi := yi · wTΦ∗ . Since w ∼ N (0, 11) and ‖Φ‖ = 1 we can show that zi ∼ N (0, 1). Thus, we can write
the probability that −γ < zi < γ as:

P (−γ < zi < γ) = erf

(
γ√
2

)
(A2)

Here erf(z) = 1√
π

∫ z
−z e

− x2

2 dx is the error function for the standard normal distribution. Since Φ∗ is on the margin,

the probability that the sample w will lie in the version space can be simply characterized as the above probability
P (−γ < zi < γ). It is straightforward to show using Maclaurin series expansion that:

P (w∈VS) =
2√
π

(
γ√
2
− γ3

23/23
+

γ5

25/210
− γ7

27/242
. . .

)
(A3)

10

Note, that in our case Φi are unit normalized for all i, thus γ < 1. Which in turn implies that most of the higher
order terms will be close to zero in the limit of small γ and:

P (w ∈ VS) =
γ√
2π

+O(γ3), (A4)

which proves our theorem for γ < 1.

Proof of Lemma 1. There exists a simple algorithm for achieving this upper bound. Draw Ndlog(1/εγ2)e samples
from the set of training vectors. If any are misclassified perform the update, otherwise report that the model classifies
all the data.

The proof of validity of this algorithm is trivial and the success probability claim is also quite simple. Given that we
draw k samples from the distribution the probability that any of them fail to detect a mistake, given such a mistake
exists, is at most

(1− 1/N)k ≤ exp(−k/N). (A5)

If we want this error to be at most δ then it suffices to take

k = dN log(1/δ)e. (A6)

One query to fw is required per k, which means that k is also equal to the query complexity. Thus if at least one
mistake occurs then the algorithm will find it with the aforementioned probability if δ = εγ2. If such an example does
not exist, then the algorithm will correctly conclude that a separating hyperplane has already been found. Therefore
in either case the success probability is at least 1− εγ2 as required.

Proof of Lemma 2. In order to see this, let us first examine the inner loop of Algorithm 2, which involves performing
the update Ψ ← ((2ΨΨ† − 11)Fw)mΨ. We know from our discussion of Grover’s algorithm in the main body that if
we define the initial probability of successfully find a mistake to be sin2(θa) then the probability of finding a j such
that FwΦj = −1 after m updates is sin2((2m+ 1)θa). Since this corresponds to finding a vector that the perceptron
fails to classify properly, these steps amplify the probability of finding a perceptron error. The query to U c that
follows identifying the index of this training vector then converts this result into a classical bitstring that can then
be used to perform a perceptron update. Therefore the inner loop performs a perceptron update with probability
sin2((2m+ 1)θa) using m queries to Fw.

Under the assumption that c ∈ (1, 2) the next loop repeats this sampling process until m ≥M0 in order to ensure
that the probability of finding a misclassified element is at least 1/4 [5]. This can be seen using the following argument.
First we need to show that the exponential search heuristic requires O(M0) queries. Each iteration of the middle loop
requires requires a number of queries that is at most proportional to dcie. Therefore the total number of queries is at
most proportional to

blogcM0c∑
i=0

dcie ≤ cblogc M0c+1
c−1 + dlogcM0e

≤ c
c−1M0 + dlogcM0e. (A7)

Given c is a constant we have that (c− 1) ∈ Θ(1) and thus
∑blogcM0c
i=0 ci ∈ O(1/ sin(θa)) from (4) in the main body.

If there exists an element that the algorithm makes a mistake on then θa ≥ sin−1(
√

1/N) ∈ Ω(1/
√
N) because the

lowest probability of success corresponds to the case where there is only one training vector that is misclassified out
of N . From this we see that, if a misclassified vector exists, then the middle loop is repeated at least logc(M0) times
which means that the final iteration taken corresponds to m ≥M0 for the purposes of (6) in the main body. Therefore,
under these assumptions, the probability that the middle loop updates the perceptron weights is at least 1/4 from [5].
Given that a mistake exists to be found the middle loop outputs such an element with a probability of failure that
is at most 3/4 from (6) in the main body. Furthermore, O(M0) = O(1/

√
N) queries to Fw are required by the inner

loop.
The outer loop serves to amplify the success probability to at least 1− ε from the (average) success probability for

m ≥M0, which is at least 1/4, given that the perceptron makes a mistake on at least one training vector [5]. Let us
assume that we repeat the middle loop of Algorithm 1 k times past this point and terminate searching for a marked
state if the probability of failing to detect the element is at most δ. Since the probability of the middle loop failing to
find such an element, given that it exists, is at most 3/4 the probability of failing to find a marked state all k times
is at most (3/4)k which implies that it suffices to choose

k = dlog3/4(δ)e. (A8)

11

Given this error bound, the number of Grover iterations needed for the algorithm to find the marked element is

O(
√
N log3/4 δ) ∈ O(

√
N log(1/δ)).

The result then follows by taking δ = εγ2. Therefore the lemma holds if θa > 0.
If θa = 0 then the algorithm will never find a quantum state vector that the perceptron misclassifies and will

successfully conclude that there is not a marked state after O(
√
N log(1/εγ2)) queries. Therefore the lemma also

holds in the trivial case.

[1] Aı̈meur, Esma, Brassard, Gilles, and Gambs, Sébastien. Machine learning in a quantum world. In Advances in artificial
intelligence, pp. 431–442. Springer, 2006.

[2] Amin, Mohammad H, Andriyash, Evgeny, Rolfe, Jason, Kulchytskyy, Bohdan, and Melko, Roger. Quantum boltzmann
machine. arXiv preprint arXiv:1601.02036, 2016.

[3] Bell, John S. On the einstein podolsky rosen paradox, 1964.
[4] Boyer, Michel, Brassard, Gilles, Høyer, Peter, and Tapp, Alain. Tight bounds on quantum searching. arXiv preprint

quant-ph/9605034, 1996.
[5] Brassard, Gilles, Hoyer, Peter, Mosca, Michele, and Tapp, Alain. Quantum amplitude amplification and estimation.

Contemporary Mathematics, 305:53–74, 2002.
[6] Freund, Yoav and Schapire, Robert E. Large margin classification using the perceptron algorithm. Machine learning, 37

(3):277–296, 1999.
[7] Garnerone, Silvano, Zanardi, Paolo, and Lidar, Daniel A. Adiabatic quantum algorithm for search engine ranking. Physical

review letters, 108(23):230506, 2012.
[8] Gentile, Claudio. A new approximate maximal margin classification algorithm. The Journal of Machine Learning Research,

2:213–242, 2002.
[9] Grover, Lov K. A fast quantum mechanical algorithm for database search. In Proceedings of the twenty-eighth annual

ACM symposium on Theory of computing, pp. 212–219. ACM, 1996.
[10] Herbrich, Ralf, Graepel, Thore, and Campbell, Colin. Bayes point machines: Estimating the bayes point in kernel space.

In IJCAI Workshop SVMs, pp. 23–27, 1999.
[11] Li, Yaoyong, Zaragoza, Hugo, Herbrich, Ralf, Shawe-Taylor, John, and Kandola, Jaz. The perceptron algorithm with

uneven margins. In ICML, volume 2, pp. 379–386, 2002.
[12] Lloyd, Seth, Mohseni, Masoud, and Rebentrost, Patrick. Quantum algorithms for supervised and unsupervised machine

learning. arXiv preprint arXiv:1307.0411, 2013.
[13] Lloyd, Seth, Mohseni, Masoud, and Rebentrost, Patrick. Quantum principal component analysis. Nature Physics, 10(9):

631–633, 2014.
[14] Minka, Thomas P. A family of algorithms for approximate Bayesian inference. PhD thesis, Massachusetts Institute of

Technology, 2001.
[15] Nielsen, Michael A and Chuang, Isaac L. Quantum computation and quantum information. Cambridge university press,

2010.
[16] Novikoff, Albert BJ. On convergence proofs for perceptrons. Technical report, DTIC Document, 1963.
[17] Rebentrost, Patrick, Mohseni, Masoud, and Lloyd, Seth. Quantum support vector machine for big data classification.

Physical review letters, 113(13):130503, 2014.
[18] Rosenblatt, Frank. The perceptron: a probabilistic model for information storage and organization in the brain. Psycho-

logical review, 65(6):386, 1958.
[19] Shalev-Shwartz, Shai and Singer, Yoram. A new perspective on an old perceptron algorithm. In Learning Theory, pp.

264–278. Springer, 2005.
[20] Suykens, Johan AK and Vandewalle, Joos. Least squares support vector machine classifiers. Neural processing letters, 9

(3):293–300, 1999.
[21] Wiebe, Nathan and Granade, Christopher. Can small quantum systems learn? arXiv preprint arXiv:1512.03145, 2015.
[22] Wiebe, Nathan, Kapoor, Ashish, and Svore, Krysta M. Quantum deep learning. arXiv preprint arXiv:1412.3489, 2014.
[23] Wiebe, Nathan, Kapoor, Ashish, and Svore, Krysta. Quantum nearest-neighbor algorithms for machine learning. Quantum

Information and Computation, 15:318–358, 2015.

http://arxiv.org/abs/1601.02036
http://arxiv.org/abs/quant-ph/9605034
http://arxiv.org/abs/1307.0411
http://arxiv.org/abs/1512.03145
http://arxiv.org/abs/1412.3489

	I Introduction
	II Background
	A Perceptrons and Version Space
	B Grover's Search

	III Online quantum perceptron
	IV Quantum version space perceptron
	V Conclusion
	A Proofs
	 References

