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We address the task of switching off the Hamiltonian of a system by removing all internal and
system-environment couplings. We propose dynamical decoupling schemes, that use only bounded-
strength controls, for quantum many-body systems with local system Hamiltonians and local envi-
ronmental couplings. To do so, we introduce the combinatorial concept of balanced-cycle orthogonal
arrays (BOAs) and show how to construct them from classical error-correcting codes. The derived
decoupling schemes may be useful as a primitive for more complex schemes, e.g., for Hamiltonian
simulation. For the case of n qubits and a 2-local Hamiltonian, the length of the resulting decoupling
scheme scales as O(n logn), improving over the previously best-known schemes that scaled quadrat-
ically with n. More generally, using balanced-cycle orthogonal arrays constructed from families of
BCH codes, we show that bounded-strength decoupling for any `-local Hamiltonian, where ` > 2,
can be achieved using decoupling schemes of length at most O(n`−1 logn).

PACS numbers: 03.67.Lx, 03.65.Fd, 03.67.-a

I. INTRODUCTION

Consider a quantum system of n interacting d-dimensional qudits with a time-independent (possibly unknown)
Hamiltonian H acting on a Hilbert space H ∼= (Cd)⊗n. We make the assumption that the system is `-local, i.e. that
H can be written as the sum of operators, each of which acts only on ` of the n qudits. In nature it is usually the
case that ` is small even when n is large. Without loss of generality, we also take H to be traceless, and for technical
reasons, we assume that d is a prime power (which includes the important case of qubits, i.e. d = 2).

We consider the task of decoupling, i.e. effectively switching off the HamiltonianH (including removing any couplings
to the environment) so that the system effectively evolves under the zero Hamiltonian. Such a task is important, for
example, in the context of quantum memory, where one desires to preserve the state of a quantum system.

To achieve this task, we assume that the natural dynamics of the system can be modified by adjoining an open-loop
(non-feedback) controller according to

H 7→ H +Hc(t) .

In practice, physical limitations restrict the types of control Hamiltonians available for use. We consider the realistic
setting in which Hc(t) is only 1-local, i.e. due to our limited control of the system, Hc is the sum of operators that
each act on only one qudit. We further impose the constraint that our control Hamiltonian Hc(t) is limited to be
bounded-strength, i.e. a sufficiently smooth bounded function. This is in contrast to the setting of bang-bang control
in which Hc(t) can be a discontinuous function that takes values of arbitrarily large norm. Our assumptions that
the system Hamiltonian is an `-local Hamiltonian acting on a system of n interacting qudits and that the control
Hamiltonian is a 1-local bounded-strength Hamiltonian reflect the typical composite nature of quantum systems and
their coupling locality as well as the limitations in implementing external controls.

Viola and Knill proposed a general method for bounded-strength decoupling; see [1] and [2, Chapter 4]. Their
method, often referred to as Eulerian decoupling, relies on Eulerian cycles in Cayley graphs of a control group —
a certain finite group of control unitaries that can be implemented by switching on control Hamiltonians, from a
finite set of available control operations, for a fixed time. The Eulerian cycle dictates which control Hamiltonians are
applied in the different time-slots of the decoupling protocol.

The Eulerian method, as introduced in [1], does not make it possible to directly leverage the fact that the system
Hamiltonian is `-local in order to obtain more efficient decoupling schemes. However, in the setting of bang-bang
control there do exist efficient decoupling schemes that are specifically designed for composite quantum systems with
`-local system Hamiltonians; see [3–5] and [2, Chapter 15]. In these schemes, the specification of which bang-bang
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control unitaries are to be applied is chosen according to the entries of so-called orthogonal arrays of strength `. They
are matrices with the property that any submatrix formed by an arbitrary collection of ` rows satisfies a certain
balancedness condition.

The work [6] presented a particular construction of decoupling schemes merging the approaches of Eulerian
(bounded-strength) decoupling together with orthogonal array (bang-bang) decoupling. This construction yields
schemes that require only bounded-strength controls and exploit the composite structure of the quantum system
(namely, the locality of the system Hamiltonian) to achieve decoupling with fewer control operations. To do so, these
schemes introduce the concept of so-called Eulerian orthogonal arrays.

The purpose of the present paper is to further improve upon the method of [6] to obtain even more efficient bounded-
strength decoupling schemes. To this end, we first generalize the Eulerian method due to [1] by showing that it is also
possible to achieve decoupling with the help of so-called balanced cycles, which encompass Eulerian cycles as a special
case. We then show that bounded-strength decoupling of composite quantum systems with local Hamiltonians can
be accomplished based on the new concept of balanced-cycle orthogonal arrays.

Note that all the schemes discussed above can also be applied to the situation of a general open quantum system
with joint Hamiltonian H acting on a quantum system that is coupled to an uncontrollable environment. Such a
Hamiltonian has the form

H = HS ⊗ 1B + 1S ⊗HB +
∑
α

Sα ⊗Bα,

where the operators HS and Sα act on the system and where the operators HB and Bα act on the environment. We
assume that the system Hamiltonian HS and the operators Sα are all `-local. The decoupling goal in this case is to
effectively switch off the system Hamiltonian HS and remove all couplings to the environment. If, using controls that
act only on the system, one can effectively switch off all generic system Hamiltonians, then such an operation will
switch off HS and each Sα, thereby accomplishing decoupling.1 For notational simplicity, the remainder of the paper
will therefore ignore the environment and treat only the case of effectively switching off an arbitrary `-local operator
H.

II. DESCRIPTION OF THE CONTROL-THEORETIC MODEL

Consider the group (Fq,+), the additive group of the finite field of order q = d2, where d (the dimension of the
qudits) is some prime power. For the remainder of this paper, let ρ : Fq → U(d) be a faithful, irreducible, unitary,
projective2 representation that maps the elements of Fq to d× d unitary matrices, say ρ : g 7→ Ug. That q cannot be
smaller than d2 for such a representation will be justified later in Remark 2; that q = d2 suffices is justified by the
explicit example shown below.

We assume that for every g ∈ Fq we can implement Ug on any qudit of our system in the following sense: for every g,
we can physically implement, over time δ ∈ [0,∆], a bounded-strength single-qudit Hamiltonian hg(δ), corresponding
to a single-qudit unitary evolution operator ug(δ), such that Ug = ug(∆) where ∆ is some fixed length of time. We
assume that we can do this on any qudit and, moreover, that we can do so for each of the n qudits in parallel. Note
that this assumption obeys the practical control limitations discussed earlier.

Of particular interest, in the case of qubits (d = 2, q = 4) we can consider the representation ρ : F4 → U(2)
that maps the four elements of F4 to the four 2 × 2 Pauli matrices {1, X, Y, Z}. Thus, it is assumed that we can
physically implement any Pauli operator on any qubit. Rather than assuming that q = 4, this paper will treat
q more generally; however the reader is invited to think of the special case of qubits if desired. For non-qubits,
with q > 4, we can generalize this example as follows. For a prime p, define X̃ =

∑p−1
j=0 |j + 1 mod p〉〈j| and

Z̃ =
∑p−1
j=0 ω

j |j〉〈j|, where ω is a pth root of unity. For prime d = p, the map (a, b) 7→ X̃aZ̃b defines a faithful,
irreducible, unitary, projective representation from Zd × Zd to U(d). For a prime power d = pe (for some e), map
((a1, b1), . . . , (ae, be)) 7→ X̃a1Z̃b1 ⊗ · · · ⊗ X̃aeZ̃be .

A decoupling protocol is defined by specifying a sequence of control Hamiltonians (equivalently, control unitaries)
to be applied. As shown in Fig. 1, we construct an n×N array with entries from Fq, which we regard as a sequence
of N columns from Fnq . The jth column ~gj = (g1j , . . . , gnj)

T corresponds to the jth time interval
[
(j − 1)∆, j∆

]
of

our protocol, during which we apply the control Hamiltonian

h~gj (δ) = hg1j (δ)⊗ 1⊗ · · · ⊗ 1 + · · ·+ 1⊗ · · · ⊗ 1⊗hgnj (δ)

1 The remaining Hamiltonian term of 1S ⊗HB is inconsequential, as it does not affect the system at all.
2 Projective representations need only be homomorphisms up to phase, i.e. obey Ug+h ∝ UgUh with proportionality rather than equality.

2



FIG. 1: An n×N array, with each entry gij ∈ Fq, shown within the dashed lines. Rows correspond to qudit numbers, columns
to time slots (each of width ∆). This array encapsulates the control sequence, with Hc(t) = h~gj (δ) over δ ∈ [0,∆) during the
interval t ∈

[
(j − 1)∆, j∆

)
.

that gives rise to evolution u~gj (δ) = ug1j (δ) ⊗ · · · ⊗ ugnj
(δ) over δ ∈ [0,∆]. In other words, for each δ ∈ [0,∆] and

j = 1, . . . , N , Hc(t) = h~gj (δ) where t = (j − 1)∆ + δ. The total time required to apply the entire sequence, i.e. the
control cycle length, is therefore Tc = N∆, at which point the control sequence can be repeated. Observe that for
any t = (j − 1)∆ + δ, the unitary evolution Uc(t) corresponding to the control Hamiltonian consequently satisfies
Uc(t) = u~gj (δ)Uc

(
(j − 1)∆

)
.

According to average Hamiltonian theory [7–9], the resulting system evolution under H +Hc(t) can be effectively
approximated by

U(t) ≈ e−iH̄
(0)t

at times t that are integer multiples of Tc, i.e. t = mTc for any m ∈ N, where

H̄(0) =
1

Tc

∫ Tc

t=0

Uc(t)
†HUc(t)dt

is time-independent and where Uc(t) is the time evolution due to Hc(t) alone. The goal of decoupling, therefore, is
to choose Uc(t) such that H̄(0) = 0 for any H. It is in this sense that we effectively switch off the Hamiltonian H.
We refer the reader to [10] for a detailed description of the above control-theoretic model and the resulting effective
time-evolution. We note, in particular, that although the approximation above is to leading order (in the Magnus
expansion of Uc(t)†HUc(t)), the second-order term may be eliminated by designing the control Hamiltonian to satisfy
Uc(t) = Uc(Tc − t) [9].

The efficiency of the protocol developed in this paper is obtained by exploiting the composite structure of the
Hamiltonian, namely the fact that H was assumed to be a local Hamiltonian. By definition, an `-local Hamiltonian
H on n qudits can be written as H =

∑
kHk, where each Hk acts non-trivially on at most ` of the n qudits. In

particular, the ` = 2 case corresponds to Hamiltonians with only pairwise interactions. Our goal is to create a protocol
that decouples each Hk simultaneously, and therefore decouples H. To see that this would work, observe that for any
protocol Uc(t),

H̄(0) =
1

Tc

∫
Uc(t)

†HUc(t)dt =
∑
k

1

Tc

∫
Uc(t)

†HkUc(t)dt =
∑
k

H̄
(0)
k .

III. BALANCED CYCLES

The success of the decoupling protocol introduced in this paper will rely on some basic group theory, which we
introduce now. Let G be an Abelian group with a generating set S ⊂ G, i.e. any element of G can be written as a
sum of elements from S .

Definition 1 (Cayley graph). The Cayley graph, Γ(G,S ), of G with respect to S is a directed graph whose vertices
are labeled by the group elements and whose edges are labeled by the generators. More precisely, there is a directed
edge labeled ¯s from vertex `g ∈ G to vertex ˛hffl ∈ G iff ˛hffl = ¯s + `g for the generator ¯s ∈ S .

3



Definition 2 (Cycle). A cycle, L, on Γ(G,S ) is a traversal on Γ that starts and ends on the same vertex. We
describe the cycle by the ordered list LG =

(
`g
0
, . . . , `g

N−1

)
of elements from G, indicating the order in which the

elements are visited, with the understanding that the cycle visits `g
N

= `g
0
immediately after visiting `g

N−1
. All the

cycles in this paper visit every vertex at least once, so we assume without loss of generality that the first vertex is the
identity element, `e, of G. With this assumption we may equivalently represent the cycle LG by specifying the edges
traversed, i.e. LS = (¯s1, . . . , ¯sN ), where `g

j
= ¯sj + `g

j−1
for j = 1, . . . , N ; note that we differentiate between these

representations by the subscript on L, but they both refer to the same cycle.

Note that a cycle may visit vertices more than once and may traverse edges multiple times. We will be interested
not only in the vertices, but also the specific labels leaving each vertex; we denote by `g• ¯s−→ the ¯s-labeled edge leaving
vertex `g.

Definition 3 (Balanced cycle). We say that L is a balanced cycle if ∀¯s ∈ S ,∃µ¯s > 0 such that ∀`g ∈ G, `g• ¯s−→ occurs
exactly µ¯s times; in other words, the cycle is balanced if it is balanced with respect to each label ¯s ∈ S in the sense
that it leaves each `g via label ¯s an equal number of times (independent of `g). Consequently, each `g will appear in L
precisely λ =

∑
¯s∈S µ¯s times, independent of `g. Because a Cayley graph is a regular directed graph, it always has a

balanced cycle whose length is then necessarily N = λ|G|.

(a)Eulerian cycle (b)Balanced cycle

FIG. 2: (a) An Eulerian cycle on the Cayley graph Γ
(

Z3
2,

{(
1
0
0

)
,

(
0
1
0

)
,

(
0
0
1

)})
, i.e. a balanced cycle in which each edge

label leaves each vertex precisely once. Vertices correspond to the eight elements of Z3
2. Edge labels correspond to the three

generators, namely
(

1
0
0

)
(purple),

(
0
1
0

)
(green), and

(
0
0
1

)
(blue). The cycle starts at

(
0
0
0

)
and follows the path indicated (in

ascending numerical order) by the circled integers (red). (b) A balanced cycle on the Cayley graph Γ
(

Z2
2,
{(

0
1

)
,
(

1
1

)})
. Vertices

correspond to the four elements of Z2
2. Edge labels correspond to the two generators, namely

(
0
1

)
(purple) and

(
1
1

)
(blue). The

cycle starts at
(

0
0

)
and follows the path indicated (in ascending numerical order) by the circled integers (red). Observe that the

cycle is indeed balanced: for each of the two edge labels, the edges leave each vertex the same number of times, irrespective of
vertex. Specifically, the

(
0
1

)
label leaves each vertex precisely µ(

0
1

) = 2 times, while the
(

1
1

)
label leaves each vertex precisely

µ(
1
1

) = 4 times.

An important special case of a balanced cycle is an Eulerian cycle on Γ(G,S ), for which µ¯s = 1 for every ¯s ∈ S .
Examples of an Eulerian cycle and a non-Eulerian balanced cycle are shown in Fig. 2(a) and Fig. 2(b) respectively.
In [1], Eulerian cycles were used to define decoupling protocols that avoided the discontinuous nature of bang-bang
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decoupling. More generally, one can define decoupling protocols based on balanced cycles (of which Eulerian decoupling
is a special case), to which we now turn our attention. Note, however, that this balanced-cycle decoupling protocol
will not be the goal of this paper. Indeed, such a protocol will not exploit the composite structure of the Hamiltonian.
Later we will utilize the balanced-cycle decoupling on `-qudit subsystems of a larger n qudit space to develop more
efficient protocols; in the current section, however, we may regard ` as the size of the entire system.

In exploiting the `-local nature of H, we will find that we are primarily interested in the group

G = F`q = {(a1, . . . , a`)
T : ai ∈ Fq}

with some generating set S and the representation

ρ⊗` : G → U(d`)

defined from our representation ρ : Fq → U(d). Specifically, if `g = (a1, . . . , a`)
T ∈ G and ρ(ai) = Uai then ρ⊗`(`g) =

U`g = Ua1⊗· · ·⊗Ua` . By our assumptions above, we can physically implement U`g by applying the control unitary u`g(δ)
(equivalently, the control Hamiltonian h`g(δ)) for time ∆. For example, in the case of qubits (q = 4), the group F4,

whose elements we denote3 as {0, 1, α, α+ 1}, is generated by the set S4 = {1, α}. We choose S = {11, α1, . . . 1`, α`},
which is a generating set of 2` elements for the group G = F`4, where xi here denotes the column (0, . . . , 0, x, 0, . . . , 0)T

with x ∈ Fq in the ith position. In this case we assume ρ(ai) = Uai is a Pauli matrix, so ρ⊗`(`g) is a tensor product of
Pauli matrices.

The purpose for the group theory used in this paper resides in the following observation [2, Chapter 4]. We define
the operator ΠG to act on matrices A as

ΠG(A) =
1

|G|
∑
`g∈G

U†`gAU`g . (1)

Note that for every matrix A, ΠG(A) commutes with all U`g (`g ∈ G). Thus, by Schur’s lemma, since ρ is irreducible4,

we have ΠG(A) = tr(A)
D 1 (where D is the dimension of the Hilbert space). In particular then, if tr(A) = 0 then

ΠG(A) = 0.

Protocol 1 (Bounded-strength balanced-cycle decoupling). Let L be a balanced cycle on Γ(G,S ) of length
N = |G|

∑
¯s µ¯s = λ|G|, with group element representation LG =

(
`g
0
, . . . , `g

N−1

)
and generator representation LS =

(¯s1, . . . , ¯sN ). For j = 1, . . . , N , set Uc(0) = U`e = 1 and

Uc

(
(j − 1)∆ + δ

)
= u¯sj(δ) Uc

(
(j − 1)∆

)
, δ ∈ [0,∆].

Note that because5 U¯sjU`g
j−1

= U¯sj+`g
j−1

= U`g
j

, this implies Uc(j∆) = U`g
j

(for j = 0, . . . , N), i.e.

Uc

(
(j − 1)∆ + δ

)
= u¯sj(δ) U`g

j−1

, δ ∈ [0,∆]. (2)

The control cycle length is thus Tc = N∆ = |G|λ∆.

Theorem 1. The above balanced-cycle protocol performs bounded-strength decoupling.

3 Here the reader may prefer to equivalently think of the Abelian group as {1, z, x, y = xz = zx} with generating set S4 = {z, x}. Then
we can use S = {z(1), x(1), . . . z(`), x(`)} and ρ(x) = X, ρ(y) = Y, and ρ(z) = Z. Be aware, however, that the group operation used
throughout the paper is denoted by + rather than by multiplication, since it is inherited from the finite field.

4 Schur’s lemma guarantees this directly when ` = 1. But then it also applies for ` = 2 since then for any matrix A =
∑
iBi ⊗ Ci, we

have ΠG(A) = 1
|G|

∑
i

∑
a1,a2∈Fq

U†a1BiUa1 ⊗ U
†
a2CiUa2 ∝

∑
i trBitrCi = tr

∑
iBi ⊗ Ci = trA, and similarly for larger `.

5 up to phase, since ρ is a projective representation; since we will only ever conjugate by Uc, the overall phase is irrelevant and we shall
simply ignore it.
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Proof. Since L is a balanced cycle, `g• ¯s−→ occurs exactly µ¯s times for every `g, ¯s pair. Thus u¯s(δ)U`g appears exactly µ¯s
times in the protocol for each ¯s, `g, and so we have, for any traceless d` × d` Hamiltonian H,

H̄(0) =
1

Tc

∫ Tc

t=0

Uc(t)
†HUc(t)dt

=
1

Tc

∑
`g
U†`g
[∑

¯s
µ¯s
∫ ∆

δ=0

u¯s(δ)†Hu¯s(δ)dδ
]
U`g

= ΠG

(
FS (H)

)
where ΠG is defined in Eq. (1) and FS is defined by

FS (H) =
∑
¯s

µ¯s
λ∆

∫ ∆

δ=0

u¯s(δ)†Hu¯s(δ)dδ . (3)

Recall that ΠG suppresses traceless matrices. Assuming that H is traceless, and observing that FS is trace-preserving,
we have that ΠG

(
FS (H)

)
= 0. We conclude that H̄(0) = 0, i.e. the protocol succeeds at decoupling.

Remark 1. For simplicity, we have assumed that ρ is irreducible. Then this protocol works for any traceless time-
independent H, even if H is unknown. It is possible to define protocols in which ρ is not irreducible, in which case ΠG
need not suppress all traceless matrices. However, in such a case, one must take special care to ensure that ΠG still
suppresses FS (H) for the Hamiltonians of interest. See [10] for examples in a similar context, as well as Example 3
later in this paper.

Remark 2. Although Protocol 1 performs bounded-strength decoupling, it would generally not be an efficient protocol
were it applied to the entire system (i.e. if ` were the number of qudits of the entire system). Assuming that ρ is
irreducible, the representation ρ⊗` : G → U(d`) necessitates that |G|, and therefore Tc, are exponential in `. Indeed,
suppose we have a representation from G to U(D) such that for any D ×D matrix A, ΠG(A) = tr(A)

D 1D as we used
in Theorem 1. Consider sending the bipartite entangled state |ψ〉 = 1√

D

∑D
j=1 |j〉⊗ |j〉, or more precisely, Ψ = |ψ〉〈ψ|,

through the channel I ⊗ΠG (where I is the identity channel on a D-dimensional space) obtaining∑
`g∈G

1

|G|
(1D ⊗U†`g )Ψ(1D ⊗U`g) = (I ⊗ΠG)(Ψ) =

1

D2
1D ⊗ 1D =

1

D2
1D2 .

The matrix rank of the right-hand side is D2. Using the fact that rank(A+B) 6 rank(A)+ rank(B) and that for each
`g, rank( 1

|G| (1⊗U
†`g )Ψ(1⊗U`g)) = rank(Ψ) = 1, the rank of the left-hand side is at most |G|; thus, |G| > D2. Therefore,

for the representation ρ⊗` : G → U(d`) to succeed in the proof of Theorem 1, we require that |G| > d2`, which is
exponential in `. Incidentally, by considering the case of ` = 1, we have justified why we could not have chosen q less
than d2 in our irreducible representation ρ : Fq → U(d).

Observe that the key to this protocol working is the fact that each u¯s(δ)U`g shows up an equal number of times,

independent of `g, i.e. ∀¯s ∈ S ∃µs > 0 such that ∀`g ∈ G, `g• ¯s−→ occurs µ¯s times (independent of `g). In an Eulerian
cycle, µ¯s = 1 for every ¯s, which is certainly sufficient. All else being equal, given the choice between Eulerian and
other balanced cycles, we would choose Eulerian cycles as they will minimize N and therefore Tc. However, we will
see that when considering the composite properties of a system (specifically that interactions are local), we will be
able to exploit the notion of balanced cycles to come up with a much more efficient protocol.

IV. BALANCED-CYCLE ORTHOGONAL ARRAYS

In Section II and Fig. 1, we indicated how we view our decoupling scheme as an array. For the protocol to be
efficient, we shall ensure that this array corresponds to what we call a balanced-cycle orthogonal array (BOA). A
BOA is a special type of orthogonal array (OA), which we first define. We refer the reader to [11] for a thorough
introduction to OAs, particularly their relationship to linear codes (of which we shall later make use).
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FIG. 3: Example of a OA2(8, 7, 2, 2), i.e. a OAλ(N,n, q, `) with N = 8 columns and n = 7 rows on the finite field Fq = Z2

of order q = 2. Any subarray defined by any ` = 2 rows contains each 2-tuple precisely λ = 2 times. For example, rows 5 and
7 (highlighted) form a 2 × 8 subarray in which

(
0
0

)
,
(

0
1

)
,
(

1
0

)
, and

(
1
1

)
each occur precisely twice. Note that typically in this

paper, q = d2 (for example, for qubits q = 4), but for simplicity, the example in this figure uses q = 2.

For notational consistency, we point out that throughout the remainder of this paper we adopt the notation that
G and S refer specifically to the group F`q and a generating set for F`q, respectively. Elements of G will be denoted
using script `g, elements of S will be denoted using script ¯s, and cycles on G will be denoted L. When other groups
(such as Fq or Fnq ) are being considered, other notation (such as g, m, S, s and L) will be used instead.

Definition 4 (Orthogonal array). An OAλ(N,n, q, `) orthogonal array on the alphabet Fq is an n×N array where
each of the N columns is a vector from Fnq such that every `×N subarray (obtained by only considering a selection
of just ` of the n rows) contains each possible `-tuple of elements of Fq (i.e. contains each c ∈ F`q) precisely λ times
as a column. The number ` is called the strength of the OA.

Remark 3. To relate these numbers to those appearing elsewhere in this paper,

• N will correspond to number of steps in the decoupling protocol (i.e. the length of our balanced cycle),

• n will correspond to the number of d-dimensional qudits describing the system,

• q = d2 (e.g. for qubits, d = 2 and q = 4),

• ` is the locality of the Hamiltonian (e.g. for pairwise interactions, ` = 2), and

• λ = N/q` will be the same λ as in our discussion of balanced cycles, λ =
∑

¯s µ¯s.
Remark 4. Note that the order of the columns in the OA is irrelevant to whether the array is an OA. Moreover, if
A = [~ai] is an OAλ(N,n, q, `) with columns ~a1, . . . ,~aN then the matrix A′, whose columns consist of precisely r copies
of each ~ai (in any order), is an OArλ(rN, n, q, `). Note, however, that while the order of the columns does not affect
the OA property of the array, when defining balanced-cycle orthogonal arrays (which we do next), we will be highly
concerned with the order of the columns in the array.

An example of an OA2(8, 7, 2, 2) is shown in Fig. 3. Orthogonal arrays have been used to construct bang-bang
decoupling schemes (see [3–5] and [2, Chapter 15]). In order to construct a bounded-strength scheme, we introduce
the notion of a balanced-cycle orthogonal array, defined as follows.

Definition 5 (Balanced-cycle orthogonal array). A BOA(N,n, q, `) balanced-cycle orthogonal array on the
alphabet Fq is an n×N array, A, where each of the N columns is a vector from Fnq such that every `×N subarray
(obtained by only considering a selection of just ` of the n rows) defines a balanced cycle on the Cayley graph of
G = F`q with respect to some generating set for G (which may depend on the subarray). Specifically, if the entries of A
are denoted aij (with 1 6 i 6 n and 0 6 j 6 N − 1), then for every choice of ` distinct integers i1, . . . , i` ∈ {1, . . . , n},
there is a generating set S for G (which may, in general, depend on i1, . . . , i`) such that if `g

j
= (ai1j , . . . , ai`j)

T denotes

the jth column of A restricted to rows i1, . . . , i`, then LG =
(
`g
0
, . . . , `g

N−1

)
defines a balanced cycle on Γ(G,S ).

An example of a BOA is shown in Fig. 4. We defer the proof that BOAs exist to Sec. V. The remainder of the
current section defines a decoupling protocol based on BOAs and proves that it works to decouple `-local Hamiltonians
in n qudit systems (` 6 n). Working with ` qudits (rather than n qudits), along with the promise that H is `-local,
will enable us to give an efficient protocol.
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FIG. 4: Example of a BOA(24, 7, 2, 2), i.e. a BOA(N,n, q, `) with N = 24 columns and n = 7 rows on the finite field Fq = Z2

of order q = 2. Any subarray defined by any ` = 2 rows defines a balanced cycle on the Cayley graph Γ(G,S ) of G = F`q = Z2
2

with respect to some generating set S (which may depend on the subarray). For example, rows 5 and 7 (highlighted) form a
2× 24 subarray that defines the balanced cycle shown in Fig. 2(b). The circled integers (red) correspond to the steps taken by
the balanced cycle as shown in that figure. Note that typically in this paper, q = d2 (for example, for qubits q = 4), but for
simplicity, the BOA example shown here uses q = 2. The method by which this BOA was constructed is detailed in Example 1
of Sec. VIII.

Protocol 2 (Efficient, bounded-strength balanced-cycle decoupling based on BOAs). Let A =
[~aj ]j=0,...,N−1 be a BOA(N,n, q, `) whose columns are denoted by the vectors ~aj = (a1j , . . . , anj)

T , where aij ∈ Fq is
the (i, j) entry of A. For j = 1, . . . , N , let~bj = ~aj−~aj−1 be the transitions between the columns, treating ~aN = ~a0 = 0.

For j = 1, . . . , N , set Uc(0) = 1 and

Uc

(
(j − 1)∆ + δ

)
= u~bj (δ)Uc

(
(j − 1)∆

)
, δ ∈ [0,∆];

note that this implies that Uc(j∆) = U~aj (for j = 0, . . . , N). The control cycle length is thus Tc = N∆.

Theorem 2. The above protocol performs bounded-strength decoupling.

Proof. H is an `-local Hamiltonian, H =
∑
kHk with each Hk acting non-trivially on at most ` qudits. Consider a

term Hk, which acts non-trivially only on qudits denoted i1, . . . , i` and write Hk = hk⊗1n−`, where hk is understood
to be a d` × d` matrix acting only on these ` qudits and 1n−` is the identity matrix on the other n − ` qudits. By
definition of a BOA, the `×N subarray of A restricted to rows i1, . . . , i` defines a balanced cycle L on Γ(G,S ) where
S is some generating set of G = F`q. The idea of the proof is to observe that the protocol involving the columns ~aj
for decoupling Hk is equivalent to a protocol involving the subarray’s columns for decoupling hk; since the subarray
defines a balanced cycle, we can then invoke Protocol 1 to successfully decouple hk and therefore Hk.

Let `g
j

= (ai1j , . . . , ai`j)
T denote the jth column of A restricted to rows i1, . . . , i` and let ¯sj = `g

j
− `g

j−1
=

(bi1j , . . . , bi`j)
T , where bij is the ith entry of ~bj . Then the cycle L is represented as LG =

(
`g
0
, . . . , `g

N−1

)
and

LS = (¯s1, . . . , ¯sN ).
As in the proof of Theorem 1, we are interested in Uc(t)†HkUc(t). The control unitary at time t = (j − 1)∆ + δ is

Uc

(
(j − 1)∆ + δ

)
= u~bj(δ)Uc

(
(j − 1)∆

)
= u~bj(δ)U~aj−1

=
(
ub1j (δ)⊗ · · · ⊗ ubnj (δ)

) (
Ua1(j−1)

⊗ · · · ⊗ Uan(j−1)

)
.

Thus, when conjugating Hk = hk ⊗ 1n−` by Uc
(
(j − 1)∆ + δ

)
, all of the unitaries not acting on the `-qudit subspace

of hk will commute through Hk and cancel, leaving only those corresponding to the `-qudit subspace, i.e. those
corresponding to the labels ¯sj and `g

j
. Explicitly,

Uc

(
(j − 1)∆ + δ

)†
Hk Uc

(
(j − 1)∆ + δ

)
=

[(
U†ai1(j−1)

⊗ · · · ⊗ U†ai`(j−1)

)(
ubi1j

(δ)† ⊗ · · · ⊗ ubi`j (δ)†
)
hk(

ubi1j
(δ)⊗ · · · ⊗ ubi`j (δ)

)(
Uai1(j−1)

⊗ · · · ⊗ Uai`(j−1)

)]
⊗ 1n−`

= U†`g
j−1

u¯sj (δ)† hk u¯sj (δ)U`g
j−1

⊗ 1n−` .

Thus, the protocol of applying Uc to Hk is effectively the same as applying a protocol u¯sj (δ)U`g
j−1

to hk, following

the balanced cycle L. Since this is precisely the scheme defined in Protocol 1 applied to hk (see Eq. (2)), we conclude
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from Theorem 1 that it decouples hk. Consequently, H̄(0)
k = h̄

(0)
k ⊗ 1n−` = 0. This occurs for every term Hk in

H =
∑
kHk, whence H itself is decoupled: H̄(0) =

∑
k H̄

(0)
k = 0.

Remark 5. Once we have a BOA scheme that can decouple a system of n qudits, the same scheme can be used (with
the same BOA and therefore same length N) for a system of n′ < n qudits. This can be accomplished by simply
ignoring n− n′ of the qudits, i.e. by having Uc act as 1 on these n− n′ extra qudits (rather than as dictated by the
original protocol). The proof of Theorem 2 remains unaffected because Hk acts trivially on these extra qudits, i.e.
they are not acted upon by hk.

Theorem 2 showed that decoupling protocols based on BOAs work, with control cycle length proportional to the
BOA parameter N . We next show that BOAs can indeed be constructed and, moreover, that the construction gives
rise to an efficient decoupling protocol, in the sense that N does not increase exponentially with n.

V. CONSTRUCTION OF BALANCED-CYCLE ORTHOGONAL ARRAYS

The existence of balanced-cycle orthogonal arrays follows naturally from constructions of orthogonal arrays gener-
ated using classical linear codes, which we shall define shortly. We first give a brief outline of our BOA construction.
This construction is via the generator matrix G of a linear code, which is a linear mapping from Fkq to Fnq for some
k 6 n. If we enumerate all elements of Fkq in an arbitrary order and consider their image under G, this will form
an OA of strength ` (for an appropriately chosen k). To obtain a BOA, we do this enumeration according to the
prescription of an Eulerian cycle on Fkq . In doing so, we can guarantee that we always obtain a balanced cycle when
we consider any submatrix of ` rows, ultimately ensuring that any `-local Hamiltonian term on those corresponding
qudits will be decoupled. We now prove this, starting with a definition of a classical linear code.

Definition 6 (Classical linear code). A classical linear [n, k]q code, C, is a k-dimensional subspace of the vector
space Fnq . For any vector x = (x1, . . . , xn)T ∈ Fnq , define wt(x) = |{i ∈ {1, . . . , n} : xi 6= 0}|. The distance of a linear
code C is defined to be min{wt(c) : c ∈ C, c 6= o}, where o denotes the zero vector. An [n, k]q linear code can be
described by a generator matrix G of size n× k with entries from Fq. G maps the vectors m ∈ Fkq onto the elements
(code words) of C so that C = G[Fkq ] = {Gm ∈ Fnq : m ∈ Fkq}.

The dual code C⊥ of C is defined by C⊥ = {y ∈ Fnq : x · y = 0 ∀x ∈ C} with the dot product x · y =
∑n
i=1 xiyi.

The dual code is also a classical linear code, namely an [n, n − k]q code with some distance δ⊥ that we will refer to
as the dual distance. Orthogonal arrays can be constructed from linear codes, as the following theorem [11, Theorem
4.6] establishes.

Theorem 3 (OAs from linear codes). Let C be a linear [n, k]q code with dual distance δ⊥. The n × qk matrix
[Gm]m∈Fk

q
, whose columns are the qk vectors Gm ∈ Fnq (∀m ∈ Fkq ), is an OA(qk, n, q, `) with strength ` = δ⊥ − 1.

Let C be an [n, k]q with dual distance δ⊥ = `+1 and generating matrix G. Let L be an Eulerian cycle on the Cayley
graph Γ(Fkq , S

(k)
q ), where S(k)

q is a generating set for Fkq ; thus, we can write LFk
q

= (m0, . . . ,mN−1) with transitions

L
S

(k)
q

= (s1, . . . , sN ) and N = qk |S(k)
q |. Because d is a prime power, say d = pe for some prime p, the minimal

generating set is of size |S(k)
q | = 2ke. We are interested in the image of the cycle in the codespace; thus, consider

the Eulerian cycle, denoted GL, on Γ(G[Fkq ], G[S
(k)
q ]), where G[Fkq ] = C ⊂ Fnq is the image of Fkq under G, i.e. is the

codespace. In other words, GLFk
q

= (Gm0, . . . , GmN−1) and GL
S

(k)
q

= (Gs1, . . . , GsN ).
To avoid possible confusion, we emphasize here that although we will use GL to construct a BOA, neither L nor

GL will serve as the balanced cycle to which Theorem 1 applies (which is why we have used the notation L rather
than L). Rather, for our efficient decoupling scheme, we construct an array AGL, dictated by GL, and prove that
the result is a BOA by showing that if we consider any subarray of ` rows, it gives rise to some balanced cycle L on
G = F`q. The notation and relationships of the various groups and cycles used in this paper is sketched in Fig. 5.

We turn GL into an array AGL in the obvious way as follows. Each element Gmj of GLFk
q
is a column vector in

Fnq . Therefore we may associate to GL the n×N matrix AGL = [Gm]m∈LFk
q
with elements aij = (Gmj)i, so that the

jth column of AGL is the vector Gmj , and the columns are arranged in the order of the Eulerian cycle GL. Note that
since we assumed that Eulerian cycles always start with the (additive) identity element, i.e. the zero vector o ∈ Fkq ,
and since G maps the zero vector to the zero vector (Go = o ∈ Fnq ), the first column of AGL is the zero vector of Fnq .
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FIG. 5: Names and relationships between various groups and cycles in the BOA construction. The graph is a schematic of a
Cayley graph. As explained in the text, the BOA, AGL, is the array form of GL, which is the result of mapping an Eulerian
cycle L under the linear code generating matrix G. As a BOA, AGL has the property that if one considers a subarray of ` rows,
the result describes a balanced cycle. Specifically, let I ⊂ {1, 2, . . . , n} be a subset of ` indices. (Gm)I denotes the `-tuple of
elements of Gm (itself an n-tuple) corresponding to the indices I. The cycle L, composed of nodes (Gm)I (in the same order
in which L was composed of m), is shown to be a balanced cycle.

Lemma 1. AGL is an OAN/q`(N,n, q, `) with N = qk |S(k)
q |.

Proof. By Theorem 3, an array whose qk columns are the vectors of the codespace is an OA. The columns of AGL are
precisely |S(k)

q | copies of each vector in the codespace, and therefore (using Remark 4), AGL is an OA.

Let s ∈ S(k)
q . Gs ∈ Fnq , so Gs =

(
(Gs)1, . . . , (Gs)n

)T
, where we use the notation (Gs)i ∈ Fq to denote the ith

component of the column vector Gs. Fix ` distinct numbers i1, . . . , i` ∈ {1, . . . , n} and write I = {i1, . . . , i`}. Let

(Gs)I denote the `-tuple
(

(Gs)i1 , . . . , (Gs)i`

)T
. Let S =

{
(Gs)I : s ∈ S(k)

q

}
.

Lemma 2. S is a generating set for G = F`q.

Proof. Let `g ∈ G. By definition, since AGL = [Gm]m∈LFk
q
is an OA of strength `, the `×N subarray obtained by only

considering rows i1, . . . , i` contains each possible `-tuple of elements of Fq, and therefore contains `g. Thus, ∃ Gm such

that (Gm)I = `g. Since S(k)
q is a generating set for Fkq , ∃ u1, . . . , ur ∈ S(k)

q such that m = u1 + · · ·+ ur, and therefore
Gm = Gu1 + · · ·+Gur. But then (Guj)I ∈ S for every j = 1, . . . , r and `g = (Gm)I = (Gu1)I + · · ·+ (Gur)I , whence
S generates G.

Recall AGL = [Gm]m∈LFk
q
and consider the `×N submatrix A` = [`g

j
] of AGL, whose jth column is `g

j
= (Gmj)I ∈ G.

Define the ordered list LG =
(
`g
0
, . . . , `g

N−1

)
. Although L depends on I, we suppress mention of this for notational

simplicity.

Lemma 3. L is a balanced cycle on Γ(G,S ).

Proof. Each `g ∈ G is present in LG an equal number of times because AGL is an OA of strength `. The transitions in
this cycle are ¯sj = `g

j
− `g

j−1
= (Gmj)I − (Gmj−1)I = (Gsj)I ∈ S , so the transition representation LS = (¯s1, . . . , ¯sN )

consists of generators from S ; L is therefore a cycle on the Cayley graph Γ(G,S ). Moreover, because L is an Eulerian
cycle and AGL is an OA, L is a balanced cycle (although not an Eulerian cycle): informally, each Gm•Gs−−→ occurs in
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GL an equal (non-zero) number of times (namely once, independent of Gm) for each Gs, so each `g• ¯s−→ occurs in L an
equal (non-zero) number of times (independent of `g = (Gm)I , since AGL is an OA) for each ¯s = (Gs)I .

Explicitly, consider any `g ∈ G and ¯s ∈ S . LetM`g = {m ∈ Fkq : (Gm)I = `g}. LFk
q
is an Eulerian cycle so each element

in Fkq shows up precisely |S(k)
q | times in LFk

q
. In particular, therefore, each m ∈ M`g appears precisely |S(k)

q | times in

LFk
q
, and consequently, `g shows up in L precisely |M`g||S(k)

q | times. But AGL is an OA of strength `, so |M`g||S(k)
q | must

then be independent of `g, and therefore |M`g| is also independent of `g. Since ¯s ∈ S , let S¯s = {s ∈ S(k)
q : (Gs)I = ¯s}.

This set is non-empty by definition of S . In general, |S¯s| may depend on ¯s. Now, ∀m ∈M`g and ∀s ∈ S¯s, the Eulerian
property of L guarantees that Gm•Gs−−→ occurs precisely once in GL. Therefore, `g• ¯s−→ occurs in L precisely |S¯s||M`g| > 1

times, which is independent of `g. Thus L is a balanced cycle.

Together, the above lemmas prove the existence of BOAs and how to construct them from classical linear codes.

Theorem 4. Let C, L, and AGL be as above, i.e. C is an [n, k]q code with dual distance δ⊥ = `+ 1 and generating
matrix G, L is an Eulerian cycle on the Cayley graph Γ(Fkq , S

(k)
q ), written LFk

q
= (m0, . . . ,mN−1) and L

S
(k)
q

=

(s1, . . . , sN ), and AGL = [Gm]m∈LFk
q
is an OA whose columns are the vectors Gmj. Then AGL is a BOA(N,n, q, `)

with N = qk|S(k)
q |.

Proof. For every choice of ` distinct integers I = {i1, . . . , i`} ⊂ {1, . . . , n}, the set S =
{

(Gs)I : s ∈ S(k)
q

}
is a

generating set for G (by Lemma 2) such that if `g
j
denotes the jth column of AGL restricted to rows i1, . . . , i`, then

(by Lemma 3) LG =
(
`g
0
, . . . , `g

N−1

)
defines a balanced cycle on Γ(G,S ).

For n interacting qudits of dimension d = pe (for some prime p and positive integer e) that obey an `-local
Hamiltonian, this construction therefore allows

N = qk|S(k)
q | = qk2ke (4)

where k is the dimension of the code used and q = d2. Observe that the BOA decoupling protocol (Protocol 2) for
this BOA construction has a control cycle length of Tc = N∆ = d2k2ke∆ where ∆ is some fixed length of time. For
example, in the qubit (d = 2) case discussed above, |S(k)

4 | = 2k, whence Tc = N∆ with N = (2k)4k. To maximize
efficiency for a given n and `, one should select a code that minimizes k (equivalently, select a dual code that maximizes
k⊥ = n− k).

There exist many good families of classical linear codes. For instance, for 2-local interactions, we can (as was done
in [12] for OAs) rely on [n, k]q Hamming codes with dual distance 3 such that k = logq

(
(q − 1)n + 1

)
; our scheme

then has N scaling like n log(n). This protocol is therefore much more efficient than a naive protocol of applying
balanced-cycle decoupling (including Eulerian decoupling) without exploiting the `-local structure of the Hamiltonian,
which would have a control cycle length that scales exponentially with n. It is also more efficient than the method of
[6], which required N = d4k, i.e. whose scaling for this case (` = 2, using Hamming codes) is quadratic in n. Next,
we address codes for BOA construction with values of ` greater than 2.

VI. BOA DECOUPLING SCHEMES FROM BCH CODES

In this section we show how to construct schemes that achieve decoupling for `-local Hamiltonians on H ∼= (Cd)⊗n

for arbitrary `, n, and prime power d. Besides the machinery of balanced-cycle orthogonal arrays (BOAs) that was
introduced in the previous sections, our construction relies on BCH codes as a particular vehicle to construct good
BOAs. The choice of BCH codes results from the fact that they are among the best known codes for the particular
situation where the distance is a fixed, small number and the goal is to maximize the overall code dimension. Using
the dual of a BCH code when constructing the corresponding orthogonal arrays, we obtain schemes with a designed
OA strength (i.e. locality `) while having a small N in the corresponding decoupling protocol. We begin by briefly
recalling some basics about BCH codes; for more details on finite fields and BCH codes see, for example, the textbooks
[13–15].
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Definition 7 (BCH code). Let α be a primitive n-th root of unity in the finite field Fqm , where q is a prime power,
n > 2, and m > 1. A BCH code over Fq of length n and designed distance D, where 2 6 D 6 n, is a cyclic polynomial
code defined by the zeros

αb, αb+1, . . . , αb+D−2,

where b > 1 is a positive integer.

The generator polynomial g(x) of the cyclic code introduced in Definition 7 is given by g(x) =
lcm(Mb(x),Mb+1(x), . . . ,Mb+D−2(x)), where Mi(x) denotes the minimal polynomial of αi over Fq. Note that even
though the zeros of the code lie in an extension field Fqm over Fq, the BCH code itself is a cyclic code over the ground
field Fq. Furthermore, it is known that a BCH code defined this way has a distance δ that is at least D, which is
why D is sometimes called the “designed distance.” Note that the actual distance δ of the code might exceed D. The
possible lengths of BCH codes are quite restricted, as any admissible length n must be a divisor of the order of the
multiplicative group of Fqm , i.e. must be a divisor of qm − 1. In the following we restrict ourselves to the case where
n = qm − 1, which is called the case of primitive BCH codes. Furthermore we only consider the case where b = 1,
which is called the case of narrow-sense BCH codes. We denote these codes by BCH(Fqm/Fq, D), and we note that
they always exist.

For any linear error-correcting code C = [n, k, δ]q of length n, dimension k, and distance δ, an extension C ′ =
[n+1, k, δ′ > δ]q can be defined by adding another coordinate and an overall parity check. At the level of parity check
matrices, this corresponds to appending the parity check matrix M of C with an all-zeros column 0 and an all-ones

row 1T so that C ′ has the new parity check matrix
[
1T 1
M 0

]
. For binary codes, the distance of the extension is easy

to characterize: if δ ≡ 0 mod 2 then δ′ = δ and if δ ≡ 1 mod 2 then δ′ = δ + 1. In general over larger alphabets,
however, it is possible that the distance increases even when δ is even. When applying an extension to the BCH codes
introduced above, we use the notation BCHext(Fqm/Fq, D). We make use of the following theorem about such codes.

Theorem 5. Let Fq be a finite field and let BCHext(Fqm/Fq, D) = [n, k, δ]q be the extension of the primitive narrow-
sense BCH code with designed distance D constructed in Definition 7, so n = qm and δ > D. Assume that D 6
qdm/2e + 2. Then the dimension k of the code satisfies k > n−m

⌈
q−1
q (D − 2)

⌉
− 1 > n−m(D − 2)− 1.

See [16] for a proof of Theorem 5 that leverages the fact that the extended primitive narrow-sense BCH codes are
subfield subcodes of the Reed-Solomon codes. See also [15, Problem 8.12] and [17]. By combining Theorem 5 with
the construction of Theorem 4 we now obtain the following result regarding bounded-strength decoupling for `-local
Hamiltonians.

Theorem 6. For any ` > 2, n > (`− 1)2, and q = d2 with d > 2 a prime power, there exists a BOA(N,n, q, `) whose
length N scales as N = O(n`−1 log n). That is, there exists a bounded-strength BOA decoupling scheme to switch off
`-local Hamiltonians on n interacting d-dimensional qudits that uses N = O(n`−1 log n) time slices.

Proof. First, note that if n is not of the special form n = qm where m > 1, then we can always embed the n qudits into
a larger system of qm qudits with m = dlogq(n)e, construct a scheme for the larger system, and ignore the additional
qudits (as per Remark 5). This increases n by a factor of at most q and therefore doesn’t affect the statement of the
theorem, i.e. we can without loss of generality assume that n = qm where m > 1.

Now, we consider the code C that is the dual of a k⊥-dimensional BCHext(Fqm/Fq, D) code with designed distance
D = `+1. Thus C has length n, dual distance δ⊥ > D = `+1, and, according to Theorem 5, dimension k = n−k⊥ 6
m(D − 2) + 1 = m(` − 1) + 1. By Theorem 3, this means that we can construct an n × NOA orthogonal array of
strength δ⊥−1 > ` from this code, where NOA = qk 6 qm(`−1)+1 = qn`−1. According to Theorem 4, the corresponding
BOA has an overhead that scales at most logarithmically in n since from Eq. (4) we obtain the following bound on
the length of the bounded-strength decoupling scheme corresponding to the BOA: NBOA = qk|S(k)

q | = qk2ke 6
[qn`−1][2(m(`− 1) + 1)e] = 2qen`−1[(`− 1) logq n+ 1] = O(n`−1 log n). This establishes the claimed bound.

In physical systems, the locality ` is generally a small fixed number, so the requirement of n > (`− 1)2 is inconse-
quential asymptotically, while for small n, one can (by Remark 5) always artificially increase n to satisfy it. Our main
focus in Theorem 6 is on the asymptotic cost for fixed locality ` as the number n of qudits grows. It should be noted
that, depending on the particular choice of q, `, and n, further improvements over the bound in Theorem 6 are possi-
ble; see e.g., [17, 18]. This in turn leads to further improvements in the length of the decoupling schemes constructed
via Theorem 4. For instance, for 2-local qubit Hamiltonians we saw at the end of Sec. V that Hamming codes can
be used to construct BOA decoupling schemes of length N = 2[3n+ 1] log4[3n+ 1], giving a slight improvement over
schemes constructed from primitive BCH codes which lead to a scaling of N 6 8n[log4(n) + 1].
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` \ N 64 384 2 048 10 240 49 152 229 376 1 048 576
2 2–5a 6–21a 22–85a 86–341a 342–1 365a 1 366–5 461a 5 462–21 845a

3 - 3–6b 7–17c 18–41c 42–126c 127–288c 289–756c

4 - - 4–5 6–11d 12–21e 22–43 44–85
5 - - - 5–6 7–12f 13–20 21–27
6 - - - - 6–7 8–9 10–17
7 - - - - - 7–8 9–10
8 - - - - - - 8–9

TABLE I: Table of the best known balanced-cycle orthogonal arrays (BOAs) for qubit (d = 2) systems, indicating the number
of qubits that can be decoupled by a BOA scheme for the given locality and length. Shown are the locality ` of the underlying
Hamiltonian from 2 up to 8 and length N = 4k2k of the BOA cycles from 64 up to 1 048 576, corresponding to the values
k = 2, . . . , 8 in Eq. (4) with q = 4 and e = 1. Each entry in the table denotes the range of the number n of qubits that
can be achieved by a BOA scheme of the corresponding locality and length. For instance, the entry 7–17 at location (3, 2 048)
indicates that in order to decouple a 3-local Hamiltonian on a system with n qubits, where n ∈ {7, . . . , 17}, the best known BOA
schemes have 2 048 time steps. If the number of qubits is one higher, e. g., n = 18, then the currently best known BOA scheme
would require 10 240 time steps. Superscripts indicate if the dual codes [n, k⊥, δ⊥]4 underlying the BOAs were obtained by a
particular construction: a) all codes for ` = 2 were obtained from the Hamming code family [n, n−k, 3]4 with k = log4(3n+ 1);
b) the code [6, 3, 4]4 is the Hexacode [13]; c) the codes with parameters [17, 13, 4]4, [41, 36, 4]4, [126, 120, 4]4, [288, 281, 4]4, and
[756, 748, 4]4 are based on caps in finite projective spaces which are sets of points of which no three are collinear, see [18]; d) the
code [11, 6, 5]4 is a quadratic residue code, see [11, 5.13] and [13]; e) the code [21, 15, 5]4 is the Kschischang-Pasupathy code,
see [20]; and f) the code [12, 6, 6]4 is a quadratic residue code, see [11, 5.13] and [13]. All other codes in the table are based on
the database of best known linear codes that is available in Magma [19].

` \ N 324 4 374 52 488 590 490 6 377 292 66 961 566
2 2–10a 11–91a 92–820a 821–7 381a 7 382–66 430a 66 431–597 871a

3 - 3–10b 11–82b 83–212b 213–840b 841–6 723b

4 - - 4–10 11–20 21–72 73–96
5 - - - 5–10 11–16 17–73
6 - - - - 6–10 11–17
7 - - - - - 7–10

TABLE II: Table of the best known balanced-cycle orthogonal arrays (BOAs) for qutrit (d = 3) systems, indicating the number
of qutrits that can be decoupled by a BOA scheme for the given locality and length. Shown are the locality ` of the underlying
Hamiltonian from 2 up to 7 and length N = 9k2k of the BOA cycles from 324 up to 66 961 566, corresponding to the values
k = 2, . . . , 7 in Eq. (4) with q = 9 and e = 1. Each entry in the table denotes the range of the number n of qutrits that can
be achieved by a BOA scheme of the corresponding locality and length. Superscripts indicate if the dual codes [n, k⊥, δ⊥]9
underlying the BOAs were obtained by a particular construction: a) all codes for ` = 2 were obtained from the Hamming code
family [n, n− k, 3]9 with k = log9(8n+ 1); and b) the codes with parameters [10, 7, 4]9, [82, 78, 4]9, [212, 207, 4]9, [840, 834, 4]9,
and [6 723, 6 716, 4]9 are based on caps in finite projective spaces, see [18]. All other codes in the table are based on the database
of best known linear codes that is available in Magma [19].

VII. TABLES OF BEST KNOWN BOA SCHEMES FOR SMALL SYSTEMS

In the following, we present a summary of the best known BOA schemes for qubit (d = 2, q = 4) and qutrit
(d = 3, q = 9) systems for a variety of small localities ` and system sizes n. All schemes are obtained by our
main construction in Theorem 4, where the underlying classical linear codes are either taken from the literature
or from the Magma [19] database of best known linear codes which can be accessed using the Magma command
BestDimensionLinearCode(<field>, <length>, <distance>).

Recall from Remark 5 that if we have a BOA decoupling scheme for n qudits, it can also be used for smaller systems
of n′ < n qudits. Therefore, the best known BOA for n qudits is also the best known BOA for all n′ < n qudits unless
a better BOA scheme for n′ is known. Table I summarizes the best known schemes for systems of n qubits (d = 2),
for small values of n, that can be obtained from good linear codes. Similarly, Table II summarizes the best known
schemes for systems of n qutrits (d = 3), for small values of n.
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VIII. EXAMPLES

Example 1 (2-local decoupling of a diagonal Hamiltonian). We first consider a simple case of decoupling a
2-local Hamiltonian on 7 qubits, where we assume (to simplify the example) that the Hamiltonian is diagonal, i.e.
consists only of Pauli Z operators. In this case, it turns out that we need not use an irreducible representation and
can consequently use q = d = 2 (instead of q = d2 = 4); to avoid clutter, we defer the proof that this works to
Example 3 where we will consider a similar situation. Because q = 2, we use the group F2 = Z2 = {0, 1} and choose
the representation

ρ : Z2 → {1, X}, with ρ(0) = 1, ρ(1) = X

and corresponding control unitaries

u0(δ) = 1, u1(δ) = e−iXδ, over time δ ∈ [0, π2 ]. (5)

Note that by evolving over time ∆ = π
2 , we can therefore implement (up to phase) u0(∆) = 1 = ρ(0) and u1(∆) =

X = ρ(1). We assume that we can perform these control unitaries on any qubit.
With our constraints of 7 qubits (n = 7) with 2-local interactions (` = 2) and our ability to use q = 2, we seek an

[n, k]q = [7, k]2 code with dual distance δ⊥ = 3 = `+ 1 for some (hopefully small) dimension k. We find that there is
a [7, 3]2 code with this desired dual distance, given by the generator matrix

G =



1 0 0

0 1 0

1 1 0

0 0 1

1 0 1

0 1 1

1 1 1


.

Observe that this code has dimension k = 3, which will dictate the efficiency of the protocol.
Although irrelevant for our concerns here, one may observe that, as guaranteed by Theorem 3, an array built from

the codewords of this code is an orthogonal array; indeed, the OA shown in Fig. 3 was constructed from this code.
We, on the other hand, wish to create a BOA from this code. As per Theorem 4, we start with the (additive) group

Fkq = Z3
2 and choose the generating set S(k)

q = S
(3)
2 =

{(
1

0

0

)
,

(
0

1

0

)
,

(
0

0

1

)}
. We set L to be the Eulerian cycle on the

Cayley graph Γ
(

Z3
2, S

(3)
2

)
shown in Fig. 2(a), namely

LF3
2

=

((
0

0

0

)
,

(
1

0

0

)
,

(
1

1

0

)
,

(
0

1

0

)
,

(
0

0

0

)
,

(
0

1

0

)
,

(
1

1

0

)
,

(
1

0

0

)
,

(
0

0

0

)
,

(
0

0

1

)
,

(
1

0

1

)
,(

1

0

0

)
,

(
1

0

1

)
,

(
1

1

1

)
,

(
1

1

0

)
,

(
1

1

1

)
,

(
0

1

1

)
,

(
0

1

0

)
,

(
0

1

1

)
,

(
0

0

1

)
,

(
0

1

1

)
,

(
1

1

1

)
,

(
1

0

1

)
,

(
0

0

1

))
.

We map this cycle under the action of the generator matrix G to obtain the array AGL = [Gm]m∈LF3
2

, which is
precisely the array that was shown in Fig. 4. According to Theorem 4, this is a BOA(N,n, q, `) = BOA(24, 7, 2, 2)

with N = qk|S(3)
2 | = 23 · 3 = 24. By definition, this means that every `×N subarray (obtained by only considering a

selection of just ` of the n rows) defines a balanced cycle on the Cayley graph Γ(G,S ) of G = F`q = Z2
2 with respect

to some generating set S (which may depend on the subarray). For example, look at rows 5 and 7, highlighted in
Fig. 4. This defines the balanced cycle on Γ

(
Z2

2,
{(

0

1

)
,
(

1

1

)})
that was shown in Fig. 2(b). The generating set and

balanced cycle depend on the choice of rows, but by virtue of being a BOA, some balanced cycle will be obtained for
any choice of 2 rows.

According to Theorem 2, the protocol of Protocol 2 defined by this BOA performs bounded-strength decoupling
on our 7-qubit 2-local system. To construct this protocol, we consider the transitions between the columns of the
BOA, defining the schedule shown in Fig. 6. The control unitaries to be applied are defined by these transitions and
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FIG. 6: A 7 × 24 array defining the decoupling protocol in Example 1 in the format of Fig. 1. Rows correspond to qubit
numbers, columns correspond to time slots (each of width ∆ = π

2
), and entries correspond to unitary operators on qubits

according to Eq. 5. As per Protocol 2, the control cycle evolution is Uc
(

(j− 1)∆ + δ
)

= u~bj (δ)Uc
(

(j− 1)∆
)
, δ ∈ [0,∆], where

~bj is the jth column. For example, because ~b5 = (0, 1, 1, 0, 0, 1, 1)T , we have u~b5(δ) = u0 ⊗ u1 ⊗ u1 ⊗ u0 ⊗ u0 ⊗ u1 ⊗ u1 (δ) =

e−iX2δe−iX3δe−iX6δe−iX7δ.

our choice of Eq. 5, which was chosen to be consistent with our representation ρ. For example, in time slot 5, the
transition column is ~b5 = (0, 1, 1, 0, 0, 1, 1)T , which corresponds to the unitary

u~b5(δ) = e−iX2δe−iX3δe−iX6δe−iX7δ

where Xi denotes the Pauli X operator on the ith qubit. As per Protocol 2, the control cycle evolution is
Uc

(
(j − 1)∆ + δ

)
= u~bj (δ)Uc

(
(j − 1)∆

)
, δ ∈ [0,∆], where ~bj is the jth column in Fig. 6. This protocol will de-

couple any 2-local 7-qubit diagonal Hamiltonian.
We epmhasize that in this simple diagonal-Hamiltonian example, we were able to use q = d = 2 (for reasons that

will be addressed in Example 3). If the Hamiltonian were not known to be diagonal, this would not in general have
been possible, and we would have needed to instead use a [7, k]q code for q = 4.

Example 2 (2-local decoupling using a Hamming code). Consider an arbitrary 2-local Hamiltonian H on a
system of 5 qubits. Then H can be decoupled by applying a BOA derived from the code dual to a [5, 3, 3]4 Hamming
code, namely the [5, 2]4 code over F4 with the generator matrix

G =


1 0

0 1

1 α2

α2 α2

α2 1

 ,

where α is a primitive element of order 3 of F4. Note that we arrange the code words as column vectors, consistent
with the notation used throughout this paper and some – but not all – of the literature. Since here k = 2, d = 2, and
e = 1, the corresponding BOA has a total number of time steps given by N = d2k2ke = 64. When arranged into the
columns of a 5 × 64 matrix, each of the 64 control Hamiltonians that are applied in this scheme corresponds to one
of the 16 code words of the [5, 2]4 code.

Example 3 (5-local decoupling of a diagonal Hamiltonian using a BCH code). Recall from Remark 1 that
if one is interested in decoupling a Hamiltonian of a particular form, it may not be necessary for ρ to be irreducible,
and in such a case it may be possible to choose a code over a field Fq for which q is less than d2. Consider a diagonal
(i.e., Z-only) 5-local Hamiltonian H on a system of 16 qubits. Then H can be decoupled by applying a BOA derived
from the dual code of a BCHext(F4

2/F2, 6) = [16, 7, 6]2, i.e. from a code over F2 with parameters [16, 9]2 and generator
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matrix

G =



1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

1 1 0 0 1 1 1 0 0

0 1 1 0 0 1 1 1 0

0 0 1 1 0 0 1 1 1

1 1 0 1 0 1 1 1 1

1 0 1 0 0 1 0 1 1

1 0 0 1 1 1 0 0 1

1 0 0 0 1 0 1 1 1



.

Due to the special structure of the Hamiltonian, we are able to choose q = d = 2 (rather than q = d2 = 4) in this
case. Since k = 9, d = 2, e = 1, and the Hamiltonian is Z only, the corresponding BOA has a total number of time
steps given by N = dkke = 4 608. When arranged into the columns of an 16× 4 608 matrix, each of the 4 608 control
Hamiltonians that are applied in this scheme corresponds to one of the 512 code words of the [16, 9]2 code.

To construct our protocol from this code we first choose a generating set S(9)
2 for F9

2, such as the k = 9 standard
basis vectors {(1, 0, 0, . . .)T , (0, 1, 0, 0, . . .)T , . . .}. We then find an Eulerian cycle L on the Cayley graph Γ(F9

2, S
(9)
2 )

and map it to an Eulerian cycle GL on the Cayley graph Γ(G[F9
2], G[S

(9)
2 ]) using the generator matrix above. Our

choice of S(9)
2 as being the standard basis vectors would dictate that the transition labels ~b = Gs, for s ∈ S(9)

2 , are
simply the columns of G. Our BOA consists of the 29 = 512 16-bit code words, each appearing exactly 9 times
according to the order specified by GL. To use the BOA as a decoupling scheme, we may choose

ρ : {0, 1} → {1, X}, with ρ(0) = 1, ρ(1) = X

and choose the corresponding single-qubit control unitaries to be

u0(δ) = 1, u1(δ) = e−iXδ, over time δ ∈ [0, π2 ].

Observe that (ignoring global phase) u0(π2 ) = 1 = ρ(0) and u1(π2 ) = X = ρ(1). The multi-qubit control unitaries are
defined by u~b = ub1 ⊗ · · · ⊗ub16 (for ~b ∈ {0, 1}16). For example, if s = (1, 0, 0, . . .)T , then ~b = Gs is the first column of
G and u~b = e−iX1δe−iX10δe−iX13δe−iX14δe−iX15δe−iX16δ acting non-trivially on qubits 1, 10, 13, 14, 15, and 16. The
control scheme in Protocol 2 is thus specified.

We now prove that this example works, even though ρ is reducible (i.e. even though we are choosing q = 2 rather
than q = 4). As per the argument in the proof of Theorem 2, we need only focus on a single 5-local term of H (so
assume without loss of generality that H consists of only one such term), we can ignore all but the 5 qubits on which
it acts non-trivially, and we need only speak of the 5-qubit unitaries u¯s(δ) that act on those qubits and correspond
to ¯s ∈ S (where S is the generator set for F5

2 derived from the BOA for those 5 qubits). According to the proof of
Theorem 1, our scheme works if and only if ΠG

(
FS (H)

)
= 0. Here, however, ρ is not irreducible, so ΠG will not

suppress all traceless operators; indeed, X-only operators commute with each U`g and are therefore unmodified by ΠG .

To show that ΠG

(
FS (H)

)
= 0 nevertheless holds, observe from Eq. (3) that each term in FS (H) is of the form

u†¯sHu¯s. Now, H is diagonal, i.e. a tensor product of only 1 and Z, and u¯s(δ) is a tensor product of only 1 and
e−iXδ. Therefore, because eiXδZe−iXδ = cos(2δ)Z+sin(2δ)Y , we see that u†¯sHu¯s can be expanded as a sum of tensor
products of 1, Z and Y . Moreover, because H is traceless and conjugation by a unitary is trace-preserving, this sum
cannot contain a term proportional to the identity, 1⊗5. Thus, each of these terms consists of at least one operator
(which for notational purposes we take to be on the first qubit) that is a Z or a Y , i.e. each can be written in the form
σ ⊗A, where σ ∈ {Y,Z} and A is some 4-fold tensor product of operators from {1, Y, Z}. Our protocol is defined by
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a BOA of strength 5, so any subset of 5 rows of the BOA consists of all 25 5-tuples in F5
2 repeated an equal number of

times. Thus the sum in ΠG involves conjugating by each U`g where U`g ranges over all 25 possible tensor products that
can be formed on 5 qubits using 1 and X. Focusing on the first qubit, we can equivalently say that the U`g range over
all possible 1⊗B and X ⊗B, where B ranges over {B2 ⊗B3 ⊗B4 ⊗B5 : Bi ∈ {1, X}}. Conjugating σ ⊗A by 1⊗B
yields either σ ⊗ A or −σ ⊗ A, whereas conjugating instead by X ⊗ B yields the same result but with the opposite
sign (since σ ∈ {Y,Z}). In other words, (1⊗B)(σ ⊗ A)(1⊗B) + (X ⊗B)(σ ⊗ A)(X ⊗B) = 0. Thus, the sum in ΠG

cancels in pairs, i.e. ΠG

(
FS (H)

)
is indeed 0.

IX. CONCLUSION

We have shown how to use bounded-strength controls to decouple n interacting qudits of dimension d = pe (for
some prime p and positive integer e) that obey an `-local Hamiltonian. The system may be either closed or open (i.e.
coupled to an environment), as long as both the system Hamiltonian and the environmental couplings are `-local on
the system. The decoupling scheme is described using a balanced-cycle orthogonal array, which we introduced and
showed how to construct from classical linear codes. To determine the best possible scheme based on our method, we
have to find the best linear error-correcting code C⊥ = [n, k⊥]q of length n and distance at least `+1. By the best, we
mean k⊥ should be maximized for the given system size (n) and locality (`). The construction in the present paper
yields a decoupling scheme that uses N = d2k2ke time slices (of fixed length) where k = n− k⊥.

Finding the best code is a key problem in the theory of error-correcting codes; extensive code tables have been
compiled for small distances. For the important case of qubits with 2-local interactions, for example, one can use
Hamming codes over F4 such that k = log4(3n + 1), whence N scales like n log n. For higher degrees of locality, we
can use families of BCH codes to construct the decoupling schemes. The designed distance of these codes is chosen
based on the locality ` of the Hamiltonian, leading to a scaling of N as n`−1 log n. An open question is whether the
schemes so derived are optimal in the asymptotic sense, i.e. whether, for fixed ` and qudit dimension d, a better
scaling with n is possible. We note that it is known [21] that when using bang-bang pulses, time at least Ω(n) is
necessary to decouple general 2-body Hamiltonians, whereas our bounded-strength scheme takes time O(n log n) using
Hamming codes for such Hamiltonians. Another interesting open question is to develop a theory for systems with
mixed qudit dimensions. All schemes derived here are decoupling schemes up to first order, and while it is easy to
extend this to second order using symmetry, it would be interesting to find schemes that also achieve decoupling to
higher orders. Finally, we mention as an avenue for future research the application of the derived bounded-strength
decoupling schemes for the purpose of Hamiltonian simulation.
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