
Information-theoretic Local Non-malleable
Codes and their Applications

Nishanth Chandran1? Bhavana Kanukurthi2?? Srinivasan Raghuraman3? ? ?

1 Microsoft Research, India
2 Department of Computer Science and Automation, Indian Institute of Science

3 Massachusetts Institute of Technology

Abstract. Error correcting codes, though powerful, are only applica-
ble in scenarios where the adversarial channel does not introduce “too
many” errors into the codewords. Yet, the question of having guarantees
even in the face of many errors is well-motivated. Non-malleable codes,
introduced by Dziembowski, Pietrzak and Wichs (ICS 2010), address
precisely this question. Such codes guarantee that even if an adversary
completely over-writes the codeword, he cannot transform it into a code-
word for a related message. Not only is this a creative solution to the
problem mentioned above, it is also a very meaningful one. Indeed, non-
malleable codes have inspired a rich body of theoretical constructions as
well as applications to tamper-resilient cryptography, CCA2 encryption
schemes and so on.
Another remarkable variant of error correcting codes were introduced by
Katz and Trevisan (STOC 2000) when they explored the question of de-
coding “locally”. Locally decodable codes are coding schemes which have
an additional “local decode” procedure: in order to decode a bit of the
message, this procedure accesses only a few bits of the codeword. These
codes too have received tremendous attention from researchers and have
applications to various primitives in cryptography such as private infor-
mation retrieval. More recently, Chandran, Kanukurthi and Ostrovsky
(TCC 2014) explored the converse problem of making the “re-encoding”
process local. Locally updatable codes have an additional “local update”
procedure: in order to update a bit of the message, this procedure ac-
cesses/rewrites only a few bits of the codeword.
At TCC 2015, Dachman-Soled, Liu, Shi and Zhou initiated the study of
locally decodable and updatable non-malleable codes, thereby combining
all the important properties mentioned above into one tool. Achieving
locality and non-malleability is non-trivial. Yet, Dachman-Soled et al.
provide a meaningful definition of local non-malleability and provide a
construction that satisfies it. Unfortunately, their construction is secure
only in the computational setting.

? Email: nichandr@microsoft.com.
?? Email: bhavana@csa.iisc.ernet.in. Research supported in part by a start-up grant

from the Indian Institute of Science and in part by a grant from the Ministry of
Communications and Information Technology, Government of India.

? ? ? Email: srirag@mit.edu. Research done while this author was at Indian Institute of
Science and Microsoft Research, India.

mailto:nichandr@microsoft.com
mailto:bhavana@csa.iisc.ernet.in
mailto:srirag@mit.edu

In this work, we construct information-theoretic non-malleable codes
which are locally updatable and decodable. Our codes are non-malleable
against Fhalf, the class of tampering functions where each function is
arbitrary but acts (independently) on two separate parts of the code-
word. This is one of the strongest adversarial models for which ex-
plicit constructions of standard non-malleable codes (without locality)
are known. Our codes have O(1) rate and locality O(λ), where λ is the
security parameter. We also show a rate 1 code with locality ω(1) that
is non-malleable against bit-wise tampering functions. Finally, similar
to Dachman-Soled et al., our work finds applications to information-
theoretic secure RAM computation.

1 Introduction

Non-malleable codes. The notion of error correcting codes allow a sender to en-
code a message s ∈ {0, 1}k into a codeword C ∈ {0, 1}n such that a receiver can
then decode the original message s from a tampered codeword C̃ = f(C). Nat-
urally, s cannot be recovered from arbitrarily tampered codewords, and hence
traditional error correcting codes (for the Hamming distance metric) require
that the tampering function f be such that C̃ = C + ∆, with ∆ ∈ {0, 1}n
and the Hamming weight of ∆ is ≤ δn (for some constant 0 < δ < 1). While
powerful, error correcting codes provide no guarantees for larger classes of tam-
pering functions. In light of this, Dziembowski et al. [19], introduced the notion
of non-malleable codes. Informally, non-malleable codes are codes such that for
all messages s ∈ {0, 1}, and for all f in the class of tampering functions F ,
Dec(f(Enc(s))) is either s or is unrelated to s. A little thought reveals that even
in this case, F cannot be arbitrary – for example, if F includes the function
Enc(Dec(·) + 1), then the output of Dec(f(Enc(s))) would be s + 1 and clearly
related to s. A rich line of work has explored the largest possible class of tamper-
ing functions F for which non-malleable codes can be constructed. Existential
results [19,12,22], are known for large classes of tampering functions (essentially
any function family whose size is less than Fall, the class of all functions). The
works of [13,5,4] construct explicit non-malleable codes against the class of tam-
pering functions Fbit (i.e., functions that operate on every bit of the codeword
separately) and Fpertperm (i.e., functions that can perturb or permute bits of the
codeword), while the works of [18,2,10,1] construct such codes against the class
of tampering functions Fhalf (i.e., functions that operate independently on two
halves of the codeword). Non-malleable codes have found many applications in
cryptography, such as in tamper resilient cryptography [26,3] and in constructing
CCA secure encryption schemes [15].

Codes with locality. Locally decodable codes (introduced formally by Katz and
Trevisan [25]), are a class of error correcting codes, where every bit of the message
can be decoded by reading only a few bits of the corrupted codeword. These
codes have a wide range of applications and several constructions of such codes
are known (see Yekhanin’s survey [32] for further details). Locally updatable

codes (introduced by Chandran et al. [8]) are error correcting codes with the
property that in order to obtain a codeword of message s′ from a codeword of
message s (where s and s′ differ only in one bit), one only needs to modify a few
bits of the codeword.

Locally updatable/decodable non-malleable codes. A natural question to ask is
whether we can construct non-malleable codes that can be locally decoded and
updated. Indeed, Dachman-Soled et al. [16] consider the above question and show
how to construct locally updatable/decodable non-malleable codes. Combining
local decodability with non-malleability is challenging: indeed, local decodability
gives us a way to read a bit of the message by only reading a few bits of the
codeword. If these bits were precisely the ones which are tampered, then how
can non-malleability be guaranteed? In particular, it is likely that these bits are
not accessed while decoding some other bits of the message. At its core, the
challenge is that the adversary could tamper the codeword in such a manner
that decoding some of the bits of the message could return ⊥, while the others
may not. While this can be detected via a “global” decode, locally it will be
undetected, thus resulting in a weak form of malleability. Dachman-Soled et al.
capture these challenges by requiring that this weak form of malleability is all
that the adversary will be able to accomplish. To be more specific, they show
that their construction satisfies a (slightly) weaker form of non-malleability – in
this, given a codeword C = Enc(s), s ∈ {0, 1}k, an adversary may come up with
a mauled codeword C̃ such that Dec(i, C̃) = si for i ∈ [I], for some [I] ⊆ [k] and
Dec(i, C̃) = ⊥ for i /∈ [I]. Otherwise, the standard definition of non-malleability
holds.

Dachman-Soled et al. present a construction that is non-malleable in the
split-state adversarial model and requires the adversary to be computationally
bounded. Given the rich body of work in constructing information-theoretic
non-malleable codes and local codes (individually), we believe the question of
building local, non-malleable codes in the information-theoretic setting is very
well motivated. This is the question which we investigate in this work.

1.1 Results

1. We construct a locally updatable and locally decodable non-malleable code
that is non-malleable against the tampering class Fhalf, which denotes the
class of tampering functions that operate independently on two different
parts of the codeword, but can otherwise be arbitrary. Our code has constant
rate and a decode/update locality of O(λ), where λ is the security parameter.

2. We can also obtain such non-malleable codes against the tampering class
Fbit. In this case, our code has rate 1 and decode/update locality ω(1).

3. The work of Dachman-Soled et al. [16] showed how to use a local non-
malleable code that is also leakage-resilient [26] to construct a protocol for
secure RAM computation that remains secure when the adversary can tam-
per and leak from memory. In a similar way, we show how to use a leakage-
resilient version of our code to construct an information-theoretic protocol

for secure RAM computation that remains secure when the adversary can
tamper and leak from memory4.

1.2 Techniques

Overview of [16]. Before we describe our techniques, we begin with a description
of how Dachman-Soled et al. [16] construct their locally decodable/updatable
non-malleable code. The idea is as follows: to encode a message s ∈ {0, 1}k, pick
a key key to a symmetric key encryption scheme and compute the codeword as
(EncNM(key),AEnckey(1, s1), · · · ,AEnckey(1, s1)), where EncNM(·) denotes a stan-
dard non-malleable code, AEnckey(·) denotes an authenticated encryption with
key key, and si denotes the ith bit of s (i ∈ [k]). Now, suppose EncNM is a non-
malleable code against a tampering function class FNM, then the claim is that
the above construction is non-malleable against the tampering function class
F of the form (f1, f2), where f1 ∈ FNM and f2 is any polynomial-time com-
putable function. To see why this is true, consider the following two cases: a)
the tampering function f ∈ F is such that f does not tamper with EncNM(key);
b) the tampering function f ∈ F is such that f tampers with EncNM(key). In
the first case, note that the function f2 does not have any information about the
key key, and hence by the security of the authenticated encryption scheme, we
have that any polynomial-time computable f2 cannot tamper the authenticated
encryptions of the si values to any related message5. In the second case, note
that by the non-malleability of EncNM(·), we have that f1 can only compute an
encoding of key’ such that key’ is unrelated to key. Since key’ will be used to
authenticate and decrypt the ciphertexts in the other part of the codeword, this
essentially means that the output of the decode algorithm will be unrelated to
s. Choosing EncNM to be the non-malleable code of Aggarwal et al. [1], gives
a local non-malleable code that is secure against F3

split+poly, which denotes the
class of tampering functions that operate independently on three parts of the
codeword, and additionally constrains the third function to be polynomial-time
computable.

Challenges. A first attempt to convert the above code into an information-
theoretically secure one is to use an information-theoretic authenticated encryp-
tion ITAEncitkey instead of AEnckey above. We could follow a similar idea – encode
itkey using a non-malleable encoding and encrypt+authenticate every bit of the
message. Unfortunately, this idea quickly runs into trouble – for the information-
theoretic authenticated encryption to be secure, we require the size of itkey to

4 Of course, in the case of single party RAM computation, our protocol is information-
theoretic modulo the encryption that is used in the underlying oblivious RAM
(ORAM) protocol; in the case of secure multi-party computation, we obtain a tamper
and leakage resilient information-theoretic secure computation protocol.

5 Of course, the adversary can always copy certain ciphertexts and have them decode
to si and maul other indices to decode to ⊥, but as noted earlier, this is allowed by
their definition of non-malleability.

be proportional to the message and hence |itkey| must be proportional to k6.
Now, if we encode itkey as a whole using a non-malleable code, we have lost all
locality (since we would require locality of k to even decode the code and retrieve
itkey). On the other hand, if we encode every part of itkey separately, then an
adversary can always replace one of these parts with a (sub)key of his choice
and appropriately replace the ciphertext to obtain a codeword that decodes to
si in a few indices and decodes to (independent) s̃j in other indices (this violates
the non-malleability definition from [16]). It seems that, in order to succeed,
we must use an information-theoretic locally decodable code to encode itkey,
thereby running into a circular problem!

Another approach that one might consider is to start with an information-
theoretic non-malleable code and somehow make that code “local”. Typical con-
structions of non-malleable codes make use of error-correcting codes with certain
independence guarantees “across states”. This independence is exploited to get
non-malleability. Unfortunately, this approach doesn’t yield any benefit as the
locality of an error correcting code is orthogonal to its independence. Indeed,
it is easy to see that a locally decodable code with locality r, necessarily has
independence less than r.

Construction of local non-malleable codes. To explain how we overcome these
challenges, we explore the construction using (information-theoretic) authenti-
cated encryption in more detail. The construction non-malleably encodes a itkey
and uses it to authentically encrypt the message block-wise. Non-malleability
dictates that |itkey| ≥ k and this ruins locality. This tradeoff between non-
malleability and locality is our main challenge. Our main observation is that
this approach of using authenticated encryption is an overkill. In particular, we
have existing constructions of non-malleable codes in the split-state model which
we could use as a building block, except that it is unclear how to use them.

Consider this (insecure) construction: split the message s into k/t
blocks each of size t, for some parameter t. Encode the message s as
(EncNM(s1, · · · , st), · · · ,EncNM(sk−t+1, · · · , sk)). To decode a bit si, decode
EncNM(sd it e, · · · , sd it e+t) and recover si appropriately. Let each block of the en-

coding be stored on separate states i.e., increase the number of states to 2k/t.

It is easy to see that this construction is not secure against F2k/t
split . Indeed, an

adversary can always replace one block, say the first block, with an encoding
of a known message, say all zeroes. Even though EncNM(0t) is independent of
s1, · · · , st, the new message is related to the underlying message as a whole.
The main problem is that an adversary is allowed to tamper certain parts of the
encoding independently and still create a “globally related” codeword.

This brings us to the following question: how can we combine non-malleable
encodings of different blocks of messages, so that the resulting construction is
non-malleable? The answer lies in preventing such isolated tampering or at least

6 One might think that we only require authentication and hence could use a shorter
key; however non-malleable codes inherently imply that the underlying message be
hidden, thus forcing us to use a key as long as the message.

detecting it when it happens. To do this, we simply tie together all the encodings
by using itkey to provide consistency across blocks. If an adversary changes one
block independently, either it is detected or he needs to change all blocks to
something independent. This use of itkey, as randomness that allows for consis-
tency checks across blocks, and not as an encryption key, allows us to keep itkey
short and achieve locality.

In retrospect, all our constructions are remarkably simple. We first give an

overview of our non-malleable construction that is secure against F2k/t+2
split (i.e.,

the class of tampering functions that operate independently on 2k/t + 2 parts
of the codeword, for some chosen parameter t and message length k). We will
discuss how to reduce the number of states later. The idea is as follows: to
authenticate a part of the message, we will pick a random value r and encode it
twice in 2 different states – once on its own and once with a message. In other
words, to encode a message s ∈ {0, 1}k, split s into k

t parts, each of length t,

as before. Now, pick k
t random ri values (each ri being of length λ). These ri

values correspond to the key itkey above.

Encode the message s as (EncNM(r1, · · · , r k
t
),EncNM(r1, s1, · · · , st),

· · · ,EncNM(r k
t
, sk−t+1, · · · , sk)). To decode a bit si, decode EncNM(r1, · · · , r k

t
)

to obtain rd it e; then decode EncNM(rd it e, sd
i
t e
, · · · , sd it e+t). Now, check if the

r values encoded in both these codewords match and if so, output si. The
claim then is that if EncNM(·) is non-malleable against a tampering function
class FNM, then the above construction is non-malleable against a tampering
function class F of the form (f0, f1, · · · , fk), where fi ∈ FNM, 0 ≤ i ≤ k. At
a very high level, to see why this is true, again consider two cases: a) if the
adversary does not maul the first component of the codeword, then if he mauls
any other component of the codeword, the decode algorithm will output ⊥
(except with probability 2−λ) as he must get “guess” an ri value encoded in a
different state; b) if the adversary mauls the first component of the codeword,
then he must maul all other components of the codeword (as otherwise the
decode algorithm will output ⊥) and by the non-malleability of the underlying
code, the new codeword will be independent of the si values. We note that
the r in our construction plays a role similar to the one played by the secret
label L in the leakage and tamper-resilient RAM computation construction
of Faust et al. [21]. While this indeed gives us a construction of a locally
decodable/encodable non-malleable code, the locality of the code is t + k

t (and

is thus minimized with t =
√
k); also, using the Fhalf code from Aggarwal et

al. [1] this gives us a construction that is non-malleable against F
√
k

split.

We now show how to reduce the number of states. Suppose EncNM(·) is non-
malleable against the tampering class Fhalf, then EncNM(·) has the form (L,R)
and hence our above construction has the form (L0, R0, L1, R1, · · · , Lt, Rt). In
such a case, we show that the codeword can be written as (C1, C2, C3, C4) =
([L0], [R0], [L1, · · · , Lt], [R1, · · · , Rt]) and that this construction is non-malleable
against F4

split. While this code is secure against a larger class of tampering

function, it still has locality t + k
t . However, we then show that a single r

value can be reused across the encodings (instead of k
t different ri values) as

long as we encode the si values with indices, and moreover that this r value
does not even have to be encoded using a non-malleable code (as long as it
is hidden). This can be accomplished by simply secret sharing r into rL, rR
and storing them separately. In other words, our final construction has the
form ([rL, L1, · · · , Lk], [rR, R1, · · · , Rk]), where (Li, Ri) = EncNM(r, i, si) and
rL ⊕ rR = r. Instantiating the EncNM(·) with the code of [1] gives us our first
result, while instantiating it with the code of [13] gives us our second result.

Tamper and leakage-resilient RAM computation. In order to obtain a protocol
for secure RAM computation that is tamper and leakage resilient, Dachman-
Soled et al. [16] require the local non-malleable code to tolerate many-time leak-
age (i.e., the adversary can obtain an unbounded amount of leakage throughout
the course of the protocol, but is bounded by the amount of leakage that can
be obtained in between successive updates to the memory that will “refresh”
the encoding). The challenge is to obtain such a construction even though the
update algorithm is local and only updates a small part of the codeword. In
their work, [16] do this by computing a Merkle hash of the ciphertexts and by
encoding this Merkle hash along with the symmetric key key and by comput-
ing a fresh encoding of key together with the root of the Merkle Hash every-
time. However, intuitively, obtaining such a guarantee seems a contradictary
task for us – information theoretically, if we do not bound the total amount of
leakage, and only refresh a part of the encoding, then the adversary over time
can learn information about the various parts of the codeword (and hence the
message itself, thereby defeating non-malleability). We show that by compro-
mising on the leakage bound tolerated, and by using the information-theoretic
leakage-resilient non-malleable codes of Aggarwal et al. [3], we can achieve both
information-theoretic leakage/tamper-resilience along with locality, by periodi-
cally refreshing “different” parts of the codeword. We note here, that leakage and
tamper-resilient RAM computation has also been studied by Faust et al. [21] in
a model different from Dachman-Soled et al. [16] (and our work). In the model
of Faust et al. [21], they allow an adversary to obtain and store past code-
words and use that to tamper with the later encodings; on the other hand,
they assume a tamper and leak-free component. Faust et al. [21] use continuous
non-malleable codes [20], to obtain their construction. They show that if the
underlying continuous non-malleable code is information-theoretic, then their fi-
nal construction is also information-theoretic; however, no information-theoretic
construction of continuous non-malleable codes are known. Furthermore, that
construction would require a tamper/leak free component; in our case, as in [16],
the memory of the RAM can be completely subjected to leakage and tampering.

1.3 Organization of the paper

In Section 2, we present the formal definition of non-malleable coding schemes
with locality. As a stepping stone towards our main construction, in Section 3,
we present a construction of a non-malleable coding scheme with Õ(

√
k) locality

against F4
split adversaries. We present our main result namely, a constant rate

non-malleable coding scheme with O(λ) locality against Fhalf, in Section 4. Sec-
tion 5 contains our constructions which are also locally updatable and leakage-
resilient. Finally, Section 6 presents the application of our non-malleable codes
to secure RAM computation.

2 Preliminaries

2.1 Notation

We say that two probability distributions X and Y are ε-close if their statistical
distance is ≤ ε and this is denoted by X ≈ε Y. The formal definition is given
below.

Definition 1. Let X ,Y be two probability distributions over some set S. Their
statistical distance is

SD (X ,Y)
def
= max

T⊆S
{Pr[X ∈ T]− Pr[Y ∈ T]} =

1

2

∑
s∈S

∣∣∣∣Pr
X

[s]− Pr
Y

[s]

∣∣∣∣ .
We say that X and Y are ε-close if SD (X ,Y) ≤ ε and this is denoted by X ≈ε Y.

For a sequence x = (x1, . . . , xn) and set S ⊆ [n], we use x|S to denote the
subsequence of xi values where i ∈ S. For any string y and i ∈ [|y|], we use yi to

denote the ith bit of y. The security parameter is denoted by λ. We use Õ (·) to
denote asymptotic estimates that hide poly-logarithmic factors in the involved
parameter.

2.2 Definitions

Definition 2. (Coding schemes). A coding scheme consists of a pair of func-
tions Enc : {0, 1}k → {0, 1}n and Dec : {0, 1}n → {0, 1}k ∪ {⊥} where k is the
message length, n is the block length and k < n.

1. The encoder Enc takes as input a message s ∈ {0, 1}k and outputs a codeword
c = Enc(s).

2. The decoder Dec when given a correct (untampered) codeword as input, out-
puts the corresponding message. The correctness requirement is that for all
s ∈ {0, 1}k,Dec(Enc(s)) = s, with probability 1.

The rate of the coding scheme is the ratio k/n. A coding scheme is said to
have relative distance δ (or minimum distance δn), for some δ ∈ [0, 1), if for every
s ∈ {0, 1}k the following holds. Let X := Enc (s). Then, for any ∆ ∈ {0, 1}n of
Hamming weight at most δn, Dec (X +∆) = s with probability 1. Standard
error correcting codes, as defined above, are only applicable in settings where
the adversarial channel cannot make too many (i.e., more than δn) errors. Non-
malleable codes, introduced by Dziembowski, Pietrzak and Wichs [19], provide a

meaningful guarantee in situations where the adversarial channel may completely
overwrite the codeword. Informally, a coding scheme is said to be non-malleable
if an adversary cannot transform the codeword of a message s into a codeword
of a related message s′. Note that such codes do not focus on error-tolerance
and, therefore, the parameter δ is set to 0.

Definition 3. (Non-malleable codes [19]). A coding scheme (Enc,Dec) with
message length k and block length n is said to be non-malleable with error ε
(also called exact security) with respect to a family F of tampering functions
acting on {0, 1}n (i.e., each f ∈ F maps {0, 1}n to {0, 1}n) if for every f ∈ F
there is a simulator S such that for all s ∈ {0, 1}k, we have

Tamperfs ≈ε IdealS,s ≡
{
s̃← Sf(·), where s̃ ∈ {0, 1}k ∪ {⊥, same}

Output s if s̃ = same, and s̃ otherwise

}
where Tamperfs is the output of the tampering experiment defined by

Tamperfs ≡

{
C ← Enc (s) ; C̃ ← f (C) ; s̃← Dec

(
C̃
)

Output s̃

}

In this work, we focus on information-theoretic non-malleable codes i.e., the
≈ε is measured by statistical distance. Our goal is to design information-theoretic
non-malleable codes which are also local. Locally decodable codes (LDCs), in-
troduced by Katz and Trevisan [25] are a class of error correcting codes, where
every bit of the message can be probabilistically decoded by reading only a few
bits of the (possibly corrupted) codeword. We now state the formal definition.

Definition 4. (Local Decodability [25]). A coding scheme (Enc,Dec) with mes-
sage length k and block length n is said to be (r, δ, ε)-locally decodable if there
exists a randomized decoding algorithm Dec such that the following properties
hold.

1. For all s ∈ {0, 1}k, i ∈ [k] and all vectors y ∈ {0, 1}n such that the Hamming
distance between Enc (s) and y is not more than δn,

Pr[Dec (y, i) = si] ≥ 1− ε,

where the probability is taken over the random coin tosses of the algorithm
Dec.

2. Dec reads at most r coordinates of y.

Dachman-Soled, Liu, Shi and Zhou [16] introduced and designed codes which
combine non-malleability and locality. While their coding scheme is in the
computational setting, their definition is applicable even for the information-
theoretic setting by simply using the appropriate notion of “closeness”.

Definition 5. (Local Decodability and Non-malleability, LDNMC [16]). A cod-
ing scheme (Enc,Dec) with message length k and block length n is said to be a

(r, ε1, ε2)-locally decodable non-malleable coding scheme with respect to a family
F of tampering functions acting on {0, 1}n if it is (r, 0, ε1)-locally decodable and
if for every f ∈ F there is a simulator S such that for all s ∈ {0, 1}k, we have

Tamperfs ≈ε2 IdealS,s

where Tamperfs is the output of the tampering experiment defined by

Tamperfs ≡

{
C ← Enc (s) ; C̃ ← f (C) ;∀i, s̃i ← Dec

(
C̃, i
)

Output s̃ = s̃1, · · · , s̃k

}

and IdealS,s is defined as

1. (I, s∗)← Sf(·)
(
1λ
)
, where I ⊆ [k] and s∗ ∈ {0, 1,⊥}k.

2. If I = [k], then s̃ = s∗. Otherwise, s̃|I = ⊥ and s̃|I = s|I , where I denotes
the complement of the set I.

3. Output s̃.

Dachman-Soled et al. apply local NMCs to the problem of secure RAM com-
putation. Towards this end, they require NMCs that are also locally updatable.
Locally updatable and decodable error correcting codes were formalized in the
work of Chandran et al. [8]. Informally, such codes allow for a bit of the under-
lying message to be updated by rewriting just a few bits of the codeword. In the
context of non-malleable codes, which do not require error-tolerance, a weaker
definition [16] of local updatability suffices, which we present next.

Definition 6. (Local Decodability and Updatability [8,16]). A coding scheme
(Enc,Dec,Update) with message length k and block length n is said to be
(r1, r2, δ, ε)-locally decodable and updatable if it is (r1, δ, ε)-locally decodable and
there exists a randomized algorithm Update such that:

1. For all s ∈ {0, 1}k, i ∈ [k], s′i ∈ {0, 1,⊥} and all vectors y ∈ {0, 1}n such
that the Hamming distance between UpdateC (i, s′i) and y is not more than
δn, where C = Enc (s),

Pr[Dec (y, i) = s′i] ≥ 1− ε,

where the probability is taken over the random coin tosses of the algorithm
Dec.

2. Update reads and changes at most r2 coordinates of y.

Remarks. We note that the above definition can be extended in a straight-
forward manner to account for the decoding of a codeword which has been
updated multiple times as opposed to once (as above). Additionally, although
we focus on the case of correcting zero errors in the codeword, we can modify our
construction to get a construction that tolerates errors and is also non-malleable,
by simply encoding each “state” of our non-malleable codeword using an LDC.
This would reduce the error-tolerance of the code (by a fraction equal to the

number of states) and the rate of the obtained code would now depend on the
rate of the LDC. It suffices however here to discuss the case of correcting zero
errors in the codeword.

Similar to [16], we also construct locally decodable/updatable leakage
resilient non-malleable codes and use them to construct information-theoretic
tamper and leakage resilient RAM computation. We refer the reader to the full
version of this paper for details on these primitives.

3 Non-malleable Codes with Õ(
√
k) Locality against F4

split

In this section, we describe a construction of a locally updatable/decodable non-
malleable code that is non-malleable against the tampering function class F4

split

(i.e., the tampering function class that operates independently on 4 parts of

the codeword), with locality Õ(
√
k), where k is the length of the message being

encoded. The motivation for presenting this construction is two-fold: first, it has
ideas which will lead to our main construction described in Section 4; second, this
construction will be used to achieve the application to secure RAM computation.
We remark that the four parts of the codeword seen by a 4-state adversary
from the class F4

split need not be of equal sizes (in fact, they are not in this
construction). We specify how a codeword is broken into 4 parts in the proof of
Theorem 2. If one is so particular on requiring all parts to be of equal length,
we note that it is trivial to achieve this via padding, although this would affect
the rate of the final coding scheme (by at most a constant factor).

Recall that λ denotes the security parameter; t denotes a parameter that will
be set appropriately later on. Let NMC = (EncNM,DecNM) be a non-malleable
coding scheme on strings of length λk/t and NMC′ =

(
Enc′NM,Dec

′
NM

)
be a non-

malleable coding scheme on strings of length λ + t. We assume without loss of
generality that t divides k. We define the following coding scheme:

1. Enc (s): On input s ∈ {0, 1}k, the algorithm splits s into k/t blocks, say
s1, . . . , sk/t of size t each. Then, the algorithm chooses k/t random strings

r1, . . . , rk/t ∈ {0, 1}λ, and computes c = EncNM
(
r1‖ . . . ‖rk/t

)
and ei =

Enc′NM (ri‖si) for i ∈ [k/t]. The algorithm finally outputs the codeword C =(
c, e1, . . . , ek/t

)
.

2. Dec (C, i): On input i ∈ [k], the algorithm reads the first and (di/te+ 1)th
block of C, retrieving c, edi/te. Then it runs r1‖ . . . ‖rk/t := DecNM (c). If
the decoding algorithm outputs ⊥, the algorithm outputs ⊥. Otherwise, it
computes r∗di/te‖sdi/te = Dec′NM

(
edi/te

)
. If the decoding algorithm outputs

⊥, the algorithm outputs ⊥. If r∗di/te 6= rdi/te, the algorithm outputs ⊥.
Otherwise, the algorithm outputs si from sdi/te.

We instantiate this construction by instantiating the non-malleable codes
NMC and NMC′. A natural and strong class of functions which we may assume
the schemes are non-malleable against is the class of split-state adversaries, Fhalf,

that tamper two parts7 of the codeword independently, that is, f ∈ Fhalf iff
f : {0, 1}n can be written as f (c1, c2) = (f1 (c1) , f2 (c2)) for f1, f2 : {0, 1}n/2 →
{0, 1}n/2. The following result is known.

Theorem 1. [1] Let Fhalf be the function family of split-state adversaries over
{0, 1}n. Let ε > 0 be an arbitrary value and k, n > 0 be integers such that
k/n ≤ γ, for some constant γ. Then there exists a non-malleable code with respect
to Fhalf, with k-bit source-messages and n-bit codewords, and exact security ε.

We now show the local-decodability and non-malleability of the above scheme
instantiated using the non-malleable code in Lemma 1.

Theorem 2. Assume that NMC, NMC′ be non-malleable coding schemes of rate
1/γ, and exact security ε > 0, which is non-malleable against split-state adver-
saries. Then the above coding scheme is a

(
(λ (1 + k/t) + t) γ, 0, k

(
ε+ 2−λ

)
/t
)
-

locally decodable non-malleable coding scheme which is non-malleable against
the tampering class F4

split, for any t ≤ k. The rate of the code is 1/γ′, where
γ′ = λγ/t+ (1 + λ/t) γ.

Proof. Clearly the decoding algorithm reads (λ (1 + k/t) + t) γ positions of the
codeword since |c| = λγk/t and |ei| = (λ+ t) γ. Also, since the decoding algo-
rithm is deterministic, the error probability in the local decoding procedure is
0. This justifies the first two parameters of the coding scheme.

The underlying non-malleable codes NMC and NMC′ are non-malleable
against split-state adversaries and let L0, R0 be the parts of c viewed by the
two states corresponding to the split-state adversary for c, and let Li, Ri be the
parts of ei viewed by the two states corresponding to the split-state adversary
for ei, for all i ∈ [k/t]. We define how a codeword is split into four parts –
the four-state adversaries against which the above scheme is non-malleable con-
sists of adversaries which are arbitrary functions over L0, R0, L1‖ . . . ‖Lk/t and
R1‖ . . . ‖Rk/t.

To show the theorem, for any suitable four-state adversary f = (f1, f2, f3, f4)
as described above, which we denote as f1 (L0), f2 (R0), f3

(
L1, . . . , Lk/t

)
and

f4
(
R1, . . . , Rk/t

)
, we need to construct a simulator S. We describe the simulator

with oracle access to f .

1. Let S ′ be the simulator for the non-malleable code NMC, and S ′′ for NMC′.
Now Sf(·) simulates S ′ once and S ′′ k/t times to obtain simulated code-
words c and ei for all i ∈ [k/t]. Note that the simulator described for the
code instantiated from Lemma 1 does not need oracle access to the tamper-
ing function to produce simulated codewords assuming a super-polynomial
message space, which is the case since the messages are of length λk/t and
λ+ t respectively, where 0 ≤ t ≤ k. Let C =

(
c, e1, . . . , ek/t

)
.

2. Sf(·) then computes C̃ = f (C), where C̃ =
(
c̃, ẽ1, . . . , ẽk/t

)
.

7 While we define these two parts to be of equal length, as remarked earlier, there is
no such requirement.

3. Let Li, Ri be the parts of ẽi viewed by the two states cor-
responding to the split-state adversary for ei, for all i ∈
[k/t]. Let f ′i = f3

(
L1, . . . , Li−1, ·, Li+1, . . . , Lk/t

)
and f ′′i =

f4
(
R1, . . . , Ri−1, ·, Ri+1, . . . , Rk/t

)
for all i ∈ [k/t]. Now Sf(·) simu-

lates S ′f1(·),f2(·) with c̃ and S ′′f ′i(·),f ′′i (·) with ẽi for each i ∈ [k/t] internally.
S ′ returns an output r′ = r′1‖ . . . ‖r′k/t, where r′ ∈ {0, 1}λk/t ∪ {⊥, same}
and S ′′ returns an output r′′i ‖s′i ∈ {0, 1}λ+t ∪ {⊥, same} for each i ∈ [k/t].

4. Set I = ∅.
(a) If r′ = ⊥, then set I = [k] and s∗i = ⊥ for all i ∈ [k].
(b) If r′ = same, then, for each i ∈ [k], check if r′′di/te‖s

′
di/te 6= same. If so,

set I = I ∪ {j : (i− 1) t + 1 ≤ j ≤ it} and s∗j = ⊥ for all j such that
(i− 1) t+ 1 ≤ j ≤ it.

(c) Otherwise, if r′ 6∈ {⊥, same}, set I = [k]. Let s′ = s′1‖ . . . ‖s′k/t. For each

i ∈ [k],
i. If r′′di/te‖s

′
di/te = ⊥ or r′′di/te‖s

′
di/te = same, then set s∗i = ⊥.

ii. Otherwise, check if r′di/te = r′′di/te. If so, set s∗i = s′i, otherwise set
s∗i = ⊥.

5. Output (I, s∗).

The above simulator now defines IdealS,s. We must now show that

Tamperfs ≈ε′ IdealS,s for some negligible ε′. We proceed through a series of
hybrids of the form IdealSj ,s for j ∈ [k/t], which is the same as IdealSj−1,s ex-
cept that it randomly chooses an ri ∈ {0, 1}λ, and generates ei = Enc′NM (ri‖si)
for i = j and obtains r′′i ‖s′i = Dec′NM (gi (ei)) for i = j, where gi = (f ′i , f

′′
i);

if r′′i ‖s′i = ri‖si, it outputs same. This is to say that it obtains codewords and
performs decoding as in the real experiment for index j (as well). Note that
IdealS,s ≡ IdealS0,s.

Lemma 1. For all j ∈ [k/t], IdealSj−1,s ≈ε IdealSj ,s.

Proof. Let A = (A1,A2,A3,A4) be a four-state adversary that can distin-
guish between the outputs of the experiments IdealSj−1,s and IdealSj ,s for
some j ∈ [k/t], with an advantage of α. We describe a split-state adversary
B = (B1,B2) (where B1 and B2 operate independently on two halves of the un-
derlying codeword) that can break the non-malleability of the scheme NMC′ with
the same advantage α. However, since NMC′ is non-malleable against split-state
adversaries with exact security ε, α ≤ ε, which completes the proof.

Let C be the challenger for the scheme NMC′. B, using A, executes as follows.
First, A chooses a message s ∈ {0, 1}k on which he will distinguish between the
outputs of the experiments IdealSj−1,s and IdealSj ,s, and sends it to B1, which
then splits s into k/t blocks, say s1, . . . , sk/t of size t each. B1 randomly chooses

ri ∈ {0, 1}λ, where λ is the security paramter, for all i ∈ [j]. It then generates
ei = Enc′NM (ri‖si) for i ∈ [j − 1]. Let S ′ be the simulator for the non-malleable
code NMC, and S ′′ for NMC′ (on all indices but j). Now, B1 simulates S ′ once and
S ′′ k/t−j times to obtain simulated codewords c and ei for all i ∈ {j+1, . . . , k/t}.
B1 then sends the message rj‖sj to the challenger C.

C then either computes ej = Enc′NM (rj‖sj), or uses the simulator S ′′ to ob-
tain a simulated codeword ej . It then splits ej into two parts Lj , Rj and sends
Lj to B1 and Rj to B2 respectively. B1 splits c into two parts, L0 and R0, and ei
into two parts, Li and Ri, for each i ∈ [k/t]\{j}. B1 then sends across L0 to A1,
R0 to A2, Li, for all i ∈ [k/t], to A3, and Ri, for all i ∈ [k/t]\{j}, to A4, and
B2 sends across Rj to A4. A then chooses its four-state tampering function f =

(f1, f2, f3, f4), and computes L̃0 = f1 (L0), R̃0 = f2 (R0), L̃ = f3
(
L1, . . . , Lk/t

)
and R̃ = f4

(
R1, . . . , Rk/t

)
. It then parses L̃ as L̃ =

(
L̃1, . . . , L̃k/t

)
and R̃

as R̃ =
(
R̃1, . . . , R̃k/t

)
. A1, A2, A3 and A4 also determine the descriptions

of the functions f1, f2, f ′i = f3
(
L1, . . . , Li−1, ·, Li+1, . . . , Lk/t

)
and f ′′i =

f4
(
R1, . . . , Ri−1, ·, Ri+1, . . . , Rk/t

)
, respectively, for all i ∈ {j + 1, . . . , k/t}.

Then, A1 sends across L̃0 and the description of the function f1 to B1, A2 sends
across R̃0 and the description of the function f2 to B1, A3 sends across L̃i, for
all i ∈ [k/t], and the descriptions of the functions f ′i , for all i ∈ {j + 1, . . . , k/t},
to B1, and A4 sends across R̃i, for all i ∈ [k/t]\{j}, and the descriptions of the
functions f ′′i , for all i ∈ {j + 1, . . . , k/t}, to B1, and R̃j to B2.

B1 then computes r′′i ‖s′i = Dec′NM

(
L̃i, R̃i

)
for i ∈ [j − 1]; if r′′i ‖s′i = ri‖si,

it renames the output r′′i ‖s′i as same. B1 then simulates S ′f1(·),f2(·) with c̃ =(
L̃0, R̃0

)
and S ′′f ′i(·),f ′′i (·) with ẽi =

(
L̃i, R̃i

)
for each i ∈ {j + 1, . . . , k/t}, to

obtain r′ = r′1‖ . . . ‖r′k/t, where r′ ∈ {0, 1}λk/t∪{⊥, same} and r′′i ‖s′i ∈ {0, 1}λ+t∪
{⊥, same} for each i ∈ {j + 1, . . . , k/t}. B1 and B2 then send across L̃j and R̃j
respectively to C. C then responds back with r′′j ‖s′j ∈ {0, 1}λ+t ∪ {⊥, same} to
B1, by either running the real decode algorithm or by simulation (in coherence
with the way it generated the codeword to begin with).
B1 then defines variables I and s∗, and sets I = ∅.

1. If r′ = ⊥, then it sets I = [k] and s∗i = ⊥ for all i ∈ [k].
2. If r′ = same, then, for each i ∈ [k], it checks if r′′di/te‖s

′
di/te 6= same. If so,

it sets I = I ∪ {β : (i− 1) t + 1 ≤ β ≤ it} and s∗β = ⊥ for all β such that
(i− 1) t+ 1 ≤ β ≤ it.

3. Otherwise, if r′ 6∈ {⊥, same}, it sets I = [k]. Let s′ = s′1‖ . . . ‖s′k/t. For each

i ∈ [k],
(a) If r′′di/te‖s

′
di/te = ⊥ or r′′di/te‖s

′
di/te = same, then it sets s∗i = ⊥.

(b) Otherwise, it checks if r′di/te = r′′di/te. If so, it sets s∗i = s′i, otherwise it
sets s∗i = ⊥.

Finally, B1 defines s̃ as follows. If I = [k], then it sets s̃ = s∗. Otherwise, it sets
s̃|I = ⊥ and s̃|I = s|I , where I denotes the complement of the set I. Then, B1
sends across s̃ to A. A then replies back with a bit b to B1, where b = 0 denotes
that the experiment run was IdealSj ,s, and b = 1 denotes that the experiment
run was IdealSj−1,s, which B1 forwards to C.

Note that if the challenger C sent across a simulated codeword for ej ,
then the experiment is identical to IdealSj−1,s, while if C sent across a

real codeword for the message rj‖sj for ej , then the experiment is iden-
tical to IdealSj ,s. Hence, since A is able to distinguish between the out-
puts of the two experiments with advantage α, so can B between the

outputs of the experiments Tamper
(f ′j ,f

′′
j)

rj‖sj and IdealS′′,rj‖sj as defined

in Definition 3, where f ′j = f3
(
L1, . . . , Lj−1, ·, Lj+1, . . . , Lk/t

)
and f ′′j =

f4
(
R1, . . . , Rj−1, ·, Rj+1, . . . , Rk/t

)
. Since B is a valid split-state adversary for

the scheme NMC′, as mentioned before, α ≤ ε, which completes the proof. ut

We define IdealS†,s, which is the same as IdealSk/t,s except that the first
two components of the codeword are generated using an actual encoding (i.e.,
EncNM

(
r1‖ . . . ‖rk/t

)
) and the decoding is done using the real decoding algo-

rithm; i.e., r′ = DecNM
(
(f1, f2)

(
EncNM

(
r1‖ . . . ‖rk/t

)))
. If r′ = r1‖ . . . ‖rk/t, it

outputs same.

Lemma 2. IdealSk/t,s ≈ε IdealS†,s.

Proof. Let A = (A1,A2,A3,A4) be a four-state adversary who can distinguish
between the outputs of the experiments IdealSk/t,s and IdealS†,s with an ad-
vantage of α. We describe a split-state adversary B = (B1,B2) (where B1 and
B2 do not communicate with each other) who can break the non-malleability
of the the scheme NMC with the same advantage α. However, since NMC is
non-malleable against split-state adversaries with exact security ε, α ≤ ε, which
completes the proof.

Let C be the challenger for the scheme NMC. B, using A, executes as follows.
First, A chooses a message s ∈ {0, 1}k on which he will distinguish between the
outputs of the experiments IdealSk/t,s and IdealS†,s, and sends it to B1, which
then splits s into k/t blocks, say s1, . . . , sk/t of size t each. B1 randomly chooses

ri ∈ {0, 1}λ, where λ is the security paramter, for all i ∈ [k/t]. It then generates
ei = Enc′NM (ri‖si) for i ∈ [k/t]. B1 then sends the message r1‖ . . . ‖rk/t to the
challenger C.
C then either computes c = EncNM

(
r1‖ . . . ‖rk/t

)
, or uses the simulator

S ′ to obtain a simulated codeword c, where S ′ is the simulator for the non-
malleable code NMC. It then splits c into two parts L0, R0 and sends L0 to
B1 and R0 to B2 respectively. B1 splits ei into two parts, Li and Ri, for each
i ∈ [k/t]. B1 then sends across L0 to A1, Li, for all i ∈ [k/t], to A3, and Ri,
for all i ∈ [k/t], to A4, and B2 sends across R0 to A2. A then chooses its
four-state tampering function f = (f1, f2, f3, f4), and computes L̃0 = f1 (L0),
R̃0 = f2 (R0), L̃ = f3

(
L1, . . . , Lk/t

)
and R̃ = f4

(
R1, . . . , Rk/t

)
. It then parses

L̃ as L̃ =
(
L̃1, . . . , L̃k/t

)
and R̃ as R̃ =

(
R̃1, . . . , R̃k/t

)
. Then, A1 sends across

L̃0 to B1, A2 sends across R̃0 to B2, A3 sends across L̃i, for all i ∈ [k/t], to B1,
and A4 sends across R̃i, for all i ∈ [k/t], to B1.

B1 then computes r′′i ‖s′i = Dec′NM

(
L̃i, R̃i

)
for i ∈ [k/t]; if r′′i ‖s′i = ri‖si,

it renames the output r′′i ‖s′i as same. B1 and B2 then send across L̃0 and R̃0

respectively to C. C then responds back with r′ = r′1‖ . . . ‖r′k/t ∈ {0, 1}
λk/t ∪ {⊥

, same} to B1, by either running the real decode algorithm or by simulation (in
coherence with the way it generated the codeword to begin with).

B1 then defines variables I and s∗, and sets I = ∅.

1. If r′ = ⊥, then it sets I = [k] and s∗i = ⊥ for all i ∈ [k].

2. If r′ = same, then, for each i ∈ [k], it checks if r′′di/te‖s
′
di/te 6= same. If so,

it sets I = I ∪ {β : (i− 1) t + 1 ≤ β ≤ it} and s∗β = ⊥ for all β such that
(i− 1) t+ 1 ≤ β ≤ it.

3. Otherwise, if r′ 6∈ {⊥, same}, it sets I = [k]. Let s′ = s′1‖ . . . ‖s′k/t. For each

i ∈ [k],

(a) If r′′di/te‖s
′
di/te = ⊥ or r′′di/te‖s

′
di/te = same, then it sets s∗i = ⊥.

(b) Otherwise, it checks if r′di/te = r′′di/te. If so, it sets s∗i = s′i, otherwise it
sets s∗i = ⊥.

Finally, B1 defines s̃ as follows. If I = [k], then it sets s̃ = s∗. Otherwise, it sets
s̃|I = ⊥ and s̃|I = s|I , where I denotes the complement of the set I. Then, B1
sends across s̃ to A. A then replies back with a bit b to B1, where b = 0 denotes
that the experiment run was IdealS†,s, and b = 1 denotes that the experiment
run was IdealSk/t,s, which B1 forwards to C.

Note that if the challenger C sent across a simulated codeword for c, then
the experiment is identical to IdealSk/t,s, while if C sent across a real codeword
for the message r1‖ . . . ‖rk/t for c, then the experiment is identical to IdealS†,s.
Hence, since A is able to distinguish between the outputs of the two exper-
iments with advantage α, so can B between the outputs of the experiments

Tamper
(f1,f2)
r1‖...‖rk/t and IdealS′,r1‖...‖rk/t as defined in Definition 3. Since B is a

valid split-state adversary for the scheme NMC, as mentioned before, α ≤ ε,
which completes the proof. ut

Lemma 3. IdealS†,s ≈k(ε+2−λ)/t Tamperfs .

Proof. The only difference between the two experiments is step 4 of the simula-
tor, which is the decoding step. In particular, differences only lie in steps 4(b)
and 4(c)i where r′′i ‖s′i = same.

In step 4(b), r′ = same while r′′i ‖s′i 6= same. By the non-malleability of NMC′,
r′′i ‖s′i is independent of ri‖si, in particular, r′′i is independent of ri. Further, the
split state adversaries see nothing else which has information about ri (since the
ri’s are all random). Hence, the probability that r′′i = ri is atmost 2−λ, and with
probability 1−2−λ, even the real decoding algorithm outputs ⊥. Hence, for each
i ∈ [k/t], the output distributions of the two experiments differ only by ε+ 2−λ.

In step 4(c)i. when r′′i ‖s′i = same, r′ 6= same. By the non-malleability of NMC,
r′i is independent of ri and the split state adversaries see nothing else which has
information about ri (since the r’s are all different and random). Hence, the
probability that r′′i = r′i is atmost 2−λ, and with probability 1 − 2−λ, even
the real decoding algorithm outputs ⊥. Hence, for each i ∈ [k/t], the output
distributions of the two experiments differ only by ε+ 2−λ. ut

Combining all the hybrids, we see that Tamperfs ≈ε′ IdealS,s for ε′ =
O
(
k
(
ε+ 2−λ

)
/t
)
. This completes the proof of non-malleability of the scheme.

ut

Corollary 1. For all k, there exists an explicit construction of a(
Õ
(√

k
)
, 0, ν (λ)

)
-locally decodable non-malleable coding scheme over k-

bit messages with constant rate (for some negligible function ν (·)) which is
non-malleable against four-state adversaries.

Proof. This follows by choosing t =
√
k and using constant-rate non-malleable

codes non-malleable against split state adversaries (from [1]) in Theorem 2. ut

4 Non-malleable Codes with O(λ) Locality against Fhalf

We now present our construction of LDNMC withO(λ) locality and against Fhalf.
The key behind this improvement in locality is that we use just one random string
r across all encodings instead of multiple r’s as in the previous construction.
Somewhat surprisingly, not only are we able to use this idea to build a non-
malleable code, we are also able to secure it against a stronger adversarial model,
i.e., Fhalf. Before we present this construction, for ease of exposition, we present
a construction that is non-malleable against F3

split (and then show how to reduce
the number of states to 2). Let NMC = (EncNM,DecNM) be a non-malleable
coding scheme on strings of length log k+λ+1, where λ is the security parameter.
The construction works as follows:

1. Enc (s): On input s ∈ {0, 1}k, the algorithm chooses a random string r ∈
{0, 1}λ and computes ei = EncNM (i, r‖si) for i ∈ [k]. The algorithm finally
outputs the codeword C = (r, e1, . . . , ek).

2. Dec (C, i): On input i ∈ [k], the algorithm reads the first and (i+ 1)th block
of C, retrieving r, ei. Then it computes i∗, r∗‖si = DecNM (ei). If the decoding
algorithm outputs ⊥, the algorithm outputs ⊥. If r∗ 6= r or i∗ 6= i, the
algorithm outputs ⊥. Otherwise, the algorithm outputs si.

In order to prove the security of this construction, we digress and consider
a modified construction which ignores r and merely encodes each bit of s along
with its index i.e., Enc(s) = {ei = EncNM (i, si)}i∈[k]. A quick inspection reveals
that this does not satisfy our definition of non-malleability. Indeed, an adversary
could replace e1 with an encoding of a bit s′1 of his choosing and leave all other eis
the same. In other words, he can copy some bits of the encoding and replace the
rest with encodings of bits chosen independently by him. While this construction
is not non-malleable in the standard sense, we can show that the above mauling
really is all that the adversary can do.

4.1 Quoted Non-malleability

To formalize this intuition, we introduce a new notion of non-malleability which
we call “Quoted Non-malleability.” This definition is similar in spirit to the
definition “unquoted” CCA security (UCCA) defined in Myers and Shelat [27].

Definition 7. (Quoted-non-malleability, QNMC). A coding scheme (Enc,Dec)
with message length k and block length n is said to be quoted-non-malleable with
error ε with respect to a family F of tampering functions acting on {0, 1}n if for
every f ∈ F there is a simulator S such that for all s ∈ {0, 1}k, we have

QTamperfs ≈ε QIdealS,s

where QTamperfs is the output of the tampering experiment defined8 by

QTamperfs ≡

{
C ← Enc (s) ; C̃ ← f (C) ;∀i, s̃i ← Dec

(
C̃, i
)

Output s̃ = s̃1, · · · , s̃k

}

and QIdealS,s is defined by

QIdealS,s ≡

 s← Sf(·)
(
1λ
)
, where s ∈ ({0, 1} ∪ {⊥, same})k

∀i ∈ [k], if si = same, set s̃i = si, otherwise set s̃i = si
Output s̃ = s̃1, · · · , s̃k


We now prove that the construction with the randomness r, i.e. C =(

r, {ei = EncNM (i, r‖si)}i∈[k]
)

is quoted non-malleable.

Theorem 3. Assume that NMC is a non-malleable coding scheme of exact se-
curity ε, which is non-malleable against split-state adversaries. Then the above
coding scheme is a quoted-non-malleable coding scheme with exact security kε
which is non-malleable against three-state adversaries.

Proof. The underlying non-malleable code NMC is non-malleable against split-
state adversaries and let Li, Ri be the parts of ei viewed by the two states
corresponding to the split-state adversary for ei, for all i ∈ [k]. The three-
state adversaries against which the above scheme is non-malleable consists of
adversaries which are arbitrary functions over r, L1‖ . . . ‖Lk and R1‖ . . . ‖Rk.

To show the theorem, for any function suitable three-state adversary f =
(f1, f2, f3) as described above, which we denote as f1 (r), f2 (L1, . . . , Lk) and
f3 (R1, . . . , Rk), we need to construct a simulator S. We describe the simulator
with oracle access to f .

1. Sf(·) first chooses a random string r ∈ {0, 1}λ.
2. Let S ′ be the simulator for the non-malleable code NMC. Now Sf(·) sim-

ulates S ′ k times to obtain simulated codewords ei for all i ∈ [k]. Let
C = (r, e1, . . . , ek).

3. Next Sf(·) obtains r′ = f1 (r), where r′ ∈ {0, 1}λ.

8 Note that in this definition, we abuse notation mildly by allowing Dec to take the
index i as input, in addition to C̃. The output of Dec(·, i) is in {0, 1}

⋃
⊥. Since the

definition of quoted non-malleability makes sense without locality, one can think of
Dec(·, ·) as simply running the actual decode algorithm and simply outputting the
ith bit (or ⊥ if the decoding fails).

4. Let Li, Ri be the parts of ei viewed by the two states correspond-
ing to the split-state adversary for ei, for all i ∈ [k]. Let f ′i =
f2 (L1, . . . , Li−1, ·, Li+1, . . . , Lk) and f ′′i = f3 (R1, . . . , Ri−1, ·, Ri+1, . . . , Rk)

for all i ∈ [k]. Now Sf(·) simulates S ′f
′
i(·),f

′′
i (·)

internally. At some point, S ′
returns an output (i′, r′′i ‖s′i) ∈ {0, 1}log k+λ+1 ∪ {⊥, same}.

5. For each i ∈ [k],
(a) if (i′, r′′i ‖s′i) = ⊥, then set si = ⊥.
(b) if (i′, r′′i ‖s′i) = same,

i. if r′ 6= r, then set si = ⊥.
ii. otherwise, set si = same.

(c) otherwise,
i. if r′ = r′′i and i′ = i, then set si = s′i.
ii. otherwise, set si = ⊥.

6. Output s.

The above simulator defines QIdealS,s. We must now show that

QTamperfs ≈ε′ QIdealS,s for some ε′. We proceed through a series of hybrids of
the form QIdealSj ,s for j ∈ [k], which is the same as QIdealSj−1,s except that it
generates ei = EncNM (i, r‖si) for i = j and it obtains (i′, r′′i ‖s′i) = DecNM (gi (ei))
for i = j, where gi = (f ′i , f

′′
i). If (i′, r′′i ‖s′i) = (i, r‖si), it outputs same. Note that

QIdealS,s ≡ QIdealS0,s and QTamperfs ≡ IdealSk,s.

Lemma 4. For all j ∈ [k], QIdealSj−1,s ≈ε QIdealSj ,s.

Proof. Let A = (A1,A2,A3) be a three-state adversary who can distinguish
between the outputs of the experiments QIdealSj−1,s and QIdealSj ,s for some
j ∈ [k], with an advantage of α. We describe a split-state adversary B = (B1,B2)
(where B1 and B2 do not communicate with each other) who can break the
non-malleability of the the scheme NMC with the same advantage α. However,
since NMC is non-malleable against split-state adversaries with exact security ε,
α ≤ ε, which completes the proof.

Let C be the challenger for the scheme NMC. B, using A, executes as follows.
First, A chooses a message s ∈ {0, 1}k on which he will distinguish between
the outputs of the experiments QIdealSj−1,s and QIdealSj ,s, and sends it to

B1. B1 randomly chooses r ∈ {0, 1}λ, where λ is the security parameter. It then
generates ei = EncNM (i, r‖si) for i ∈ [j − 1]. Let S ′ be the simulator for the
non-malleable code NMC (on all indices but j). Now, B1 simulates S ′ k−j times
to obtain simulated codewords ei for all i ∈ {j + 1, . . . , k}. B1 then sends the
message (j, r‖sj) to the challenger C.
C then either computes ej = EncNM (j, r‖sj), or uses the simulator S ′ to

obtain a simulated codeword ej . It then splits ej into two parts Lj , Rj and
sends Lj to B1 and Rj to B2 respectively. B1 splits ei into two parts, Li and
Ri, for each i ∈ [k]\{j}. B1 then sends across r to A1, Li, for all i ∈ [k],
to A2, and Ri, for all i ∈ [k]\{j}, to A3, and B2 sends across Rj to A3. A
then chooses its three-state tampering function f = (f1, f2, f3), and computes
r̃ = f1 (r), L̃ = f2 (L1, . . . , Lk) and R̃ = f3 (R1, . . . , Rk). It then parses L̃ as

L̃ =
(
L̃1, . . . , L̃k

)
and R̃ as R̃ =

(
R̃1, . . . , R̃k

)
. A2 and A3 also determine the

descriptions of the functions f ′i = f2 (L1, . . . , Li−1, ·, Li+1, . . . , Lk) and f ′′i =
f3 (R1, . . . , Ri−1, ·, Ri+1, . . . , Rk), respectively, for all i ∈ {j + 1, . . . , k}. Then,
A1 sends across r̃ to B1, A2 sends across L̃i, for all i ∈ [k], and the descriptions
of the functions f ′i , for all i ∈ {j + 1, . . . , k}, to B1, and A3 sends across R̃i, for
all i ∈ [k]\{j}, and the descriptions of the functions f ′′i , for all i ∈ {j+1, . . . , k},
to B1, and R̃j to B2.

B1 then computes (i′, r′′i ‖s′i) = DecNM
(
L̃i, R̃i

)
for i ∈ [j − 1]; if (i′, r′′i ‖s′i) =

(i, r‖si), it renames the output (i′, r′′i ‖s′i) as same. B1 then simulates S ′f ′i(·),f ′′i (·)

with ẽi =
(
L̃i, R̃i

)
for each i ∈ {j + 1, . . . , k}, to obtain (i′, r′′i ‖s′i) ∈ {0, 1}λ+t ∪

{⊥, same} for each i ∈ {j + 1, . . . , k}. B1 and B2 then send across L̃j and R̃j
respectively to C. C then responds back with

(
j′, r′′j ‖s′j

)
∈ {0, 1}λ+t ∪ {⊥, same}

to B1, by either running the real decode algorithm or by simulation (in coherence
with the way it generated the codeword to begin with).
B1 then defines the variable s. For each i ∈ [k],

1. if (i′, r′′i ‖s′i) = ⊥, then it sets si = ⊥.
2. if (i′, r′′i ‖s′i) = same,

(a) if r̃ 6= r, then it sets si = ⊥.
(b) otherwise, it sets si = same.

3. otherwise,
(a) if r̃ = r′′i and i′ = i, then it sets si = s′i.
(b) otherwise, it sets si = ⊥.

Finally, B1 defines s̃ as follows. For each i ∈ [k], if si = same, set s̃i = si,
otherwise set s̃i = si. Then, B1 sends across s̃ to A. A then replies back with a
bit b to B1, where b = 0 denotes that the experiment run was QIdealSj ,s, and
b = 1 denotes that the experiment run was QIdealSj−1,s, which B1 forwards to
C.

Note that if the challenger C sent across a simulated codeword for ej ,
then the experiment is identical to QIdealSj−1,s, while if C sent across a real
codeword for the message (j, r‖sj) for ej , then the experiment is identical to
QIdealSj ,s. Hence, since A is able to distinguish between the outputs of the
two experiments with advantage α, so can B between the outputs of the experi-

ments Tamper
(f ′j ,f

′′
j)

(j,r‖sj) and IdealS′,(j,r‖sj) as defined in Definition 3, where f ′j =

f2 (L1, . . . , Lj−1, ·, Lj+1, . . . , Lk) and f ′′j = f3 (R1, . . . , Rj−1, ·, Rj+1, . . . , Rk).
Since B is a valid split-state adversary for the scheme NMC, as mentioned before,
α ≤ ε, which completes the proof. ut

Combining all the hybrids, we see that QTamperfs ≈ε′ QIdealS,s for ε′ = kε.
This completes the proof of quoted-non-malleability of the scheme. ut

4.2 Achieving Full Non-Malleability

Recall that our ultimate goal is to construct a coding scheme which is non-
malleable against split-state adversaries. As the theorem below states, we can

show that the quoted non-malleable construction from the previous subsection
is itself fully non-malleable. As a careful reader may have observed, the proof of
quoted non-malleability does not use the randomness of r at all. Indeed, the con-
struction, as we alluded to earlier, is quoted non-malleable even without using
r in the encoding. Yet this randomness is precisely what makes the construc-
tion (fully) non-malleable. We first show how the construction from Section 4
is non-malleable against 3-state adversaries and then show how to modify the
construction to achieve security against Fhalf.

Theorem 4. Assume that NMC is a non-malleable coding scheme of rate 1/γ
and exact security ε, which is non-malleable against split-state adversaries. Then
the coding scheme from Section 4 is a

(
λ+ (λ+ log k + 1) γ, 0, k

(
ε+ 2−λ

))
-

locally decodable non-malleable coding scheme which is non-malleable against
three-state adversaries. The rate of the code is 1/γ′, where γ′ = λ/k +
(λ+ log k + 1) γ.

Proof. Clearly the decoding algorithm reads λ + (λ+ log k + 1) γ positions of
the codeword since |r| = λ and |ei| = (λ+ log k + 1) γ. Also, since the decoding
algorithm is deterministic, the error probability in the local decoding procedure
is 0. This justifies the first two parameters of the coding scheme.

The underlying non-malleable code NMC is non-malleable against split-state
adversaries and let Li, Ri be the parts of ei viewed by the two states correspond-
ing to the split-state adversary for ei, for all i ∈ [k]. The three-state adversaries
against which the above scheme is non-malleable consists of adversaries which
are arbitrary functions over r, L1‖ . . . ‖Lk and R1‖ . . . ‖Rk.

To show the theorem, for any function suitable three-state adversary f =
(f1, f2, f3) as described above, which we denote as f1 (r), f2 (L1, . . . , Lk) and
f3 (R1, . . . , Rk), we need to construct a simulator S. We describe the simulator
with oracle access to f .

1. Sf(·) first chooses a random string r ∈ {0, 1}λ.
2. Let S ′ be the simulator for the non-malleable code NMC. Now Sf(·) simulates
S ′ k times to obtain simulated codewords ei for all i ∈ [k]. Note that the
simulator described for the code instantiated from Lemma 1 does not need
oracle access to the tampering function to produce simulated codewords
assuming a super-polynomial message space, which is the case since the
messages are of length log k + λ+ 1. Let C = (r, e1, . . . , ek).

3. Next Sf(·) obtains r′ = f1 (r), where r′ ∈ {0, 1}λ.
4. Let Li, Ri be the parts of ei viewed by the two states correspond-

ing to the split-state adversary for ei, for all i ∈ [k]. Let f ′i =
f2 (L1, . . . , Li−1, ·, Li+1, . . . , Lk) and f ′′i = f3 (R1, . . . , Ri−1, ·, Ri+1, . . . , Rk)

for all i ∈ [k]. Now Sf(·) simulates S ′f
′
i(·),f

′′
i (·)

internally. At some point, S ′
returns an output (i′, r′′i ‖s′i) ∈ {0, 1}log k+λ+1 ∪ {⊥, same}.

5. Set I = ∅.
(a) If r′ = r, then, for each i ∈ [k],

i. if (i′, r′′i ‖s′i) = ⊥, then set I = I ∪ {i} and s∗i = ⊥.
ii. otherwise, if (i′, r′′i ‖s′i) 6= same, then set I = I ∪ {i} and s∗i = ⊥.

(b) Otherwise, set I = [k]. For each i ∈ [k],
i. if (i′, r′′i ‖s′i) = ⊥ or (i′, r′′i ‖s′i) = same, then set s∗i = ⊥.
ii. otherwise,

A. if r′ = r′′i and i′ = i, then set s∗i = s′i.
B. otherwise, set s∗i = ⊥.

6. Output (I, s∗).

We first note that for the construction in Section 4, QTamperfs ≡ Tamperfs ,
by definition. Hence, we only need to show the indistinguishability of QIdealS,s
and IdealS,s, where S is the simulator described above and S is the simulator
described in the proof of Theorem 3.

Lemma 5. QIdealS,s ≈2−λk IdealS,s.

Proof. The only difference between the two experiments is step 5, which is the
decoding step. In particular, differences only lies in step 5(a)ii of the simulator
S.

In step 4(a)ii, r′′i ‖s′i 6= same, and note that r′′i is generated by the simulator S ′
without any knowledge of r. Hence, r′′i is independent of r. Hence, the probability
that r′′i = r is atmost 2−λ, and with probability 1− 2−λ, even the decoding step
in the simulator S in the proof of Theorem 3 outputs ⊥. Hence, for each i ∈ [k],
the output distributions of the two experiments differ only by 2−λ. ut

Combining this hybrid with the proof of Theorem 3, we see that
Tamperfs ≈ε′ IdealS,s for ε′ = k

(
ε+ 2−λ

)
. This completes the proof of non-

malleability of the scheme. ut

Reducing states to 2. The proof of Theorem 4 crucially relies on the secrecy of
r (from the adversaries in states 2 and 3 above). This contributes to making
the number of states to be 3. However, secrecy of r can also be preserved by
simply secret sharing r into r = rL ⊕ rR. The final encoding is as follows:
Enc (s) = ([rL, L1, · · · , Lk], [rR, R1, · · · , Rk]), where rL ⊕ rR = r for a random
r ∈ {0, 1}λ and ei = EncNM (i, r‖si) = (Li, Ri) for i ∈ [k]. This gives us a
construction that is non-malleable against Fhalf. Additionally, note that it is
straight-forward to modify the construction to split s into blocks of size t as
opposed to single bits (similar to the construction in Section 3) to obtain the
following theorem, the proof of which is given in the full version of this paper.

Theorem 5. Assume that NMC is a non-malleable coding scheme of rate 1/γ
and exact security ε, which is non-malleable against split-state adversaries. Then
there is an efficient

(
λ+ (λ+ log (k/t) + t) γ, 0, k

(
ε+ 2−λ

)
/t
)
-locally decodable

non-malleable coding scheme which is non-malleable against Fhalf. The rate of
the code is 1/γ′, where γ′ = λ/k + (1 + λ/t+ log (k/t) /t) γ.

Corollary 2. Assuming λ ≥ log k, there exists an explicit construction of a
(O (λ) , 0, ν (λ))-locally decodable non-malleable coding scheme over k-bit mes-
sages with constant rate (for some negligible function ν(·)) which is non-malleable
against Fhalf.

Proof. This follows by choosing t = λ and using constant-rate non-malleable
codes non-malleable against Fhalf (from the work of Aggarwal et al. [1]) in The-
orem 5. ut

Corollary 3. There exists an explicit construction of a (ω(1), 0, ν(λ))-locally
decodable non-malleable coding scheme with rate 1 (for a negligible function ν(·))
which is non-malleable against the tampering function class Fbit.

Proof. The proof of this corollary follows by instantiating EncNM in Theorem
4 with the rate 1 non-malleable coding scheme from [13] that is non-malleable
against Fbit and by splitting the k-bit input message into blocks of size ω(1) each
and encoding these bits together. ut

5 Updatability and Security against Continual Attacks

We now show how to modify the construction from Section 3 to get a code that
is leakage and tamper-resilient against continual attacks. Note that if codewords
are not periodically refreshed, then an adversary that obtains leakage that is
unbounded, can, over time, leak one codeword completely and then tamper the
codeword based on this codeword. At a high level, to prevent this, we must
refresh codewords periodically (even if they are not updated). We do this, by
cycling through the codewords that encode all si values one-by-one and “refresh”
them. Of course, if the encoder and decoder maintain state, they can perform
this refreshing in a cyclic manner. However, in order to perform this refresh in
a stateless manner, we maintain a counter that is encoded along with all the
ri values. This ensures that we refresh all codewords periodically. Additionally,
for technical reasons (that we describe later), we refresh codewords everytime
we decode a particular index. By lowering the threshold of leakage tolerated in
every “round”, we ensure that our construction remains secure. We describe our
construction (and the security) in more detail in the full version [9] of this paper.

6 Applications of Local Non-malleable Codes

Similar to the work of Dachman-Soled et al. [16], our locally updat-
able/decodable leakage-resilient non-malleable codes can be used in the construc-
tion of secure RAM computation protocols. At a very high level, if the memory
and program code are encoded using a local leakage-resilient non-malleable code
(that is resilient to tampering from the family F and leakage from the fam-
ily G) and the resulting codeword is then accessed through an oblivious RAM
(ORAM) [23,28,29,24] protocol, one can show that the resulting protocol is a
protocol for secure RAM computation that is secure against tampering of the
memory from the same tampering family F and leakage from the same family
G. Now, if we instantiate the non-malleable code with our information-theoretic
non-malleable code from Section 5, and instantiate the ORAM protocol with
an ORAM that has information-theoretic guarantees [6,17,31,14], then one can

show that the resulting RAM computation protocol has information-theoretic
security. Of course, information-theoretic RAM protocols assume the existence
of ideal encryption and our final compiler will make the same assumption. How-
ever, if the compiler is applied in the context of information-theoretic secure
multi-party computation [7,11], then one can obtain an information-theoretic
secure RAM computation protocol that is resilient to tampering from the class
F and leakage from the class G (by replacing the ideal encryption with secret
sharing [30]).

For further details of ORAM compilers, tamper/leakage resilient
(information-theoretic) RAM computation, our construction and results, we re-
fer the reader to the full version of this paper.

References

1. Divesh Aggarwal, Yevgeniy Dodis, Tomasz Kazana, and Maciej Obremski. Non-
malleable reductions and applications. In Proceedings of the Forty-Seventh Annual
ACM on Symposium on Theory of Computing, STOC 2015, Portland, OR, USA,
June 14-17, 2015, pages 459–468, 2015.

2. Divesh Aggarwal, Yevgeniy Dodis, and Shachar Lovett. Non-malleable codes from
additive combinatorics. In Symposium on Theory of Computing, STOC 2014, New
York, NY, USA, May 31 - June 03, 2014, pages 774–783, 2014.

3. Divesh Aggarwal, Stefan Dziembowski, Tomasz Kazana, and Maciej Obremski.
Leakage-resilient non-malleable codes. In Theory of Cryptography - 12th Theory
of Cryptography Conference, TCC 2015, Warsaw, Poland, March 23-25, 2015,
Proceedings, Part I, pages 398–426, 2015.

4. Shashank Agrawal, Divya Gupta, Hemanta K. Maji, Omkant Pandey, and Manoj
Prabhakaran. Explicit non-malleable codes resistant to permutations. In Advances
in Cryptology - CRYPTO 2015 - 35th Annual Cryptology Conference, Santa Bar-
bara, CA, USA, August 16-20, 2015, Proceedings, 2015.

5. Shashank Agrawal, Divya Gupta, Hemanta K. Maji, Omkant Pandey, and Manoj
Prabhakaran. A rate-optimizing compiler for non-malleable codes against bit-wise
tampering and permutations. In Theory of Cryptography - 12th Theory of Cryptog-
raphy Conference, TCC 2015, Warsaw, Poland, March 23-25, 2015, Proceedings,
Part I, pages 375–397, 2015.

6. Miklós Ajtai. Oblivious rams without cryptographic assumptions. In Proceedings
of the 42nd ACM Symposium on Theory of Computing, STOC 2010, Cambridge,
Massachusetts, USA, 5-8 June 2010, pages 181–190, 2010.

7. Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems
for non-cryptographic fault-tolerant distributed computation (extended abstract).
In Proceedings of the 20th Annual ACM Symposium on Theory of Computing, May
2-4, 1988, Chicago, Illinois, USA, pages 1–10, 1988.

8. Nishanth Chandran, Bhavana Kanukurthi, and Rafail Ostrovsky. Locally updat-
able and locally decodable codes. In Theory of Cryptography - 11th Theory of
Cryptography Conference, TCC 2014, San Diego, CA, USA, February 24-26, 2014.
Proceedings, pages 489–514, 2014.

9. Nishanth Chandran, Bhavana Kanukurthi, and Srinivasan Raghuraman.
Information-theoretic local non-malleable codes and their applications. Cryptology
ePrint Archive, Report 2015, 2015. http://eprint.iacr.org/.

10. Eshan Chattopadhyay and David Zuckerman. Non-malleable codes against con-
stant split-state tampering. In 55th IEEE Annual Symposium on Foundations
of Computer Science, FOCS 2014, Philadelphia, PA, USA, October 18-21, 2014,
pages 306–315, 2014.

11. David Chaum, Claude Crépeau, and Ivan Damg̊ard. Multiparty unconditionally
secure protocols (extended abstract). In Proceedings of the 20th Annual ACM
Symposium on Theory of Computing, May 2-4, 1988, Chicago, Illinois, USA, pages
11–19, 1988.

12. Mahdi Cheraghchi and Venkatesan Guruswami. Capacity of non-malleable codes.
In Innovations in Theoretical Computer Science, ITCS’14, Princeton, NJ, USA,
January 12-14, 2014, pages 155–168, 2014.

13. Mahdi Cheraghchi and Venkatesan Guruswami. Non-malleable coding against bit-
wise and split-state tampering. In Theory of Cryptography - 11th Theory of Cryp-
tography Conference, TCC 2014, San Diego, CA, USA, February 24-26, 2014.
Proceedings, pages 440–464, 2014.

14. Kai-Min Chung, Zhenming Liu, and Rafael Pass. Statistically-secure ORAM with

õ(log2 n) overhead. In Advances in Cryptology - ASIACRYPT 2014 - 20th Inter-
national Conference on the Theory and Application of Cryptology and Information
Security, Kaoshiung, Taiwan, R.O.C., December 7-11, 2014, Proceedings, Part II,
pages 62–81, 2014.

15. Sandro Coretti, Ueli Maurer, Björn Tackmann, and Daniele Venturi. From single-
bit to multi-bit public-key encryption via non-malleable codes. In Theory of Cryp-
tography - 12th Theory of Cryptography Conference, TCC 2015, Warsaw, Poland,
March 23-25, 2015, Proceedings, Part I, pages 532–560, 2015.

16. Dana Dachman-Soled, Feng-Hao Liu, Elaine Shi, and Hong-Sheng Zhou. Locally
decodable and updatable non-malleable codes and their applications. In Theory
of Cryptography - 12th Theory of Cryptography Conference, TCC 2015, Warsaw,
Poland, March 23-25, 2015, Proceedings, Part I, pages 427–450, 2015.

17. Ivan Damg̊ard, Sigurd Meldgaard, and Jesper Buus Nielsen. Perfectly secure obliv-
ious RAM without random oracles. In Theory of Cryptography - 8th Theory of
Cryptography Conference, TCC 2011, Providence, RI, USA, March 28-30, 2011.
Proceedings, pages 144–163, 2011.

18. Stefan Dziembowski, Tomasz Kazana, and Maciej Obremski. Non-malleable codes
from two-source extractors. In Advances in Cryptology - CRYPTO 2013 - 33rd
Annual Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2013.
Proceedings, Part II, pages 239–257, 2013.

19. Stefan Dziembowski, Krzysztof Pietrzak, and Daniel Wichs. Non-malleable codes.
In Innovations in Computer Science - ICS 2010, Tsinghua University, Beijing,
China, January 5-7, 2010. Proceedings, pages 434–452, 2010.

20. Sebastian Faust, Pratyay Mukherjee, Jesper Buus Nielsen, and Daniele Venturi.
Continuous non-malleable codes. In Theory of Cryptography - 11th Theory of
Cryptography Conference, TCC 2014, San Diego, CA, USA, February 24-26, 2014.
Proceedings, pages 465–488, 2014.

21. Sebastian Faust, Pratyay Mukherjee, Jesper Buus Nielsen, and Daniele Venturi.
A tamper and leakage resilient von neumann architecture. In Public-Key Cryptog-
raphy - PKC 2015 - 18th IACR International Conference on Practice and Theory
in Public-Key Cryptography, Gaithersburg, MD, USA, March 30 - April 1, 2015,
Proceedings, pages 579–603, 2015.

22. Sebastian Faust, Pratyay Mukherjee, Daniele Venturi, and Daniel Wichs. Effi-
cient non-malleable codes and key-derivation for poly-size tampering circuits. In

Advances in Cryptology - EUROCRYPT 2014 - 33rd Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques, Copenhagen,
Denmark, May 11-15, 2014. Proceedings, pages 111–128, 2014.

23. Oded Goldreich. Towards a theory of software protection and simulation by obliv-
ious rams. In Proceedings of the 19th Annual ACM Symposium on Theory of
Computing, 1987, New York, New York, USA, pages 182–194, 1987.

24. Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on obliv-
ious rams. J. ACM, 43(3):431–473, 1996.

25. Jonathan Katz and Luca Trevisan. On the efficiency of local decoding procedures
for error-correcting codes. In Proceedings of the Thirty-Second Annual ACM Sym-
posium on Theory of Computing, May 21-23, 2000, Portland, OR, USA, pages
80–86, 2000.

26. Feng-Hao Liu and Anna Lysyanskaya. Tamper and leakage resilience in the split-
state model. In Advances in Cryptology - CRYPTO 2012 - 32nd Annual Cryptology
Conference, Santa Barbara, CA, USA, August 19-23, 2012. Proceedings, pages 517–
532, 2012.

27. Steven Myers and Abhi Shelat. Bit encryption is complete. In 50th Annual IEEE
Symposium on Foundations of Computer Science, FOCS 2009, October 25-27,
2009, Atlanta, Georgia, USA, pages 607–616, 2009.

28. Rafail Ostrovsky. An efficient software protection scheme. In Advances in Cryp-
tology - CRYPTO ’89, 9th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 20-24, 1989, Proceedings, pages 610–611, 1989.

29. Rafail Ostrovsky. Efficient computation on oblivious rams. In Proceedings of
the 22nd Annual ACM Symposium on Theory of Computing, May 13-17, 1990,
Baltimore, Maryland, USA, pages 514–523, 1990.

30. Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.
31. Emil Stefanov, Marten van Dijk, Elaine Shi, Christopher W. Fletcher, Ling Ren,

Xiangyao Yu, and Srinivas Devadas. Path ORAM: an extremely simple oblivious
RAM protocol. In 2013 ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS’13, Berlin, Germany, November 4-8, 2013, pages 299–310,
2013.

32. Sergey Yekhanin. Locally decodable codes. Foundations and Trends in Theoretical
Computer Science, 6(3):139–255, 2012.

	Information-theoretic Local Non-malleable Codes and their Applications

