PATTERN RECOGNITION
ano MACHINE LEARNING

CHAPTER 3: LINEAR MODELS FOR REGRESSION




Linear Basis Function Models (1)

Example: Polynomial Curve Fitting

0 1
M
y(z, W) = wo + w1 T + wex® + ... + wyz™ = ijajj
Jj=0




Linear Basis Function Models (2)

Generally
M—1

W ij WTQb(X)

7=0
where ¢,(x) are known as basis functions.
Typically, ¢o(x) = 1, so that wy acts as a bias.

In the simplest case, we use linear basis
functions : ¢4(x) = x,.




Linear Basis Function Models (3)

Polynomial basis functions:

¢53($) = xj.

These are global; a small
change in z affect all basis

functions.




Linear Basis Function Models (4)

Gaussian basis functions:

?5() = eXp{—(x — Mj)z}

252

These are local; a small change
in x only affect nearby basis
functions. u; and s control
location and scale (width).
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Linear Basis Function Models (5)

Sigmoidal basis functions:

¢j(z) =0 (x_sﬂj>

" 1+exp(—a)

Also these are local; a small
change in z only affect nearby
basis functions. u;and s
control location and scale
(slope).

0.75}

0.5

0.25}




Maximum Likelihood and Least Squares (1)

Assume observations from a deterministic function
with added Gaussian noise:

t=y(x,w)+e where p(e|3) = N(€|0,571)
which is the same as saying,
p(tlx, w, B) = N (tly(x,w), 37).

Given observed inputs, X = {x1,...,xx}, and targets,
t=[ti,....tn]T, we obtain the likelihood function

p(t| X, w,3) = HNt|w -1,




Maximum Likelihood and Least Squares (2)

Taking the logarithm, we get

N
np(tlw,B) = > InN(ta|w ¢(x,),07")
n=1

_ %lnﬁ — %ln(z’”) — BED(w)
where
N
Ep(w) = 2 Z{tn — W (xn)}
n=1

is the sum-of-squares error.




Maximum Likelihood and Least Squares (3)

Computing the gradient and setting it to zero yields

N
Vw Inp(tjw, 5) = 3 Z {tn - WTqb(X'n)} qb(xn)T = 0.

Solving for w, we get | The Moore-Penrose

A
pseudo-inverse, P

—1
WML = ((I’T(I’> St

where
( do(x1)  1(x1) -+ dm—1(x1) \
¢o(x2)  P1(x2) -+ dm—1(x2)

\ do(xn) d1(xn) - dri(xy) /




Geometry of Least Squares

Consider
y = Pwyr, = [Qola . -,QOM] WML S
yeSCT te7
t /I:N-dimensional
M-dimensional P1

Sisspanned by ¢,,..., ¢

Wy, minimizes the distance
between t and its orthogonal
projectionon S, i.e.y.

P2




Sequential Learning

Data items considered one at a time (a.k.a.
online learning); use stochastic (sequential)
gradient descent:

W(T—|-1) _ W(T) . nVEn

= w4+ n(tn — W(T)Tqb(xn))qb(xn).

This is known as the least-mean-squares (LMS)
algorithm. Issue: how to choose n?




Regularized Least Squares (1)

Consider the error function:

Ep (W) + AEw (W)

Data term + Regularization term

With the sum-of-squares error function and a
quadratic regularizer we get

A
— Z{t — X'n, }2 §WTW
)\ is called the
which is minimized by regu arization
coefficient.

—1
W — ()\I n <I>Tc1>) Tt




Regularized Least Squares (2)

With a more general regularizer, we have

—Z{t —wi(xn)} + leglq

I I

Lasso Quadratic




Regularized Least Squares (3)

Lasso tends to generate sparser solutions than a
guadratic
regularizer.

(
p
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Multiple Outputs (1)

Analogously to the single output case we have:

p(tlx,W,5) = N(t|ly(W,x),37'I)
= NEt|/Wh'o(x),57').

Given observed inputs, X = {x3,...,xx}, and targets,
T = [ti,...,tn]", We obtain the log likelihood function

N
np(TIX,W.3) = ) ImN(t,[W'(x,),57'D)
n—=1




Multiple Outputs (2)

Maximizing with respect to W, we obtain
—1
W, = (<I>T<I>) TT.

If we consider a single target variable, t;, we see that

1
- (<I>T<I>) &Tt, = ®'t,

where t; = [tix,...,t~n%] ", Which is identical with the
single output case.




The Bias-Variance Decomposition (1)

Recall the expected squared loss,

BIL) = [ {u(x) ~ by px)dx-+ [ [ {hix) — 8)p(x, ) axat

where
h(x) = Eft]x] = / tp(tx)dt.

The second term of [E|L| corresponds to the noise
inherent in the random variable <.

What about the first term?




The Bias-Variance Decomposition (2)

Suppose we were given multiple data sets, each of
size V. Any particular data set, D, will give a
particular function y(x;D). We then have

{y(x; D) — h(x)}?
{y(x;D) — Eply(x; D)] + Ep[y(x; D)] — h(x)}
= {y(x; D) — Eply(x; D)]}* + {Eply(x; D)] — h(x)
+2{y(x; D) — Eply(x; D) HEp|y(x; D)| — h(x)}.

}2

X




The Bias-Variance Decomposition (3)

Taking the expectation over D yields

Ep [{y(x: D) — h(x)}’]
= {Enly(x:D)] - h(x)}* +Ep [{y(x: D) — Enly(x; D)]}”] .

o

T

[bla':) variance




The Bias-Variance Decomposition (4)

Thus we can write

expected loss = (bias)? 4 variance + noise

where
Mins)® = [ {Eoly(xi D)) -~ h(x))*plx) dx
variance = /IE;D {y(x; D) — Eply(x; D)]}?] p(x) dx

noise = /{h(X)—t}Qp(X,t)dth




The Bias-Variance Decomposition (5)

Example: 25 data sets from the sinusoidal, varying
the degree of regularization, .

InA =26




The Bias-Variance Decomposition (6)

Example: 25 data sets from the sinusoidal, varying
the degree of regularization, .




The Bias-Variance Decomposition (7)

Example: 25 data sets from the sinusoidal, varying
the degree of regularization, .




The Bias-Variance Trade-off

From these plots, we note  0.15
that an over-regularized 0.12
model (large A\) will have a
high bias, while an under-
regularized model (small A) o0.06¢
will have a high variance.

(bias)?
var 1ance

(blas) + Varlance
test error

0.09

0.03 ¢

K

In A




Bayesian Linear Regression (1)

Define a conjugate prior over w
p(w) = N(w|mg, Sp).

Combining this with the likelihood function and using
results for marginal and conditional Gaussian
distributions, gives the posterior

p(wlt) = N(w|mpy, Sy)
where
my = Sy (Sglmo + 6<I>Tt)
Sy = S;'+pBe'e.




Bayesian Linear Regression (2)

A common choice for the prior is
p(w) = N(w|0,a™ 1)

for which
my = ﬁSN‘I)Tt
Sy = al+38'®.

Next we consider an example ...




Bayesian Linear Regression (3)

0 data points observed

Prior Data Space




Bayesian Linear Regression (4)

1 data point observed

Likelihood Posterior Data Space




Bayesian Linear Regression (5)

2 data points observed

Likelihood Posterior Data Space




Bayesian Linear Regression (6)

20 data points observed

Likelihood Posterior Data Space




Predictive Distribution (1)

Predict ¢ for new values of x by integrating
over w:

p(tlt, o, B) — / p(t|w, B)p(wlt, o, ) dw
—  N(HmEé(x), 0% (%))
where

% + (%) S (x).

Q
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Predictive Distribution (2)

Example: Sinusoidal data, 9 Gaussian basis functions,
1 data point

)




Predictive Distribution (3)

Example: Sinusoidal data, 9 Gaussian basis functions,
2 data points




Predictive Distribution (4)

Example: Sinusoidal data, 9 Gaussian basis functions,
4 data points




Predictive Distribution (5)

Example: Sinusoidal data, 9 Gaussian basis functions,
25 data points




Equivalent Kernel (1)

The predictive mean can be written

y(x, mN)

qub( ) =

Zﬁcb

Bp(x)'Sy@ 't

SNqb Xn)

!—1—\

Zk (x,xp)t
n=1

Equivalent kernel or
smoother matrix.

This is a weighted sum of the training data

target values, t,..




Equivalent Kernel (2)

/c(x,xz-)i —

w % x
Weight of ¢, depends on distance between x and x,;
nearby x,, carry more weight.




Equivalent Kernel (3)

Non-local basis functions have local equivalent
kernels:

0.04 | 1 0.04 |

0.02 | 0.02 |

Polynomial Sigmoidal




Equivalent Kernel (4)

The kernel as a covariance function: consider

cov[y(x), y(x')] cov|p(x)'w, w' p(x)
d(x)" Sno(x') =47

]
k(x,x).

We can avoid the use of basis functions and
define the kernel function directly, leading
to Gaussian Processes (Chapter 6).




Equivalent Kernel (5)

N

Z k(x,x,) =1

n=1
for all values of x; however, the equivalent kernel
may be negative for some values of x.

Like all kernel functions, the equivalent kernel can be
expressed as an inner product:

k(x,z) = (x) " 1P(z)
where ¥(x) = 3/2SV°p(x).




Bayesian Model Comparison (1)

How do we choose the ‘right’ model?

Assume we want to compare models M., i=1, ...

using data D; this requires computing

p(M;|D) o< p(M;)p(D|M;).

Posterior Prior Model evidence or
marginal likelihood

Bayes Factor: ratio of evidence for two models
p(D|M;)
p(D|M;)




Bayesian Model Comparison (2)

Having computed p(M;|D), we can compute
the predictive (mixture) distribution

L
p(t|x,D) = Zp(txa M, D)p(M;|D).

1=1

A simpler approximation, known as model
selection, is to use the model with the
highest evidence.




Bayesian Model Comparison (3)

For a model with parameters w, we get the
model evidence by marginalizing over w

p(DIM;) = /p(D|W,M@')p(W|M@) dw.
T
Note that

Dlw, Mi)p(w| M)
p(D|M;)
T

p(w|D, M;) = il




Bayesian Model Comparison (4)

For a given model with a

single parameter, w, con- AWposterior
sider the approximation ‘m_'

p(D) = / p(Dlw)p(w) dw

Awposterior

~ p(D|lwmap)

A(wprior /
where the posterior is )

assumed to be sharply < .
peaked. AWprior

o\

WMAP w




Bayesian Model Comparison (5)

Taking logarithms, we obtain

A osterior
Inp(D) ~ Inp(D|wnap) + In ( Dpost ) .

Au]prior
T
Negative

With M parameters, all assumed to have the same
ratio Awposterior/ AWprior, We get

A osterior
Inp(D) ~ Inp(D|wnap) + M In ( “p t_ ) :

|

Negative and linear in M.




Bayesian Model Comparison (6)

Matching data and model complexity

p(D)




The Evidence Approximation (1)

The fully Bayesian predictive distribution is given by
p(t) = [ [ pltiw, Bp(wit, o p(a Bit) dwdads
but this integral is intractable. Approximate with

p(tle) = p (1t 5) = /p (tw.B) p (wle.a. 5) dw

Where(a‘, B) is the mode of p(«, §|t), which is assumed to
be sharply peaked; a.k.a. empirical Bayes, type Il or gene-

ralized maximum likelihood, or evidence approximation.




The Evidence Approximation (2)

From Bayes’ theorem we have
p(a, BIt) o p(tla, B)p(a, B)
and if we assume p(«,3) to be flat we see that
p(a, Blt) o p(tle, 5)
— [ plthw, Bp(wla) dw.
General results for Gaussian integrals give

M N 1 N
Inp(t|a, 8) = 5y Ina + > Inf — E(my) + 5 In |[Sxn| — 5} In(27).




The Evidence Approximation (3)

Example: sinusoidal data, M ™ degree polynomial,
a=>5x10"7

—18F




Maximizing the Evidence Function (1)

To maximiseln p(t|a, 3) w.r.t. @ and (3, we define the
eigenvector equation

(Bé[)T(I)) u; = A\ Uu;.

Thus
A=Sy =al+p32"'®

has eigenvalues A\, + «.




Maximizing the Evidence Function (2)

We can now differentiate Inp(t|a, 8) w.r.t. o and [,

and set the results to zero, to get

Y

T

a =

3 N—y &gt

where

Ai

N.B. v depends on both o and (.




Effective Number of Parameters (3)

AN <K«
w; is not well

determined by the
likelihood

Ao > «
w,, is well determined
by the likelihood

v is the number of well
determined parameters




Effective Number of Parameters (2)

Example: sinusoidal data, 9 Gaussian basis functions,
6= 11.1.




Effective Number of Parameters (3)

Example: sinusoidal data, 9 Gaussian basis functions,
6= 11.1.

Test set error

In o




Effective Number of Parameters (4)

Example: sinusoidal data, 9 Gaussian basis functions,
6= 11.1.




Effective Number of Parameters (5)

In the limit N > M, v = M and we can consider
using the easy-to-compute approximation

M

T

= 3 - mbx)}

|+




Limitations of Fixed Basis Functions

* M basis function along each dimension of a
D-dimensional input space requires M?
basis functions: the curse of dimensionality.

* |n later chapters, we shall see how we can
get away with fewer basis functions, by
choosing these using the training data.




