PATTERN RECOGNITION
anvo MACHINE LEARNING

CHAPTER 2: PROBABILITY DISTRIBUTIONS




Parametric Distributions

Basic building blocks: p(x|0)
Need to determine 0 given {x1,...,Xn}
Representation: 6* or p(@)?

Recall Curve Fitting
p(tlr,x,t) = /p(t|x,w)p(w|x,t) dw /

0 L

—1F




Binary Variables (1)

Coin flipping: heads=1, tails=0

p(x =1|p) = p

Bernoulli Distribution

Bern(z|p) = p®(1—p)'=®
Elz] = p

varfz] = p(l—p)




Binary Variables (2)

N coin flips:

p(m heads| N, )

Binomial Distribution

N

Bin(m|.10) = ()

)u’””’(l )
E[m]| = Z mBin(m|N, u) = Npu
m=0

varim| = Z (m — E[m])* Bin(m|N, u) = Nu(1 — p)

m=0




Binomial Distribution
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Parameter Estimation (1)

ML for Bernoulli
Given: D = {zq,..., xn}, m heads (1), N —m tails (0)

N N
p(Dlu) = | p(wnlp) = T (1 =)' =

N N
Inp(Dlp) = > Inp(xn|p) =Y {znnp+ (1 —a,)In(l —p)}
n=1

n=1

1 o m
MMLZWT;LCTL:W




Parameter Estimation (2)

Example: D:{1,1,1}HMML:§:1

Prediction: all future tosses will land heads up

Overfitting to D




Beta Distribution

Distribution over 1 € [0, 1].

Beta(ula,b) = II“(( )—II‘_(?) po (1 — )bl
Blul = a j— b
var(u| = ab

(a+b)2(a+b+1)




Bayesian Bernoulli

p(plao,bo. D) o< p(D|p)p(plao, bo)

N
= (H pe (1 — H-)II”) Beta(p|ao, bo)
n—=1

e .!'-i-m+au_1(1 o “){N—m:}_kb,j_l

x Beta(p|lay,by)

anN = agp+m by =bg+ (N —m)

The Beta distribution provides the conjugate prior for the
Bernoulli distribution.




Beta Distribution
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Prior - Likelihood = Posterior

2 x
prior likelihood function posterior
| /
0 M M M
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Properties of the Posterior

As the size of the data set, [V, increase

anN — m
—_—

bN N —m
anN m
E — —_ =
4] an + b — N ML
(I,NbN
var(u] =

— 0
(an +bn)?(an + by + 1)



Prediction under the Posterior

What is the probability that the next coin toss will land
heads up?

1
p(@ = 1)ag, bo, D) — / p(z = 1))p(lao, bo, D) d
0

1
= / pup(plao, bo, D) du
0

a
— E[“movb(}vp] — %




Multinomial Variables

1-of-K coding scheme: x = (0,0, 1,0, O,O)T




ML Parameter estimation

Given: D ={xy,...,xn}

Ensure >, ur = 1, use a Lagrange multiplier, A.

K K
kaln)uk + A (Zuk — 1)
k=1 k=1

ML Mk

fe = =M /A N




The Multinomial Distribution

N
Mult(mq, mo,...,mg|u, N) = (
mimseo ... MK
Elmp] = N
varfmg] = Npi(1— )
covfmmi] = —Nujuy




The Dirichlet Distribution

[(a) -
Dir(p|er) = - s
['(a1) - T'(a )kl;[l g
K H2 a
OJ():ZOUf
k=1

Conjugate prior for the

multinomial distribution.

H3




Bayesian Multinomial (1)

p(p|D, &) x p(D|p)p(p|e) o Huak—l—mk |
k=1

p(u|D,a) = Dir(pa + m)

— — ['(ap + N) H e
F(&]—|—m1} P&K—l—mK




Bayesian Multinomial (2)




The Gaussian Distribution

4
N(z|p,0?)

A (2mo2)/?

1
N (als, o) = exp {—?@c )2




Central Limit Theorem

The distribution of the sum of /Vi.i.d. random
variables becomes increasingly Gaussian as NV
grows.

Example: N uniform [0,1] random variables.




Geometry of the Multivariate Gaussian

i=1 1 A Uus \/
2
Y !

Y2
X — ) Y1

1/2




Moments of the Multivariate Gaussian (1)

=
o
|

1 1 _
D,2|E|1f.2/exp{—g(x—#)TE ][K_#)}de

(27) P
1 I 1e1
D/2 |g|1/2 €XP | T5% Xz (z+p)dz

1
2m)

1
(27)

thanks to anti-symmetry of z

Elx| = p




Moments of the Multivariate Gaussian (2)

Elxx!] = pput + 3

cov[x] =E [(x —E[x))(x —E[x])'] ==

272‘ 372‘ 272‘

(a) (b) (<)




Partitioned Gaussian Distributions

p(x) = N(x|p, 3)




Partitioned Conditionals and Marginals

p(xa‘xb) — N(Xa‘u’cﬂbﬂ Za|b)

Sap = Agp =Zaa — By, e
Hap =  2alb {Adatty — Aap(xe — py) }
= g — A Aas(xp — )
= Bo+ Sy (x5 — )

p(Xa) = /p(xaaxb)dxb
— N(Xa|p’aazaa)




Partitioned Conditionals and Marginals

Ty
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Bayes’ Theorem for Gaussian Variables

Given »
p(x) = N (x|pu, A7)
p(ylx) = N (y|Ax+b,L7")
we have
p(y) = N(ylAp+b, L1 +AATTAT)
p(xly) = NEZ{A'L(y —b)+Au}, %)
where

S=(A+A'LA)!




Maximum Likelihood for the Gaussian (1)

Giveni.i.d. data X = (x1,...,xny)", the log likeli-
hood function is given by

ND LN

N _ w
Inp(X|p, X) = 5 In(27) — 5 In|X| — 5 Z(xn — )2 x, — p)

" n=1

Sufficient statistics

N N
E X, E Xp X




Maximum Likelihood for the Gaussian (2)

Set the derivative of the log likelihood
function to zero,

) AR
g 1P(Xlp, 3) = Y BT (% —p) =0

n=1

and solve to obtain
1 N
M, = ﬁnE:1Xn-

N
1
2ML = N Z(X'n — b)) (Xn — pyir)

n=1

Similarly




Maximum Likelihood for the Gaussian (3)

Under the true distribution

Elpyve] = o
: N -1

Hence define
- 1 XN
2= N — 1 Z(Xn — pnr,) (Xn — MML)T-

n=1




Sequential Estimation

Contribution of the N data point, x

(N) L\
N
HEyvig, — Nzxn
1
— NXN‘FN Xn
1 N—l N1
= NXNJFTM(\/IL )
(N—l 1))

I

g correction given X,

> correction weight
> old estimate

1




The Robbins-Monro Algorithm (1)

Consider 6 and z governed by p(z,6) and
define the regression function

f(0) =E|z|0] = /zp(z|9) dz

Seek 6 such that f(6*) = 0.




The Robbins-Monro Algorithm (2)

Za

®
—
®

Assume we are given samples from p(z,0), one
at the time.




The Robbins-Monro Algorithm (3)

Successive estimates of 6~ are then given by

o) = gWN=1) _ qn_12( D),

Conditions on a, for convergence :

oo
lim ay =0 E anN = 00 E a?v<oo
N —o0




Robbins-Monro for Maximum Likelihood (1)

Regarding
N
1 0 0
- A}I_I’féo N 2 90 Inp(zn|0) = Ey [% lnp($|9)]

as a regression function, finding its root is
equivalent to finding the maximum likelihood
solution 6y . Thus

o) = g N=1 _qn_4 8_ [—mp(me(f\f—l))}.




Robbins-Monro for Maximum Likelihood (2)

Example: estimate the mean of a Gaussian.

<A

o p(z|p)
1 2
8HML [ HP(ZEWMLaU )]

1

= ——(@— ) M\

:rr »>
The distribution of z is Gaussian / FML

with mean u — iy,

For the Robbins-Monro update
equation, ay = o/ N.




Bayesian Inference for the Gaussian (1)

Assume o2 is known. Given i.i.d. data

x ={z1,...,zn}, the likelihood function for
(4 IS given by

N

5 | 1 1 | =
p(x|p) = || plaaln) = —S57 E‘Kp{. 5 Y (zn HJ‘}-
1 [:EMJ_} /= 2[]' -

=1

This has a Gaussian shape as a function of u
(but it is not a distribution over u).




Bayesian Inference for the Gaussian (2)

Combined with a Gaussian prior over p,
p(p) = N (o, 05) -

this gives the posterior
p(p/x) o< p(x|p)p(p).

Completing the square over u, we see that

p(plx) =N (plpn, o%)




Bayesian Inference for the Gaussian (3)

... where
R f‘fgg - UE’HU &:_US 1 o2 HML, ML = N 2 n
5 — ) + T
O dg 07
Note:




Bayesian Inference for the Gaussian (4)

Example: p(u|x) =N (ulpn,o%) for N =10, 1, 2
and 10.

5




Bayesian Inference for the Gaussian (5)

Sequential Estimation

p(plx) o p(p)p(x|p)
N—-1

= [p(u) 11 p(wnlu)} p(en|p)

o N (ulpn-1,0%_1) p(zn|1)

The posterior obtained after observing N — 1

data points becomes the prior when we
observe the Nt data point.




Bayesian Inference for the Gaussian (6)

Now assume p is known. The likelihood
function for A = 1/07 is given by

N
. . mT S ,:’ll o K
| _ —1y o ANV/2 A r — )2\
p(x|A) —n|:|1«“~» (Zn g, A7) o< A ﬂp{ 5 > (xn — 1) }

n=1

This has a Gamma shape as a function of .




Bayesian Inference for the Gaussian (7)

The Gamma distribution

1
Gam(\|a,b) = T(a) b\~ exp(—b))
E\] = % var|\| = %

2 2 2
== (.1 =% | =4
b=0.1 B =il b=6

1 | 1 \ |

0 — - 0




Bayesian Inference for the Gaussian (8)

Now we combine a Gamma prior, Gam(\|ag, bo),
with the likelihood function for A to obtain

2

n=1

A N\
p(A[x) oc A0 IAN/2 exp {bo)\ — — Z(a:n — )% 3

which we recognize as Gam(\ay,by) With

N
aN = (10—|—§




Bayesian Inference for the Gaussian (9)

If both 11 and X\ are unknown, the joint
likelihood function is given by

N

1/2
pX|p, A) = H (Ei’") exp {_g{i?n — ﬁi}?}

n=1

1/2 A " - A o 2
X |[AVTexp | — 5 exp ¢ Au Z Tn = 5 Z T, ¢ -
n=1 n=1

We need a prior with the same functional
dependence on 1 and A.




Bayesian Inference for the Gaussian (10)

The Gaussian-gamma distribution

p(p, A) = N (plpo, (BX) 1) Gam(Na, )

BA _
X exp {—7@ —po)? ¢ A exp {—bA}
| )\ )
Y Y
* Quadratic in p. * Gamma distribution over .

e Linearin \. * Independent of .




Bayesian Inference for the Gaussian (11)

The Gaussian-gamma distribution

2




Bayesian Inference for the Gaussian (12)

Multivariate conjugate priors
* p unknown, A known: p(u
* A unknown, u known: p(A) Wishart,

Tr(W )
* A and g unknown: p(u,A) Gaussian-
Wishart, p(p, Alpg, 5, W,v) =

N (pl o, (BA)™ ) W(AIW, )

Gaussian.

l.\DIl—\

W(A|W,v) = B|A|V=P- 1>/2exp(




Student’s t-Distribution

plxlp,a,b) = / N(z|p, 7 1)Gam(7|a, b) dr
0

= /é N (z|p, (pA)~1) Gam(n|v/2,v/2)dn <«------

B T(v/2+1/2) [ A 1/2 - Az — )2 —v/2—1/2 i
['(v/2) TV v !
= St(z|u, A\, v) i

where
A=a/b n=r1b/a v = 2a.

Infinite mixture of Gaussians. ----—- - ______|




Student’s t-Distribution

0.5

0.4}

0.3}

02}

0.1}

| v =1 UV — OO

St(x|u, A, 1) ‘ Cauchy N (z|u,A\™1)




Student’s t-Distribution

Robustness to outliers: Gaussian vs t-distribution.

0.5

04r

0.3f

0.2}

0.1f

0.5

04r¢

03}

0.2¢

0.1




Student’s t-Distribution

The D-variate case:

St(x|p, A,v) = / N (x|, (nA)~H)Gam(n|v/2,v/2) dn
0
_ DD/2+v/2) (AP [ AT
B C(v/2)  (mv)P/2 v
where A% = (x — ) A(x — p).
Properties:  Ex] =y, if v>1
e 4.
cov|x| = (V—Z)A , ifv>2
mode|x]| = u




Periodic variables

 Examples: calendar time, direction, ...
* We require

=
=
WV
o




von Mises Distribution (1)

This requirement is satisfied by

1
p(0|6g,m) = 2Ty () exp {mcos(d — b6p)}
where
1 2‘}'1'
Ip(m) = — / exp{mcosf@} df
27T 0

is the 0" order modified Bessel function of the
15t kind.




von Mises Distribution (4)

3 /4

7 [4

_m:5’ 90:7'('/4
———m =1, 6 = 37/4

2T




Maximum Likelihood for von Mises

Given a data set,D = {64, ...,0n}, the log likelihood function
is given by

Inp(D|fy,m) = —NIn(27) — NIn Ip(m) +m ZCDS{H — tp).

Maximizing with respect to 6, we directly obtain

o
A = tan~! {gnjg; 9 } .

Similarly, maximizing with respect to m we get

I (mr)
= E cos( QML
Io(mr) N

which can be solved numerically for M-




Mixtures of Gaussians (1)

Old Faithful data set

100 ' ' . . 100
R0t R0t
60 | 60 |
oy o

Single Gaussian Mixture of two Gaussians




Mixtures of Gaussians (2)

Combine simple models
into a complex model:

p(x) = ) mN (x|, 3

k=1
Component

Mixing coefficient

K
k=1

p(z)y

K=3




Mixtures of Gaussians (3)




Mixtures of Gaussians (4)

Determining parameters i, I, and 7 using
maximum log likelihood

ll’lp X‘Trau’a Zln{zﬂ-kN X'nu‘kazk)}

Log of a sum; no closed form maximum.

Solution: use standard, iterative, numeric
optimization methods or the expectation
maximization algorithm (Chapter 9).




The Exponential Family (1)

p(x|n) = h(x)g(n) exp {n " u(x)}
where 17 is the natural parameter and
g(n)/h exp{'r; u(x)} dx =1

so g(1) can be interpreted as a normalization
coefficient.




The Exponential Family (2.1)

The Bernoulli Distribution

1—=x

p(z|p) = Bern(z|u) = p*(1—p)
= exp{rlhhp+ (1 —2)In(l —pu)}

- (1—u)exp{ln(1fu) x}

Comparing with the general form we see that

_ H o) =
n_ln(l—u> andso ‘J(n) 1+ exp(—n)’

Logistic sigmoid




The Exponential Family (2.2)

The Bernoulli distribution can hence be
written as

p(z|n) = o(—n) exp(nx)
where
u(z) = =x
h(z) = 1
g(n) = 1—o(n) =o(-n).




The Exponential Family (3.1)

The Multinomial Distribution

M M
p(x[p) = || pi* = exp {Z Ty In m:} = h(x)g(n) exp (n" u(x))

where, x = (z1,...,2m), n=(m,...,n) " @and

Ne = In Ui NOTE: The n, parameters are
o not independent since the
u(X - X corresponding u;, must

)
h (X) — 1 satisfy ,
) — ]- . k=1




The Exponential Family (3.2)

Let par =1 -0, ue. This leads to

Mk exp (M)
N = In - ) and p = 1
(1 — 2 =1 My 1+ =1 exp(n;)

)

Softmax

Here the 1, parameters are independent. Note
that

M—-1
0< e <1 gnd 2 k<L
k=1




The Exponential Family (3.3)

The Multinomial distribution can then be
written as

p(x|p) = h(x)g(n) exp (n"' u(x))
where

n = (m,...,1m-1,0)
u(x) = x
hix) = 1




The Exponential Family (4)

The Gaussian Distribution

9 1 1 5
p(;ITLU,U' ) — (EWJQ-}]-’I;? EI{p 2 2 (‘I‘ o H)
_ 1 i 1 M L 5
- (2mo?)1/2 P T 202 20 952k

= h(z)g( exp{n u:r,)}




ML for the Exponential Family (1)

From the definition of g(n) we get

Vo(n) [ h(x)exp {n"u(} dx -+ g(n) [ (x)exp {n"u(} u(x) dx 0

| ] J
| |

1/9(n) Elu(x),

Thus




ML for the Exponential Family (2)

Give a data set, X = {x1,...,xn}, the likelihood
function is given by

p(X|n) = (Hhxn) exp{nTiU(Xn)}-

n=1

Thus we have

1 N

|

J

Sufficient statistic




Conjugate priors

For any member of the exponential family,
there exists a prior

p(nlx,v) = f(x,v)g(n)” exp {rn'x}.

Combining with the likelihood function, we get

p(n|X, x,v) o< g(n)" " exp {"’T (Z u(xn) + VX) } |

Prior corresponds to v pseudo-observations with value .




Noninformative Priors (1)

With little or no information available a-priori, we
might choose a non-informative prior.
* Adiscrete, K-nomial : p(A\) =1/K.
* \€|a,b] real and bounded: p(\) =1/b— a.
* Areal and unbounded: improper!

A constant prior may no longer be constant after a
change of variable; consider p(\) constant and
A=17:

dA
po(1) = (M) \d—n — pa(n?)2n o< 7




Noninformative Priors (2)

Translation invariant priors. Consider
p(zlp) = flz —p) = f((z+ ) — (p+¢)) = f(T — ) = p(Z|R).

For a corresponding prior over u, we have

/ABP(M) dp = /j_jp(u) dy = /jp(u —¢)dp

for any A and B. Thus p(u) = p(p — ¢) and
p(p) must be constant.




Noninformative Priors (3)

Example: The mean of a Gaussian, u; the
conjugate prior is also a Gaussian,

p(M|M0708) :N(M|M070(Q))
As o5 — oo, this will become constant over .




Noninformative Priors (4)

Scale invariant priors. Consider p(z|o) = (1/0) f(z/0)
and make the change of variable z = cx

dx T\ 1 1 T R
= Pz (_) - = _f (_> = p(T|T).
C C COo COo

For a corresponding prior over o, we have

dx
B B/e B 1 1
f P(O’)d(’:f P(G’)d(’:f p(—a)—da
A Alc A c &

for any A and B. Thus p(¢) o 1/0 and so this prior is
improper too. Note that this corresponds to p(Ino)
being constant.

pz(T) = pz(x)




Noninformative Priors (5)

Example: For the variance of a Gaussian, o2, we have
N (], 0%) o< o exp {~((& — ) /) }.
If \=1/0%*and p(c) o« 1/0, then p(A) o< 1/A.

We know that the conjugate distribution for A is the
Gamma distribution,

Gam(\|ag, bo) oc A%~ exp(—bo).

A noninformative prior is obtained when a, = 0 and
bo — O




Nonparametric Methods (1)

Parametric distribution models are restricted
to specific forms, which may not always be
suitable; for example, consider modelling a
multimodal distribution with a single,
unimodal model.

Nonparametric approaches make few
assumptions about the overall shape of the
distribution being modelled.




Nonparametric Methods (2)

5

Histogram methods partition
the data space into distinct
bins with widths A, and count
the number of observations,
n,;, in each bin.

Pi = VA
o N E——N—— }
* Often, the same width is 0 0.5 )

used for all bins, Ai.z A * Ina D-dimensional space,
* A acts as a smoothing using M bins in each dimen-
parameter. sion will require M bins!




Nonparametric Methods (3)

Assume observations drawn
from a density p(x) and
consider a small region R
containing x such that

P = /R p(x) dx.

The probability that A out of

N observations lie inside R
is Bin(K|N,P) and if Nis
large

K~ NP.

If the volume of R, V/ is
sufficiently small, p(x) is
approximately constant
over R and

P~ p(x)V

Thus
(x) =
PR =Ny

V small, yet K>0, therefore N large?




Nonparametric Methods (4)

Kernel Density Estimation: fix V, estimate K from
the data. Let R be a hypercube centred on x and
define the kernel function (Parzen window)

k((x — %) /h) = { Lo M@~ z)/hl<1/2, =1, D,

. otherwise.
It follows that

Z:: ( ”) and hence p(x :%i (X—Xn).

n=1




Nonparametric Methods (5)

To avoid discontinuities in p(x),
use a smooth kernel, e.g. a

Gaussian
N
1 1
p(X) - N nz=:1 (QWhQ)D/2

Any kernel such that

0 0.5 1
/k(u)du = 1 h acts as a smoother.

will work.




Nonparametric Methods (6)

Nearest Neighbour
Density Estimation: fix K&,
estimate V' from the data.
Consider a hypersphere
centred on x and let it
grow to a volume, V'*, that
includes K of the given N

data points. Then o
K 0 ] 05 1

K acts as a smoother.

p(x) =~ TS




Nonparametric Methods (7)

Nonparametric models (not histograms)
requires storing and computing with the
entire data set.

Parametric models, once fitted, are much
more efficient in terms of storage and
computation.




K-Nearest-Neighbours for Classification (1)

Given a data set with [V, data points from class C;
and > , N, =N, we have

K
) =Ny
and correspondingly
p(x|Cx) = NV

Since p(C,) = N /N, Bayes’ theorem gives

P(x|Ck)p(Ck) _ Ky

pCilx) = p(x) K




K-Nearest-Neighbours for Classification (2)




K-Nearest-Neighbours for Classification (3)

K=1 K=3 K =3&l1
2 2 y 2
” o $ ” o $ .. o 8
e Qoo .£'0 g o ® §oe .,'0. g o e §oo .!'0 g °
X : X7 X
1 ” 1t . : 1 ®
(Y ) X Y ) k: Y ) "
® . o - e .
. W g ’o . . * o
0 . 0 it i 28 0 i
0 1 T 2 0 1 T 2 0 1 Te

e K acts as a smother
* For N — 00, the error rate of the 1-nearest-neighbour classifier is never more than
twice the optimal error (obtained from the true conditional class distributions).




