
Making  Sense  of  Temporal  Queries  with  Interactive  
Visualization  

Leilani Battle1, Danyel Fisher2, Robert DeLine2, Mike Barnett2, Badrish Chandramouli2, 
Jonathan Goldstein2 

MIT 
Cambridge, Massachusetts 02139 

leilani@csail.mit.edu 

Microsoft Research 
Redmond, Washington 98052 

{danyelf, rdeline, mbarnett, badrishc, 
jongold}@microsoft.com 

 
ABSTRACT  
As real-time monitoring and analysis become increasingly 
important, researchers and developers turn to data stream 
management systems (DSMS’s) for fast, efficient ways to 
pose temporal queries over their datasets. However, these 
systems are inherently complex, and even database experts 
find it difficult to understand the behavior of DSMS 
queries. To help analysts better understand these temporal 
queries, we developed StreamTrace, an interactive 
visualization tool that breaks down how a temporal query 
processes a given dataset, step-by-step. The design of 
StreamTrace is based on input from expert DSMS users; we 
evaluated the system with a lab study of programmers who 
were new to streaming queries. Results from the study 
demonstrate that StreamTrace can help users to verify that 
queries behave as expected and to isolate the regions of a 
query that may be causing unexpected results. 
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INTRODUCTION  
Academia, industry, and individuals are increasingly 
monitoring temporal data. Companies track changes in sales 
and inventory; app designers on the Internet of Things 
coordinate and monitor continuous signals from home, 
office and wearable devices. Medical and health-monitoring 
devices contain logic to process multiple temporal signals, 
combining GPS, heart rate, and accelerometers to determine 
and log when the user is running, walking and even 
sleeping. In e-businesses, cloud-hosted services capture 
both user behavior and service performance into live 

telemetry data. Analysts create dashboards from this data to 
monitor software quality and to produce game leaderboards, 
search results, and other client-facing products. Given the 
integral role of streaming data in these endeavors, 
programmers and data scientists need tools to analyze 
temporal data quickly and efficiently. 

To make temporal analyses scale to massive datasets, the 
database community has developed data stream manage-
ment systems (DSMS’s) [1],[4],[5],[8],[24]. DSMS’s 
support fast, continuous computation over temporal data 
streams. A DSMS supplements a classic relational database 
management system (DBMS) by maintaining a first class 
notion of time. Time is not simply an extra column in a 
relational table. Rather, streams of temporal data represent 
facts and relationships that vary over time. Each “row” in a 
stream, called a stream event, has a start and end time. 
Entities and relationships are valid only within their 
temporal range.  

To write a DSMS query, a data analyst reasons about both 
the data’s content and temporal range. For instance, 
consider an online store with a data stream of customer 
shopping transactions. Both the number of customers and 
the contents of their carts vary over time. A simple query in 
a relational data model—for example, the average number 
of items per cart—instead becomes a windowed moving 
average in a streaming system. This requires the data 
analyst to consider temporal issues, like the duration of the 
window for the moving average and how to combine the 
time range of a customer’s shopping session with the time 
ranges of items in the cart. In short, queries within DSMS’s 
can be confusing for data analysts to understand and 
construct (Figure 1).  

In this paper, we look at data analysts as a user group with 
specialized skills and distinctive needs (as in Fisher et al. 
[12] and Kandel et al. [19]). Supporting data analysts who 
work with streaming data raises unique and difficult 
challenges; we address them by applying user-centric 
design principles and methodologies. 

We make the following contributions in this paper: 

1)   We discuss the complexity of understanding and 
debugging DSMS queries, and explore a case study; 
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2)   We present a visualization design for illustrating the 
behavior of DSMS queries; 

3)   We present results from a user study showing that this 
visualization can help analysts better understand and 
construct queries. 

CHALLENGES  FOR  USERS  WITH  DSMS  QUERIES  
The fundamental difference between streaming and 
relational databases is reflected in the way that these 
systems respond to queries. While relational queries in 
DBMS’s produce static results (e.g., the count is 3), stream 
queries in DSMS’s produce result streams (e.g., the count is 
3 at time stamp 1, then 4 at time stamp 2, etc.). This 
distinction makes interpreting query output challenging for 
users who are unfamiliar with DSMS’s: users need to learn 
to track how answers in the output stream change over time, 
and verify that these shifts match the input. 

If interpreting stream query results can be difficult and 
error-prone, writing stream queries is even more 
challenging. DSMS’s utilize specialized stream query 
languages, which are designed to support both relational 
and temporal operations. Some operations in a stream query 
language, like filtering (“where”) and projection (“select”), 
are the same as in relational query languages. However, 
other query operators, like join, are “false friends” in that 
they have different interpretations from their relational 
counterparts. For example, a relational join over two tables 
compares every row in the first table with every row in the 
second, and outputs any matching pairs that are found. In 
contrast, a join in a DSMS will only output a matching pair 
of stream events if the events also overlap in time. Some 
DSMS operations have no equivalent operation in relational 
languages, such as trimming the duration of stream events, 
or shifting the start and end times of events.  

Nor is understanding each operator individually enough: 
streaming queries often entail multiple phases of projection, 
joining, and filtering; events flow through a series of 
operators before they reach their final state. Analysts can 
find it challenging to see how those components combine, 
and to connect output events to the input they came from. 

Expert  Interviews  on  the  Challenges  of  DSMS  Queries  
To better understand how these complexities affect users, 
we interviewed two expert DSMS users. Both work on data 
science teams at a large software company1. John processes 
the history of software modifications across a very large 
codebase; his temporal queries look at how the codebase 
and its contributors are changing over time. 

Mark supports advertising features for a large-scale 
website. He produces live dashboards for advertisers on the 
effectiveness of their campaigns, and runs spot analyses of 
tools and features to understand adoption and usage.  

                                                             
1 Names were changed to protect the privacy of these users. 

In building their analytics, whether for offline use (as John 
does) or live streaming (as Mark does), both analysts create 
streaming queries in the DSMS – and, as such, can run into 
questions of whether their query is doing the right thing. 
We are generally interested in the process of constructing, 
testing, and iterating on a query; activities we collectively 
call “debugging”.  

Small-­Scale  Versus  Large-­Scale  Debugging  
John and Mark both reported that they typically debug their 
queries in two phases: first a small-scale prototyping phase; 
then a large-scale performance-testing phase. In the 
prototyping phase, they use small test datasets (less than 20 
stream events) to manually track each input in the data 
stream and each output from the query. Here, each input 
event represents a specific test case-–a strategy reminiscent 
of unit tests in software engineering. During this phase, 
they carefully check their queries for correctness, and 
improve their understanding of how query operators behave 
and interact. Once they are confident that their queries 
exhibit correct behavior, they try a larger dataset for full-
scale performance testing. This performance testing can 
sometimes drive them to change the underlying query, and 
they return to the prototyping phase.  

John and Mark also told us that they lack tools for 
effectively debugging their queries during the prototyping 
phase. Instead, they manually create query diagrams on the 
whiteboard in order to manually trace them. There is a 
design opportunity to support the prototype phase. A design 
can trade scalability for specificity, and show how queries 
act on small-scale data examples, rather than its aggregated 
effect on the dataset as a whole. 

Challenges  in  Writing  &  Debugging  Streaming  Queries  
Consider a motivating example based on a scenario from 
Mark, who wants to analyze user session data for a new 
online store. The raw data is stored as a single stream of 
aggregated shopping cart events, where each stream event 
represents the current number of items in a particular user’s 
cart. An example of the stream is provided in the left-hand 
table in Figure 2a. Mark wants to write a single DSMS 
query to answer the following questions every 60 minutes: 

•   How many users are signed into the store over 
time? 

•   On average, how many products are in their 
shopping carts? 

The DSMS query needed to answer Mark’s questions is 
shown in Figure 1a (written in Trill-LINQ2 [8]). This query 
demonstrates a common pattern for computing multiple 
statistics over streams. There is no guarantee that two 
queries will process the same stream events at the exact 
                                                             
2 Trill-LINQ is a DSMS written in functional query 
language supported by the .NET Framework; the techniques 
in this paper apply equally for other DSMS dialects. 
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same time, and thus no guarantee they will provide 
matching results. This mismatch can be problematic for 
dashboards and other use cases that require a suite of 
statistics over fixed time windows. Hence relevant statistics 
must be computed within a single query. 

In this example, a correct approach to thinking about how 
to construct the stream query is to consider how to augment 
or redirect the flow of timeline events. For example, if we 
want to compute multiple statistical operations in parallel 
over the stream, we can think of this process as creating 
multiple branches (or copies) of the stream (known as 
Multicasting the stream), and applying a different statistical 
operation to each branch. Similarly, to produce a single 
stream of statistics, we can view this process as joining the 
two Multicast branches back together, which will 
consolidate the duplicated events. In the query shown in 
Figure 1(a), these operations are represented as: 1) mapping 
the aggregated result to non-overlapping, 60-minute 

windows (TumblingWindowLifetime); 2) copying the 
stream into two identical branches (Multicast); 3) 
computing a separate aggregate statistic on each branch 
(Aggregate + Count, Aggregate + Average); and 4) joining 
the two branches together to consolidate the aggregate 
statistics (Join).  

Mark originally wrote the erroneous query shown in Figure 
1b. Though very similar to the correct query at left, Mark’s 
query contains one error, at the letter E. When Mark’s 
query is executed, it produces the incorrect result shown in 
Figure 2b, which is not broken into the desired 60-minute 
intervals. We see in Figure 2b that the time windows 
produced by Mark’s query seem random and hard to fix, 
but Mark’s query was actually very close to being correct. 
He chose the correct windowing operator 
(TumblingWindowLifetime), and even placed it in a 
reasonable location (on the first of the two Multicast 
branches). However, Mark failed to notice that the second 
branch of the Multicast operation was not mapped to 60-
minute windows. This error is exacerbated when the two 
branches are then joined together: the events from each 
branch end up overlapping at weird times, resulting in 
output events with strange durations.  

The correct query moves the TumblingWindowLifetime 
operator to be before the Multicast operator, eliminating the 
issue of applying windowing to each branch separately. 
However, when looking only at Mark’s query in Figure 1b, 

               
      (a) Correct Query                                                                 (b) Mark’s (Incorrect) Query 

Figure 1. A correctly written example query (left), and Mark’s query (right). Mark’s error – placing the 
TumblingWindowLifetime inside the Multicast, rather than outside -- is labeled as E. 

Figure 3. Expert-drawn diagram showing timed events. It 
shows (at left) a query plan, and (at right) horizontal bars 

showing time segments.  

     
         (a) Shopping cart input         (b) Query output                                           (c) StreamTrace diagram. 

Figure 2. Table and Timeline representations for Mark’s query (right-hand side of Figure 1). The results of the left-side 
TumblingWindowLifetime (at E) are out of step with the results of the right-side Aggregate 
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or the output stream in Figure 2b, it is very challenging to 
detect and fix the error. 

The  Need  for  Visualizations  
When Mark recounted this story during our interview, we 
noticed that although he was not able to produce the correct 
DSMS query to his problem, he was able to easily describe 
the correct behavior of the query. Mark provided us with 
hand-drawn diagrams showing the behavior he wished to 
see; John similarly provided us with Figure 3 to show how 
he thinks about temporal data and DSMS operators. As this 
language is an intuitive way of thinking about queries, we 
(manually) produced a visualization of the logic behind 
Mark’s erroneous query shown in Figure 2(c).  

This visualization highlights Mark’s logical error: while the 
Multicast operation creates two separate branches, only the 
left branch is extended to 60-minute windows using the 
TumblingWindowLifetime operator. As a result, in Figure 
2c, the events in the left-hand branch look noticeably 
different from the events in the right-hand branch. 

John and other DSMS users shared these difficulties with 
writing stream queries: while they can reason about the 
high-level logic behind a query, they can have difficulties 
externalizing that into a correct query. With the help of a 
visualization, they can quickly identify the effects of each 
operation, and how these operations interact with each other 
across multiple data streams. 

Common  Mistakes  in  Writing  Streaming  Queries  
We followed up our conversations with John and Mark with 
broader interviews, speaking to their teams and two other 
teams who create and use DSMS queries. In the interviews, 
we learned that even accomplished developers on their 
teams often had trouble formulating queries that behaved in 
the ways they expected; DSMS experts found it extremely 
difficult to explain temporal queries to novices.  

We asked our interviewees to provide us with examples of 
their challenging DSMS queries, and access to the datasets 
they used to test the queries. The most challenging queries 
consistently included operators that both cause two streams 
to interact (such as join operations), and that change the 
temporal scope of an event (such as windowing functions). 
Data streams only interact with each other when their 
events overlap in time; as such, subtle bugs can arise from 
mismatched temporal extents in queries (like in Mark’s 
query in Figure 1(b)). When these challenges are 
considered together, we found that they can be grouped into 
three categories of unmet needs: 

1)   Users have trouble inferring the combined behavior of 
multiple operators pipelined together in a single query. 

2)   Users struggle to mentally track temporal extents when 
validating the output of DSMS queries, and often have 
to write out timelines by hand. 

3)   Users lack intuition for the DSMS-specific temporal 
manipulation operations. 

These three categories of challenges, combined with our 
focus on supporting query prototyping, represent our high-
level design goals. In the remainder of this paper, we 
describe our visualization design, and show how it can be 
used to address these challenges and help DSMS users to 
better write and interpret temporal queries.  

A  Visual  Approach  to  Reducing  Complexity  
We propose a new approach for capturing and visualizing 
the behavior of stream queries, making them easier to 
understand and debug. Our tool, StreamTrace, incorporates 
this visualization into an interactive DSMS. Our 
visualization is designed to help improve users’ 
understanding of both how individual DSMS operators 
manipulate the data being queried, and the relationships 
between these operators. It visualizes the intermediate state 
of the query output after executing each operator, in order 
to show how each step of the query impacts the final result. 

Our visualization scheme is based on in-person interviews 
and iterative design sessions with domain data analysts who 
work with a DSMS on a daily basis. We evaluated 
StreamTrace by conducting a lab study of 15 developers 
who were new to DSMS’s, and conclude from our 
qualitative surveys from the study that StreamTrace can 
improve their ability to understand temporal query results 
and produce accurate DSMS queries in less time. 

BACKGROUND  
The StreamTrace system integrates aspects of several well-
known visualization types, and builds upon existing 
software and concepts from several research domains.  

Leveraging  Existing  Debugging  Concepts  
Parnin and Orso’s debugging model [28] consists of three 
phases: fault localization (identifying the erroneous code); 
fault understanding (understanding the cause); and fault 
correction (fixing the bug). Translating this model for 
DSMS queries requires incorporating debugging features to 
figure out what a query is doing, trace the causes of query 
errors, and confirm that bugs are fixed. Unfortunately, most 
querying systems function as a black box, so users cannot 
see the results of intermediate steps. Our goal is to open that 
box to expose the interactions to users. 

Several dataflow-focused debugging tools inspired our 
system design for analyzing DSMS queries. The Java 
Whyline [20] allows users to backtrack and identify the 
steps carried out by a program; users can ask why specific 
objects were assigned given values. JIVE [23] visualizes 
the steps of a procedural execution of a program to help a 
user understand what paths were chosen. Both of these 
visually lay out the progress that data makes through 
complex code, and to work forward and backward between 
outputs, antecedents, and inputs. 

Temporal  Visualizations  
Temporal data analysis and exploration is a well-studied 
area of data visualization [2]. Coordinating multiple 
timelines can help users understand how data relates 
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between different groups. Kosara and Miksch [21] use a 
hierarchical arrangement of coordinated timelines to 
visualize clinical guidelines as time-based plans. 
Gschwandtner et al. [15] use a hierarchical arrangement of 
timelines to support exploration of patient outcomes given 
time-stamped clinical treatment information. We similarly 
use a timeline approach, coordinated with other views, to 
help unpack temporal data. 

Another area of work highlights alternative techniques for 
specifying event patterns as temporal searches 
[11],[18],[22],[26], where the focus is on creating new 
languages or specification schemes, rather than debugging 
queries for existing systems. 

Related  Visual  Debugging  Systems  
To the best of our knowledge, StreamTrace is the first GUI-
based tool for open-ended temporal query writing and 
debugging. The visualization systems that are most closely 
related to StreamTrace are focused primarily on monitoring 
complex scientific workflows. VisTrails [29] is an 
interactive workflow analysis system that supports data 
analysis and exploration. It is oriented toward allowing 
users to re-execute a precise workflow, and to modify that 
workflow in a predicable way. The Perfopticon 
visualization system supports interactive analysis of 
workflows that perform batch execution of queries on a 
distributed DBMS [27].  

We know of only one other system intended for direct 
interaction with data streams. System S [10] is a visual 
debugger based on showing the query plan, or the low-level 
sequence of compiled operations that describes how the 
query will be executed. In contrast, StreamTrace operates at 
the user level, showing the stages of the query that map 
directly to the clauses in the user’s input. However both 
visualizations share a timeline view, and track the histories 
of individual events. We believe that the results from our 
user test would also speak to the System S visualizations.  

THE  DESIGN  OF  STREAMTRACE  
Our visualization scheme is designed both to help new 
DSMS users quickly learn how DSMS queries work, and to 
support the techniques that experts like John and Mark 
already use when interpreting temporal queries. As such, 
we chose three goals for the design of our visualizations, 
one for each class of debugging problems we found through 
our interviews. DSMS visualizations should: 

1)   Clarify the input-output relationships between all 
stream operators in the query, to show how these 
operators are connected. 

2)   Illustrate the timeline relationships between events 
at each stage of operations, as in John and Mark’s 
hand-drawn diagrams.  

3)   Convey how individual events flow through each 
stream operator in a query, to show how these 
individual operators behave. 

Given that the open-endedness of scripting has been shown 
to be a good fit for data exploration tasks [12],[19], we 
chose to support a scripting-based design for users to write 
and edit their queries, alongside our DSMS visualizations. 

In the remainder of this section, we explain how we 
distilled our design goals into concrete visualization 
components, implemented these components, and validated 
our design choices through feedback from Mark and a third 
DSMS expert Hank3. 

Three  Visualization  Components  
In choosing how to visualize query execution, we looked to 
ways that the experts thought about DSMS queries. During 
our expert interviews, we noticed John and Mark already 

                                                             
3 John had moved to a new job role by the time our 
StreamTrace prototype was completed, and could not 
provide feedback. 

 
Figure 4. A debugging visualization produced by StreamTrace, with the following components: (A) a workflow diagram; (B) a 

timeline; (C) provenance highlighting, where one time entry is highlighted; and (D) a tooltip. This query Multicasts the 
runningProcesses stream to two branches (or copies), applies an Aggregate operation to each branch, and consolidates 

the final statistics by joining the two branches together. 
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had diagrams visible in their offices of query sequences: a 
real example from John’s office can be seen in Figure 3; 
Hank sent us sample queries that included an ASCII 
representation of a query timeline (Figure 6).  

Mark explained that he also manually generates workflow 
diagrams of query operations. In these diagrams, he works 
with his team to decide what data they want the query to 
represent, and work out the sequence of operations that will 
generate it. These hand-drawn diagrams support the first 
design goal, of illustrating events on a timeline. 

We developed three major components for StreamTrace’s 
visualizations. Figure 4 is a screenshot of a StreamTrace 
visualization. First, StreamTrace draws a workflow diagram 
representing the input streams and the sequence of query 
operations executed on the inputs (labeled A). Second, 
StreamTrace draws a timeline view for each operator (and 
input) in the workflow diagram (labeled B), where the 
timeline view captures the result of executing this particular 
query operator. Last, StreamTrace provides linked 
highlighting across timeline views (labeled C), allowing the 
user to explore the complete history of an individual stream 
event—both what that event would become later in the 
query, and where this event came from. We refer to this 
history as the provenance of the event. 

The first design goal is addressed through StreamTrace’s 
workflow diagram. This diagram acts as a flow chart, 
showing the order in which the operators are executed, and 
which operators are responsible for producing the inputs to 
future operators later in the diagram.  

StreamTrace’s timeline views support the second design 
goal. Each streaming operator updates the output stream as 
the query is executed. The series of timeline visualizations 
allows a user to pinpoint which operator introduced errors.  

StreamTrace’s linked highlighting across timeline views 
addresses the third design goal. The linked highlighting 
feature allows users to figure out how a single event 
changes in duration or temporal position, no matter how 
complex, by tracing its provenance forward and backward. 
This fine-grained view enables users to get a very detailed 
view of their data 

Implementation  of  Visualization  Components  
Here, we provide a more detailed description of the design 
of the three visualization components. 

Workflow  Diagram  
StreamTrace represents the workflow diagram as a directed 
acyclic graph. Root nodes in the graph are inputs to the 
query; other nodes are query operators. The edges represent 
the ordering and relationship between query operators: 
operators that take a single input are drawn as straight lines, 
while operators that take multiple inputs or that produce 
multiple outputs are drawn as branches. The diagram is read 
from top to bottom; we narrow the layout to ensure that it 
could be seen as an annotation for the timelines. 
StreamTrace italicizes labels for query operator nodes; this 
allows users to distinguish easily between query operators 
and inputs.  

For example, the workflow diagram in Figure 4 has one 
starting node, labeled runningProcesses, which is the 
only input stream to the query. This input is passed to a 
single Multicast operation, which we see in the graph by 
the edge between the starting node and the node labeled 
Multicast. The Multicast operation creates two 
branches (i.e., copies) of the stream, shown by the two 
outgoing edges from the Multicast node. The right-hand 
branch contains a TumblingWindowLifetime operation 
and an Aggregation operation. The left contains only a 
single Aggregation node. Last, the branches are brought 
back together with a Join operation. 

While the workflow diagram resembles familiar DBMS 
query execution plans, there is an important difference: an 
execution plan shows the path after the database system has 
optimized it, which might include a number of 
transformations that users do not expect, such as the 
reordering of operations. As StreamTrace is meant to 
support the logical stages of query construction, we chose a 
workflow diagram that is a direct translation of the 
operations in the original query. 

Timeline  View  
The timeline view is designed to help users understand how 
each stream event is manipulated by a given query. Inspired 
by diagrams drawn by our experts—as in Figures 3 and 7—
the timeline view is represented as a series of bars, each 
representing an event in the stream. The position and length 
of each bar is mapped to the start time and duration of the 
event. All of the events that emerge from a single operator 
are arranged in a lane together; within that lane, vertical 

Figure 5. Four major operators in Trill, with their visual 
representation in StreamTrace. “Tumbling Window” 

manipulates the timeline, while the others keep events in their 
fixed timeslots. 
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position is arbitrary, but chosen to prevent overlap between 
events. When a user hovers over an event, a tooltip at the 
right side (labeled D in Figure 4) shows the detailed begin 
and end times for the event, as well as any contents 
associated with the event.  

Figure 5 shows a selection of Trill operators that 
manipulate either query graphs (e.g., Multicast) or temporal 
operators (e.g., TumblingWindowLifetime). The 
combination illustrates how StreamTrace uses bars to 
present temporal changes and extents. 

Linking  Timeline  Views  
The goal of this feature is to allow the user to ask why a 
specific event is part of the output—or to figure out what 
happened to an event as it propagated through the query. 
When a user hovers over a specific event in the timeline, 
StreamTrace displays this link using provenance 
highlighting, which shows the history of the event. In 
Figure 4, the user has hovered their mouse over an output 
event from executing a TumblingWindowLifetime 
operation; all relevant stream events are highlighted (i.e., 
colored black) by StreamTrace. Events highlighted above 
the current event represent inputs that contributed to the 
creation of the current event earlier in the query’s 
execution; we call this backward provenance. For example, 
StreamTrace highlights the events in the input stream(s) 
that were used to compute the current event. Similarly, 
events highlighted below the current event represent 
intermediate and final outputs that the current event 
contributed to later in the query’s execution; we call this 
forward provenance.  

Validation  through  Expert  Feedback  
After we created our initial prototype of StreamTrace, we 
showed it to Mark and Hank to collect feedback. Hank is 
the lead of a performance analysis team. Like John and 
Mark, Hank is the DSMS expert for his team of six people. 
We met with Hank and the rest of his team, all of whom 
were in the process of learning Trill, after our first designs 
for StreamTrace were implemented.  

They expressed interest in having a canonical set of basic 
queries for training their team. This inspired us to add 
tutorial materials as part of the StreamTrace design: a view 
in the analytics environment that shows core operations and 
allows the user to see their implementations; and a tutorial 
booklet with StreamTrace views of common Trill operators. 
After seeing the final design, Hank and his team expressed 
immediate interest in using StreamTrace to analyze their 
existing DSMS queries, and explained how they saw clear 
value in using a tool like StreamTrace in the future.  

After learning more about StreamTrace’s final design, Mark 
said that StreamTrace would allow his team to verify that 
they are doing the right thing, and that their plan is being 
carried out correctly. 

THE  IMPLEMENTATION  OF  STREAMTRACE  
StreamTrace’s back-end design is based on a notion of 
tracing fine-grained provenance through queries. To capture 
the intermediate steps of a query, we developed a new 
approach for provenance recording. The key aspect is to 
have each event store its own list of the previous input 
events that contributed to it. To do this, each stream event is 
assigned a provenance identifier. As a query is executed, 
these identifiers are propagated through each query operator 
to the related output events. We implement these 
provenance lists in two parts: (1) each event is annotated 
with a list of past inputs; and (2) the core Trill operators are 
wrapped in specialized code to propagate provenance 
identifiers from input events to the corresponding output 
events. The wrapper code executes outside of the DSMS, 
making it applicable to other systems beyond Trill. 

Without provenance tracking, StreamTrace would lack the 
necessary metadata for visualizing query behavior. This 
technique was inspired by past work in the database 
community on recording provenance for workflows [17] 
and data streams [16],[31],[13],[14]. The focus of these 
projects is to ensure that provenance data can be efficiently 
tracked and stored. This past work does not address how to 
make the resulting histories easy to interpret for non-DSMS 
experts, which is precisely what we address in StreamTrace. 

StreamTrace breaks each operation out of the query 
expression separately through a process of query rewriting. 
Query rewriting happens automatically behind the scenes; 
users still see the original query when provenance is 
enabled. Users enable StreamTrace with a single click, 
which triggers provenance annotations, rewrites the current 
query, executes this new query, and shows the output. 
Provenance tracking is enabled for all core Trill operators; 
as such, StreamTrace supports all of standard relational 
algebra, with enhancements for time manipulations. 
Collectively, these operations are common to other DSMS 
streaming engines, too; there is nothing specific to Trill 
about the broader design.  

LABORATORY  STUDY  
After iteratively refining StreamTrace with expert users, we 
validated our design with a laboratory study.  

Hypotheses  and  Tasks  
The goal of our quantitative evaluation was to learn 
whether users better understand and debug temporal queries 

 
Figure 6. This comment, embedded in a sample query from 

Hank, shows a timeline view drawn with ASCII art. 
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with the assistance of our visualization. The feedback we 
received from expert DSMS users encouraged us to believe 
that StreamTrace would be good for helping novice users 
understand queries. We carried out a laboratory user study 
to test two hypotheses: using StreamTrace, subjects will 

H1:  identify errors in Trill queries more easily. 
H2:  find queries easier to write. 

To test these hypotheses, we wanted to observe analysts in 
the process of working through specific queries. We created 
four synthetic datasets, each containing roughly a dozen 
events. We chose these datasets to help participants debug 
the intent of the temporal query, as opposed to its runtime 
performance where larger datasets would be necessary. For 
guidance, we directly referenced the test datasets given to 
us by our experts John and Mark when creating our own 
synthetic datasets. This ensured that our datasets had the 
same structure and relative size as test datasets used in the 
real world. We then created one query per dataset that we 
expected users to be able to solve in the study. 

In choosing our tasks, we strove for a balance to 
accommodate the lab setting: we chose tasks that were 
complex enough to manifest query comprehension and 
authoring problems, but not so complex to overwhelm and 
intimidate participants. To achieve this, we collected real 
queries from our DSMS experts to use as starting points for 
our tasks, grouped the queries by difficulty (e.g., easy, 
medium and hard), and modified the queries as necessary to 
match our test datasets and reflect appropriate difficulty 
levels for the study. The final tasks challenged users either 
to expand a simpler query into a more complex one or to 
debug an erroneous complex query. Each query required 
the user to tweak two or three operations. For example, one 
task asked users to change a query from filtering and 
showing a single value, to showing a value across multiple 
filters in parallel. In doing so, users would need to change 
from a filtering operator to a grouping one, and find the 
appropriate syntax. Figure 4 illustrates the initial conditions 
for Task B in the visualization condition. Users were told 
they needed to debug the query so that that all of the output 
was mapped to a set of fixed time windows (as in our 
motivating example with Mark). 

We carried out a series of pilots to ensure that the queries 
were of roughly similar difficulty. To reduce learning 
effects, we ensured the tasks had minimal overlap—none of 
the four require the same Trill operators in their solutions. 

The study was carried out within-subjects. Participants 
carried out four rounds of tasks, alternating between with- 
and without the StreamTrace enhancements. We alternated 
which condition was first. We used a Latin-square design to 
counterbalance tasks and conditions in order to balance out 
difficulty and learning effects. 

We measured the amount of time to get a correct query for 
each task. All sessions were audio- and video-recorded. 
Users filled out a brief survey after completing each of the 

four tasks, then a concluding survey that compared tasks to 
each other. After each session, we interviewed users to get 
additional thoughts on their experience with the system. 

Testing  Environment  
StreamTrace is implemented within the experimental data 
science environment Tempe [9], which executes its data 
analysis operations in Trill. Tempe works in an interactive 
C# interpreter designed for live coding, which allows a user 
to modify any line of a program, and see a recomputed 
result immediately. Tempe also provides intelligent code-
completion; when a user types part of a command, the 
system shows available methods on an object, the 
parameters of a method call, and what objects match the 
appropriate types. This allows us to focus on query 
semantics, rather than syntax.  

Study  Procedure  
We first introduce users to Trill with a paper guide 
specifically created for the study, a modification of the 
guide we created for Hank. The guide illustrates the syntax 
and grammar for the eight Trill operators used in the study. 
While Trill has dozens of other operators, this subset allows 
us to capture all of the query types provided by our experts. 
The guide illustrates its functions in a number of different 
ways, including timelines similar to the visualization. After 
spending approximately ten minutes reading the Trill guide, 
subjects are then introduced first to the analytics 
environment, then to the StreamTrace visualizations. They 
are given a list of queries; the experimenter works with 
them for another five minutes to ensure that they can 
correctly write a query, accurately interpret the results of 
queries; the experimenter also answers subjects’ questions. 

Each of the four timed tasks began with two simple “warm-
up” tasks to teach subjects about the current dataset and to 
familiarize them with the Trill operators they might need 
for the task. When the subject announces that they are ready 
to proceed, the experimenter starts a timer and the subject 
starts on the test query. When the participant announces 
they are done, the experimenter records the time and checks 
their answer. Participants were asked to continue attempting 
the task until they found the correct answer. Participants 
who did not complete the task correctly were stopped after 
twenty minutes per task and marked as “did not finish”. 

Table 1: The four tasks for the user study 

 Task Description           Operations 
A Find the max temperature 

across multiple CPUs in one 
stream 

GroupApply; 
Aggregate 

B Ensure that a multicast stream 
has consistent time windows. 
(e.g., Figure 2(c)) 

Multicast;  
TumblingWindow- 
Lifetime 

C 
 

Join a stream with a second 
stream on a key 

Join; Where 

D Match “start” and “end” pairs 
within a log 

AlterEventDuration; 
ClipEventDuration 
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Participants  
We recruited professional developers, data scientists, and 
data-oriented testers from within a large software company. 
We chose a random sample from three internal distributions 
lists. We sent personalized email invitations to screen for 
experience in C# and LINQ, and interest in data analysis.  

From this pool, 18 participants took part in the study. We 
dismissed three for lacking the required skills. The 
remaining 15 (1 female) reported an average of  

•   8.3 years of professional experience; 
•   5.7 years of C# experience; and 
•   3.4 years of LINQ experience; 

In terms of job roles, 8 described themselves as developers, 
4 as testers, and 3 as data scientists. We noted that seven 
participants had just 1 or 2 years of experience with LINQ. 
This was the first time any of our study participants 
encountered any DSMS, including Trill. 

RESULTS  

Observations  
We watched each user work through the problems and 
recorded both screen captures and sessions. This allowed us 
to track how users were interacting with the visualizations.  

We found the visualizations were useful for different 
types of queries. P1, a LINQ beginner, started with the 
visualization for his first task. When he moved on to the 
second task (task B) he said “The visualization would really 
help here!” Task B requires the user to align time windows 
together; the visualization makes it immediately apparent 
which items are out of alignment (as shown in Figure 4). 
Without the visualization, he was more frustrated. P11, also 
working on Task B without the visualization, similarly 
complained, “I couldn’t tell why the data didn’t correspond 
to the correct [temporal] window.” 

During times when users felt they had strong intuitions, this 
verification was less important: P13 did not use the 
visualization on Task C: “This one,” he said, “uses standard 
[non-temporal] LINQ queries; I don’t need it.”  

The visualizations were helpful to verify and confirm that 
a query was working as expected. P1, for example, did not 
use the visualization during the course of working on Task 
C—but used afterward to show that he had succeeded. 
Similarly, P13 used the visualization after he had completed 
Task A to check whether he had the segments he expected. 
P8 said, “visually seeing the result, it’s easier to verify 
correctness instead of reading individual items.” 

Last, the visualization helped shape people’s mental 
models. P5 did not use the visualization during his study at 
all. However, during his tutorial period, he spent a long 
time studying the visualizations and their interactions. 

Afterward, he reported that the visualization was “helpful” 
but not quite worth turning on. We interpret P5 as building 
a more-detailed mental model of the queries based on the 
visualizations. 

Three  Phases  of  Debugging    
We used these observations to assess StreamTrace’s 
effectiveness across the three phases of the debugging 
process as described by Parnin and Orso [28]: fault 
understanding, fault localization, and fault correction. We 
found that StreamTrace was generally helpful across a 
majority of these phases. 

For tasks like Task B, where participants greatly benefitted 
from seeing the temporal scope/alignment of events, we 
found that our visualizations helped with the fault 
understanding phase of debugging for some participants. 

Some users also found the visualizations to be helpful 
during the fault localization phase of debugging queries. 
P12, for example, reported that he found Task B to be 
ambiguous—but when he saw the initial view, he figured 
out what needed to be done. P15 was struggling with Task 
D—after he turned to the visualization to walk step-by-step 
through the behavior he expected to see, he was able to 
quickly solve the problem. 

Our visualizations also had their limitations. Several users 
struggled with the Trill syntax; while fighting compiler 
errors, the visualization had no extra information to show 
them. Thus our visualizations were less effective during 
fault correction. As we note above, some users found 
StreamTrace effective for verifying that their fixes had 
worked; this phase is not accounted for in this model.  

Quantitative  and  Survey  Results  
We measured time to accurate completion for each 
question. All participants were able to make it through all 
four questions within twenty minutes each; most took far 
less. However, with programming tasks, there is often high 
variability within users on task performance, and our study 
was no exception. For example, there was high variance 
both within- and between-users across tasks in our study. 
Even when compared within the same condition and for the 
same user, completion times could vary by 6 minutes or 
more for over a third of our participants. Correcting syntax 
errors, or understanding the question, often took some time. 
Disappointingly, as Figure 7 shows, the visualizations did 
not obviously make users quicker for any of the tasks. But 
we were not surprised when there was no “home run" 
performance measure that clearly shows a large difference 
between conditions. We believe that this variability is 
inherent in the complexity of the streaming concepts and 
the tasks, rather than a flaw of our study. 
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We turn, then, to our survey results.  Amidst other 
questions, we asked users to estimate the value of the 
visualization to them. Figure 8 shows that users felt that the 
visualization was more helpful for B and D, the temporal 
queries, than for the others. We saw similar results for the 
statement “the visualization helped me solve the task 
faster;” and (reversed) for “the visualization was useless.”  

DISCUSSION  
The laboratory experiment tested very specific scenarios. 
High variance, both within- and between-subjects, meant 
that we did not come to a quantitative result showing that 
users were faster to debug or create queries using 
StreamTrace. However, we did see that the visualizations 
assisted in query debugging in a variety of ways. Users 
used the visualizations, guide, and the tutorial to better 
understand how Trill queries were structured and to how to 
think about the sequence of events. During the tasks, they 
used StreamTrace to identify what was wrong with the data, 
and to check that they got the right answer at the end. 

Some types of queries seem more amenable to this 
visualization than others: in tasks that entail manipulation 
of the timeline, the visualization could help users keep track 
of the time. As a result, users talked much more often about 
the visualization challenges of the temporal tasks B and D 
over the non-temporal tasks, A and C. 

The real queries carried out by the experts tended to 
combine temporal and non-temporal aspects. As a result, it 
is likely that StreamTrace might be more generally useful 
for them then for the more specialized queries. 

We conclude that seeing how events flow through 
streaming queries helps users with two specific debugging 
subtasks: identifying faulty code regions, and identifying 
the causes of erroneous or unexpected behavior within these 
code regions. We attribute these benefits to the use of 
timelines to make temporal semantics explicit, and the 
ability to “drill in” to see the effect of individual operators 
on specific stream events. Alternative query debugging 
designs, such as for non-temporal queries, can still utilize a 
“drill in” feature to show users how individual records are 
modified as they are processed by a query. Our timeline-
based visualization design could potentially be applied to 
high-level pipelines outside of DSMS’s (e.g., command-
line scripts, execution workflows), given appropriate input-
output provenance data. 

Future  Opportunities  
Our study focused primarily on evaluating small-scale 
debugging techniques. As such, it is unclear how 
StreamTrace scales up in both visualization design and 
dataset size. For example, in the current implementation, 
the timeline remains fixed; this is a limitation on visual 
scalability. We plan to extend our visualizations and 
provenance tracking to larger event streams, which will 
allow users to do both small-scale prototyping and large-
scale performance testing within a single debugging tool. 

Both the expert users and our participants provided many 
suggestions to improve the system. Our participants 
suggested several new features and colorings to improve 
StreamTrace’s visualizations. With aggregate operations, 
users wanted to directly render aggregation values on the 
timeline bars, perhaps even transforming the result into a 
line chart. This would make the visualization more 
powerful as a signal processing view. Several users also 
wanted to be able to link the query text itself to the 
visualization by cross-highlighting between the workflow 
diagram on the left and the text above. These features 
would enhance the StreamTrace experience. 

CONCLUSION  
In this paper, we have presented a visualization design to 
help DSMS users better understand their temporal queries. 
Our prototype, StreamTrace, helps improve users’ 
understanding of how individual DSMS operators 
manipulate data streams, and the relationships between 
these operators within temporal queries. We evaluated 
StreamTrace by carrying out a lab study with 18 analysts 
new to DSMS’s. We concluded from our user study that 
StreamTrace can help users at two critical points in 
debugging tasks: when locating faulty code regions in their 
queries, and when understanding and identifying the causes 
for unexpected query behavior. 
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